首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To better understand the mechanisms that underlie cardiac repolarization abnormalities in the immature heart, this study characterized and compared K(+) currents in mouse ventricular myocytes from day 1, day 7, day 20, and adult CD1 mice to determine the effects of postnatal development on ventricular repolarization. Current- and patch-clamp techniques were used to examine action potentials and the K(+) currents underlying repolarization in isolated myocytes. RT-PCR was used to quantify mRNA expression for the K(+) channels of interest. This study found that action potential duration (APD) decreased as age increased, with the shortest APDs observed in adult myocytes. This study also showed that K(+) currents and the mRNA relative abundance for the various K(+) channels were significantly greater in adult myocytes compared with day 1 myocytes. Examination of the individual components of total K(+) current revealed that the inward rectifier K(+) current (I(K1)) developed by day 7, both the Ca(2+)-independent transient outward current (I(to)) and the steady-state outward K(+) current (I(ss)) developed by day 20, and the ultrarapid delayed rectifier K(+) current (I(Kur)) did not fully develop until the mouse reached maturity. Interestingly, the increase in I(Kur) was not associated with a decrease in APD. Comparison of atrial and ventricular K(+) currents showed that I(to) and I(Kur) density were significantly greater in day 7, day 20, and adult myocytes compared with age-matched atrial cells. Overall, it appears that, in mouse ventricle, developmental changes in APD are likely attributable to increases in I(to), I(ss), and I(K1), whereas the role of I(Kur) during postnatal development appears to be less critical to APD.  相似文献   

2.
Atrial fibrillation (AF) is the most frequent arrhythmia found in clinical practice. In recent studies, a decrease in the development or recurrence of AF was found in hypertensive patients treated with angiotensin-converting enzyme inhibitors or angiotensin receptor-blocking agents. Hypertension is related to an increased wall tension in the atria, resulting in increased stretch of the individual myocyte, which is one of the major stimuli for the remodeling process. In the present study, we used a model of cultured atrial neonatal rat cardiomyocytes under conditions of stretch to provide insight into the mechanisms of the preventive effect of the angiotensin receptor-blocking agent losartan against AF on a molecular level. Stretch significantly increased protein-to-DNA ratio and atrial natriuretic factor mRNA expression, indicating hypertrophy. Expression of genes encoding for the inward rectifier K(+) current (I(K1)), Kir 2.1, and Kir 2.3, as well as the gene encoding for the ultrarapid delayed rectifier K(+) current (I(Kur)), Kv 1.5, was significantly increased. In contrast, mRNA expression of Kv 4.2 was significantly reduced in stretched myocytes. Alterations of gene expression correlated with the corresponding current densities: I(K1) and I(Kur) densities were significantly increased in stretched myocytes, whereas transient outward K(+) current (I(to)) density was reduced. These alterations resulted in a significant abbreviation of the action potential duration. Losartan (1 microM) prevented stretch-induced increases in the protein-to-DNA ratio and atrial natriuretic peptide mRNA expression in stretched myocytes. Concomitantly, losartan attenuated stretch-induced alterations in I(K1), I(Kur), and I(to) density and gene expression. This prevented the stretch-induced abbreviation of action potential duration. Prevention of stretch-induced electrical remodeling might contribute to the clinical effects of losartan against AF.  相似文献   

3.
Atrial fibrillation is one of the common arrhythmias associated with hyperthyroidism. This study examined the effects of thyroid hormone (T3) on mRNA expression and currents of major ionic channels determining the action potential duration (APD) in the rat atrium using the RNase protection assay and the whole-cell patch-clamp technique, respectively. T3 increased the Kv1.5 mRNA expression and decreased the L-type calcium channel mRNA expression, while the Kv4.2 mRNA expression did not change. APD was shorter in hyperthyroid than in euthyroid myocytes. The ultrarapid delayed rectifier potassium currents were remarkably increased in hyperthyroid than in euthyroid myocytes, whereas the transient outward potassium currents were unchanged. L-type calcium currents were decreased in hyperthyroid than in euthyroid myocytes. T3 shifted the current-voltage relationship for calcium currents negatively. In conclusion, T3 increased the outward currents and decreased the inward currents. The resultant changes of ionic currents shortened APD, providing a substrate for atrial fibrillation.  相似文献   

4.
Consistent differences in K+ currents in left and right atria of adult mouse hearts have been identified by the application of current- and voltage-clamp protocols to isolated single myocytes. Left atrial myocytes had a significantly (P < 0.05) larger peak outward K+ current density than myocytes from the right atrium. Detailed analysis revealed that this difference was due to the rapidly activating sustained K+ current, which is inhibited by 100 muM 4-aminopyridine (4-AP); this current was almost three times larger in the left atrium than in the right atrium. Accordingly, 100 muM 4-AP caused a significantly (P < 0.05) larger increase in action potential duration in left than in right atrial myocytes. Inward rectifier K+ current density was also significantly (P < 0.05) larger in left atrial myocytes. There was no difference in the voltage-dependent L-type Ca2+ current between left and right atria. As expected from this voltage-clamp data, the duration of action potentials recorded from single myocytes was significantly (P < 0.05) shorter in myocytes from left atria, and left atrial tissue was found to have a significantly (P < 0.05) shorter effective refractory period than right atrial tissue. These results reveal similarities between mice and other mammalian species where the left atrium repolarizes more quickly than the right, and provide new insight into cellular electrophysiological mechanisms responsible for this difference. These findings, and previous results, suggest that the atria of adult mice may be a suitable model for detailed studies of atrial electrophysiology and pharmacology under control conditions and in the context of induced atrial rhythm disturbances.  相似文献   

5.
Deng C  Yu X  Kuang S  Zhang W  Zhou Z  Zhang K  Qian W  Shan Z  Yang M  Wu S  Lin S 《Life sciences》2007,80(7):665-671
Carvedilol is a beta- and alpha(1)-adrenoceptor antagonist. It is widely used in the treatment of cardiovascular diseases including atrial arrhythmias. However, it is unclear whether carvedilol may affect the repolarization currents, transient outward K(+) current (I(to)) and ultra-rapid delayed rectifier K(+) current (I(Kur)) in the human atrium. The present study evaluated effects of carvedilol on I(to) and I(Kur) in isolated human atrial myocytes by whole-cell patch-clamp recording technique. We found that carvedilol reversibly inhibited I(to) and I(Kur) in a concentration-dependent manner. Carvedilol (0.3 microM) suppressed I(to) from 9.2+/-0.5 pA/pF to 4.8+/-0.5 pA/pF (P<0.01) and I(Kur) from 3.6+/-0.5 pA/pF to 1.9+/-0.3 pA/pF (P<0.01) at +50 mV. I(to) was inhibited in a voltage-dependent manner, being significantly attenuated at test potentials from +10 to +50 mV, whereas the inhibition of I(Kur) was independent. The concentration giving a 50% inhibition was 0.50 microM for I(to) and 0.39 microM for I(Kur). Voltage-dependence of activation, inactivation and time-dependent recovery from inactivation of I(to) were not altered by carvedilol. However, time to peak and time-dependent inactivation of I(to) were significantly accelerated, indicating an open channel blocking action. The findings indicate that carvedilol significantly inhibits the major repolarization K(+) currents I(to) and I(Kur) in human atrial myocytes.  相似文献   

6.
Recent studies suggest that atrial fibrillation (AF) is maintained by fibrillatory conduction emanating from a small number of high-frequency reentrant sources (rotors). Our goal was to study the ionic correlates of a rotor during simulated chronic AF conditions. We utilized a two-dimensional (2-D), homogeneous, isotropic sheet (5 x 5 cm(2)) of human atrial cells to create a chronic AF substrate, which was able to sustain a stable rotor (dominant frequency approximately 5.7 Hz, rosette-like tip meander approximately 2.6 cm). Doubling the magnitude of the inward rectifier K(+) current (I(K1)) increased rotor frequency ( approximately 8.4 Hz), and reduced tip meander (approximately 1.7 cm). This rotor stabilization was due to a shortening of the action potential duration and an enhanced cardiac excitability. The latter was caused by a hyperpolarization of the diastolic membrane potential, which increased the availability of the Na(+) current (I(Na)). The rotor was terminated by reducing the maximum conductance (by 90%) of the atrial-specific ultrarapid delayed rectifier K(+) current (I(Kur)), or the transient outward K(+) current (I(to)), but not the fast or slow delayed rectifier K(+) currents (I(Kr)/I(Ks)). Importantly, blockade of I(Kur)/I(to) prolonged the atrial action potential at the plateau, but not at the terminal phase of repolarization, which led to random tip meander and wavebreak, resulting in rotor termination. Altering the rectification profile of I(K1) also slowed down or abolished reentrant activity. In combination, these simulation results provide novel insights into the ionic bases of a sustained rotor in a 2-D chronic AF substrate.  相似文献   

7.
An imaging system for di-4-ANEPPS (4-[beta-[2-(di-n-butylamino)-6-naphthylvinyl]pyridinium]) voltage-sensitive dye recordings has been adapted for recording from an in vitro mouse heart preparation that consists of both atria in isolation. This approach has been used to study inter- and intra-atrial activation and conduction and to monitor action potential durations (APDs) in the left and right atrium. The findings from this study confirm some of our previous findings in isolated mouse atrial myocytes and demonstrate that many electrophysiological properties of mouse atria closely resemble those of larger mammals. Specifically, we made the following observations: 1) Activation in mouse atria originates in the sinoatrial node and spreads into the right atrium and, after a delay, into the left atrium. 2) APD in the left atrium is shorter than in the right atrium. 3) Sites in the posterior walls have longer APDs than sites in the atrial appendages. 4) Superfusion of this preparation with 4-aminopyridine and tetraethylammonium resulted in increases in APD, consistent with their inhibitory effects on the K+ currents known to be expressed in mouse atria. 5) The muscarinic agonist carbachol shortened APD in all areas of the preparation, except the left atrial appendage, in which carbachol had no statistically significant effect on APD. These results validate a new approach for monitoring activation, conduction, and repolarization in mouse atria and demonstrate that the physiological and pharmacological properties of mouse atria are sufficiently similar to those of larger animals to warrant further studies using this preparation.  相似文献   

8.
Mice that overexpress the inflammatory cytokine tumor necrosis factor-alpha in the heart (TNF mice) develop heart failure characterized by atrial and ventricular dilatation, decreased ejection fraction, atrial and ventricular arrhythmias, and increased mortality (males > females). Abnormalities in Ca2+ handling, prolonged action potential duration (APD), calcium alternans, and reentrant atrial and ventricular arrhythmias were previously observed with the use of optical mapping of perfused hearts from TNF mice. We therefore tested whether altered voltage-gated outward K+ and/or inward Ca2+ currents contribute to the altered action potential characteristics and the increased vulnerability to arrhythmias. Whole cell voltage-clamp recordings of K+ currents from left ventricular myocytes of TNF mice revealed an approximately 50% decrease in the rapidly activating, rapidly inactivating transient outward K+ current Ito and in the rapidly activating, slowly inactivating delayed rectifier current IK,slow1, an approximately 25% decrease in the rapidly activating, slowly inactivating delayed rectifier current IK,slow2, and no significant change in the steady-state current Iss compared with controls. Peak amplitudes and inactivation kinetics of the L-type Ca2+ current ICa,L were not altered. Western blot analyses revealed a reduction in the proteins underlying Kv4.2, Kv4.3, and Kv1.5. Thus decreased K+ channel expression is largely responsible for the prolonged APD in the TNF mice and may, along with abnormalities in Ca2+ handling, contribute to arrhythmias.  相似文献   

9.
Pharmacological treatment with various antiarrhythmic agents for the termination or prevention of atrial fibrillation (AF) is not yet satisfactory. This is in part because the drugs may not be sufficiently selective for the atrium, and they often cause ventricular arrhythmias. The ultrarapid-delayed rectifying potassium current (I(Kur)) is found in the atrium but not in the ventricle, and it has been recognized as a potentially promising target for anti-AF drugs that would be without ventricular proarrhythmia. Several new agents that specifically block I(Kur) have been developed. They block I(Kur) in a voltage- and time-dependent manner. Here we use mathematical models of normal and electrically remodeled human atrial action potentials to examine the effects of the blockade kinetics of I(Kur) on atrial action potential duration (APD). It was found that after AF remodeling, an I(Kur) blocker with fast onset can effectively prolong APD at any stimulus frequency, whereas a blocker with slow onset prolongs APD in a frequency-dependent manner only when the recovery is slow. The results suggest that the voltage and time dependence of I(Kur) blockade should be taken into account in the testing of anti-AF drugs. This modeling study suggests that a simple voltage-clamp protocol with a short pulse of approximately 10 ms at 1 Hz may be useful to identify the effective anti-AF drugs among various I(Kur) blockers.  相似文献   

10.
The role of electrical heterogeneity in development of cardiac arrhythmias is well recognized. The extent to which transmembrane action potential (TAP) heterogeneity contributes to the normal electrophysiology of well-oxygenated atria is not well defined. The principal objective of the present study was to define regional and transmural differences in characteristics of the TAP in isolated superfused and arterially perfused canine right atrial (RA) preparations under baseline, rapidly activating delayed rectifier K(+) current (I(Kr)) block, and combined block of ultrarapid delayed rectifier and transient outward K(+) current (I(Kur)/I(to) block). Superfused preparations that survived generally displayed a triangle-shaped TAP. Exceptions included cells from the crista terminalis, where TAPs with a normal plateau could be recorded. In contrast, most TAPs recorded from throughout the perfused RA displayed a spike-and-dome and/or plateau morphology. The perfused RA displayed a heterogeneous distribution of repolarization, V(max), and spike-and-dome morphology along the epicardial and endocardial surfaces as well as transmurally, in the region of the upper crista terminalis. I(Kr) block with E-4031 prolonged repolarization homogeneously in the perfused RA, whereas I(Kur)/I(to) block using low concentrations of 4-aminopyridine abbreviated action potential duration at 90% repolarization heterogeneously, leading to a reduction in dispersion of repolarization. Our data indicate that the electrical heterogeneities, previously described for the canine ventricle, also exist within the atria and that I(Kr) block does not accentuate and I(Kur)/I(to) block reduces RA dispersion of repolarization. Our study also points to major differences in the transmembrane activity recorded using superfused vs. arterially perfused atrial preparations.  相似文献   

11.
Overexpression of a truncated Kv1.1 or Kv2.1 channel polypeptide in the heart (Kv1DN or Kv2DN) resulted in mice with a prolonged action potential duration (APD) due to marked attenuation of rapidly activating, slowly inactivating K+ current (I(K,slow1)) or slowly inactivating outward K(+) current (I(K,slow2)) in ventricular myocytes. ECG monitoring, optical mapping, and programmed electrical stimulation of Kv1DN mice revealed spontaneous and inducible reentrant ventricular tachycardia due to spatial dispersion of repolarization and refractoriness. Recently, we demonstrated upregulation of I(K,slow2) in apical cardiomyocytes derived from Kv1DN mice. We therefore hypothesized that the selective upregulation of Kv2.1-encoded currents underlies the apex-to-base dispersion of repolarization and the reentrant arrhythmias. To test this hypothesis, the Kv1DN line was crossbred with the Kv2DN line to produce Kv1/Kv2DN lines. Whole cell voltage-clamp recordings from left ventricular cells of Kv1/Kv2DN confirmed that the 4-aminopyridine- and tetraethylammonium-sensitive components of IK,slow were eliminated, resulting in marked APD prolongation compared with wild-type, Kv1DN, and Kv2DN cells. Telemetric ECG recordings revealed prolongation of the corrected QT in Kv1/Kv2DN compared with Kv1DN and Kv2DN mice. However, attenuation of Kv2.1-encoded currents in Kv1DN mice did not suppress the arrhythmias. Thus, the elimination of I(K,slow2) prolongs APD and the QT intervals, but does not have an antiarrhythmic effect.  相似文献   

12.
13.
One of the generally recognized factors contributing to the initiation and maintenance of atrial fibrillation (AF) is structural remodeling of the myocardium that affects both atrial cardiomyocytes as well as interstitium. The goal of this study was to characterize morphologically and functionally interstitium of atria in patients with AF or in sinus rhythm (SR) who were indicated to heart surgery. Patient population consisted of 46 subjects (19 with long-term persistent AF, and 27 in SR) undergoing coronary bypass or valve surgery. Peroperative bioptic samples of the left and the right atria were examined using immunohistochemistry to visualize and quantify collagen I, collagen III, elastin, desmin, smooth muscle actin, endothelium and Vascular Endothelial Growth Factor (VEGF). The content of interstitial elastin, collagen I, and collagen III in atrial tissue was similar in AF and SR groups. However, the right atrium was more than twofold more abundant in elastin as compared with the left atrium and similar difference was found for collagen I and III. The right atrium showed also higher VEGF expression and lower microvascular density as compared to the left atrium. No significant changes in atrial extracellular matrix fiber content, microvascular density and angiogenic signaling, attributable to AF, were found in this cohort of patients with structural heart disease. This finding suggests that interstitial fibrosis and other morphological changes in atrial tissue are rather linked to structural heart disease than to AF per se. Significant regional differences in interstitial structure between right and left atrium is a novel observation that deserves further investigation.  相似文献   

14.
Cardiac-specific expression of a truncated Kv1.1 polypeptide (Kv1DN) attenuates the slow inactivating outward K(+) current (I(K,slow)), increases action potential duration (APD) and Q-T intervals, and induces spontaneous ventricular arrhythmias. Expression of the pore mutant of Kv4.2 (Kv4DN) eliminates the fast component of the transient outward current (I(to)) and prolongs APDs and Q-T intervals markedly; however, no arrhythmias are seen in Kv4DN mice, suggesting that APD and Q-T prolongation are not per se proarrhythmic. To test this hypothesis, the Kv1DN and Kv4DN lines were crossbred to produce animals (Kv1/Kv4DN) expressing both transgenes in an identical genetic background. Whole cell voltage-clamp recordings from left ventricular apex cells confirmed that in Kv1/Kv4DN left ventricular apex cells, both components (fast and slow) of I(to) and the 4-aminopyridine-sensitive component of I(K,slow) are eliminated, resulting in marked APD prolongation compared with wild-type, Kv1DN, or Kv4DN cells. Telemetric electrocardiogram monitoring (n = 10 mice/group) revealed a significant prolongation of Q-Tc and P-R intervals in Kv1/Kv4DN animals compared with Kv1DN or Kv4DN animals. Spontaneous arrhythmias were observed mainly in Kv1DN mice. Thus the attenuation of fast I(to) in addition to I(K,slow) in Kv1/Kv4DN mice causes significant prolongation of APD and Q-T intervals and attenuation of spontaneous arrhythmias.  相似文献   

15.
Hypertension is associated with the development of atrial fibrillation; however, the electrophysiological consequences of this condition remain poorly understood. ATP-sensitive K(+) (K(ATP)) channels, which contribute to ventricular arrhythmias, are also expressed in the atria. We hypothesized that salt-induced elevated blood pressure (BP) leads to atrial K(ATP) channel activation and increased arrhythmia inducibility. Elevated BP was induced in mice with a high-salt diet (HS) for 4 wk. High-resolution optical mapping was used to measure atrial arrhythmia inducibility, effective refractory period (ERP), and action potential duration at 90% repolarization (APD(90)). Excised patch clamping was performed to quantify K(ATP) channel properties and density. K(ATP) channel protein expression was also evaluated. Atrial arrhythmia inducibility was 22% higher in HS hearts compared with control hearts. ERP and APD(90) were significantly shorter in the right atrial appendage and left atrial appendage of HS hearts compared with control hearts. Perfusion with 1 μM glibenclamide or 300 μM tolbutamide significantly decreased arrhythmia inducibility and prolonged APD(90) in HS hearts compared with untreated HS hearts. K(ATP) channel density was 156% higher in myocytes isolated from HS animals compared with control animals. Sulfonylurea receptor 1 protein expression was increased in the left atrial appendage and right atrial appendage of HS animals (415% and 372% of NS animals, respectively). In conclusion, K(ATP) channel activation provides a mechanistic link between salt-induced elevated BP and increased atrial arrhythmia inducibility. The findings of this study have important implications for the treatment and prevention of atrial arrhythmias in the setting of hypertensive heart disease and may lead to new therapeutic approaches.  相似文献   

16.
Heart failure (HF) produces important alterations in currents underlying cardiac repolarization, but the transmural distribution of such changes is unknown. We therefore recorded action potentials and ionic currents in cells isolated from the endocardium, midmyocardium, and epicardium of the left ventricle from dogs with and without tachypacing-induced HF. HF greatly increased action potential duration (APD) but attenuated APD heterogeneity in the three regions. Early afterdepolarizations (EADs) were observed in all cell types of failing hearts but not in controls. Inward rectifier K(+) current (I(K1)) was homogeneously reduced by approximately 41% (at -60 mV) in the three cell types. Transient outward K(+) current (I(to1)) was decreased by 43-45% at +30 mV, and the slow component of the delayed rectifier K(+) current (I(Ks)) was significantly downregulated by 57%, 49%, and 58%, respectively, in epicardial, midmyocardial, and endocardial cells, whereas the rapid component of the delayed rectifier K(+) current was not altered. The results indicate that HF remodels electrophysiology in all layers of the left ventricle, and the downregulation of I(K1), I(to1), and I(Ks) increases APD and favors occurrence of EADs.  相似文献   

17.
Pharmacological treatment of atrial fibrillation (AF) exhibits limited efficacy. Further developments require a comprehensive characterization of ionic modulators of electrophysiology in human atria. Our aim is to systematically investigate the relative importance of ionic properties in modulating excitability, refractoriness, and rotor dynamics in human atria before and after AF-related electrical remodeling (AFER). Computer simulations of single cell and tissue atrial electrophysiology were conducted using two human atrial action potential (AP) models. Changes in AP, refractory period (RP), conduction velocity (CV), and rotor dynamics caused by alterations in key properties of all atrial ionic currents were characterized before and after AFER. Results show that the investigated human atrial electrophysiological properties are primarily modulated by maximal value of Na(+)/K(+) pump current (G(NaK)) as well as conductances of inward rectifier potassium current (G(K1)) and fast inward sodium current (G(Na)). G(NaK) plays a fundamental role through both electrogenic and homeostatic modulation of AP duration (APD), APD restitution, RP, and reentrant dominant frequency (DF). G(K1) controls DF through modulation of AP, APD restitution, RP, and CV. G(Na) is key in determining DF through alteration of CV and RP, particularly in AFER. Changes in ionic currents have qualitatively similar effects in control and AFER, but effects are smaller in AFER. The systematic analysis conducted in this study unravels the important role of the Na(+)/K(+) pump current in determining human atrial electrophysiology.  相似文献   

18.
The nature of electrical remodeling in a canine model of ischemic cardiomyopathy (ICM; induced by repetitive intracoronary microembolizations) that exhibits spontaneous ventricular tachycardia is not entirely clear. We used the patch-clamp technique to record action potentials and ionic currents of left ventricular myocytes isolated from the region affected by microembolizations. We also used the immunoblot technique to examine channel subunit expression in adjacent affected tissue. Ventricular myocytes and tissue isolated from the corresponding region of normal hearts served as control. ICM myocytes had prolonged action potential duration (APD) and more pronounced APD dispersion. Slow delayed rectifier current (I(Ks)) was reduced at voltages positive to 0 mV, along with a negative shift in its voltage dependence of activation. Immunoblots showed that there was no change in KCNQ1.1 (I(Ks) pore-forming or alpha-subunit), but KCNE1 (I(Ks) auxiliary or beta-subunit) was reduced, and KCNQ1.2 (a truncated KCNQ1 splice variant with a dominant-negative effect on I(Ks)) was increased. Transient outward current (I(to)) was reduced, along with an acceleration of the slow phase of recovery from inactivation. Immunoblots showed that there was no change in Kv4.3 (alpha-subunit of fast-recovering I(to) component), but KChIP2 (beta-subunit of fast-recovering component) and Kv1.4 (alpha-subunit of slow-recovering component) were reduced. Inward rectifier current was reduced. L-type Ca current was unaltered. The immunoblot data provide mechanistic insights into the observed changes in current amplitude and gating kinetics of I(Ks) and I(to). We suggest that these changes, along with the decrease in inward rectifier current, contribute to APD prolongation in ICM hearts.  相似文献   

19.
We created a mouse model with a prolonged Q-T interval and spontaneous arrhythmias by overexpressing the NH(2) terminus and first transmembrane segment (Kv1.1N206Tag) of a delayed rectifier potassium channel (LQT(+/-) mouse). Analyses were performed using whole cell recordings of cardiac myocytes, surface electrocardiography, and programmed electrical stimulation. Action potential duration (APD) was prolonged to the same extent and was more highly variable in myocytes derived from LQT(+/-) and LQT(+/+) mice than in myocytes derived from wild-type (WT) FVB mice. Under ketamine anesthesia, the Q-T interval of both LQT(+/+) and LQT(+/-) mice was comparably prolonged versus that of WT mice. Stimulation of the right ventricle using an intracardiac catheter induced polymorphic ventricular tachyarrhythmias in 50% of the LQT(+/-) mice and 36% of the LQT(+/+) mice, whereas polymorphic ventricular tachyarrhythmias were not inducible in WT mice. The analyses of LQT(+/-) and LQT(+/+) mice indicate that prolongation of the Q-T interval in LQT mice is associated with prolonged APD, increased dispersion of APD among cardiocytes, and inducibility of polymorphic ventricular tachycardia, providing the substrate for spontaneous arrhythmias in these animals.  相似文献   

20.
Transient outward K(+) current density (I(to)) has been shown to vary between different regions of the normal myocardium and to be reduced in heart disease. In this study, we measured regional changes in action potential duration (APD), I(to), and intracellular Ca(2+) concentration ([Ca(2+)](i)) transients of ventricular myocytes derived from the right ventricular free wall (RVW) and interventricular septum (SEP) 8 wk after myocardial infarction (MI). At +40 mV, I(to) density in sham-operated hearts was significantly higher (P < 0.01) in the RVW (15.0 +/- 0.8 pA/pF, n = 47) compared with the SEP (7.0 +/- 1.1 pA/pF, n = 18). After MI, I(to) density was not reduced in SEP myocytes but was reduced (P < 0.01) in RVW myocytes (8.7 +/- 1.0 pA/pF, n = 26) to levels indistinguishable from post-MI SEP myocytes. These changes in I(to) density correlated with Kv4.2 (but not Kv4.3) protein expression. By contrast, Kv1.4 expression was significantly higher in the RVW compared with the SEP and increased significantly after MI in RVW. APD measured at 50% or 90% repolarization was prolonged, whereas peak [Ca(2+)](i) transients amplitude was higher in the SEP compared with the RVW in sham myocytes. These regional differences in APD and [Ca(2+)](i) transients were eliminated by MI. Our results demonstrate that the significant regional differences in I(to) density, APD, and [Ca(2+)](i) between RVW and SEP are linked to a variation in Kv4.2 expression, which largely disappears after MI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号