首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have recently shown that two flexible loops of Streptomyces phospholipase D (PLD) affect the catalytic reaction of the enzyme by a comparative study of chimeric PLDs. Gly188 and Asp191 of PLD from Streptomyces septatus TH-2 (TH-2PLD) were identified as the key amino acid residues involved in the recognition of phospholipids. In the present study, we further investigated the relationship between a C-terminal loop of TH-2PLD and PLD activities to elucidate the reaction mechanism and the recognition of the substrate. By analyzing chimeras and mutants in terms of hydrolytic and transphosphatidylation activities, Ala426 and Lys438 of TH-2PLD were identified as the residues associated with the activities. We found that Gly188 and Asp191 recognized substrate forms, whereas residues Ala426 and Lys438 enhanced transphosphatidylation and hydrolysis activities regardless of the substrate form. By substituting Ala426 and Lys438 with Phe and His, respectively, the mutant showed not only higher activities but also higher thermostability and tolerance against organic solvents. Furthermore, the mutant also improved the selectivity of the transphosphatidylation activity. The residues Ala426 and Lys438 were located in the C-terminal flexible loop of Streptomyces PLD separate from the highly conserved catalytic HxKxxxxD motifs. We demonstrated that this C-terminal loop, which formed the entrance of the active well, has multiple functional roles in Streptomyces PLD.  相似文献   

2.
Phospholipase D (PLD) is a key enzyme involved in numerous processes in all living organisms. Hydrolysis of phospholipids by PLD allows the release of phosphatidic acid which is a crucial intermediate of multiple pathways and signaling reactions, including tumorigenesis in mammals and defense responses in plants. One common feature found in the plant alpha isoform (PLDα), in some PLD from microbes and in all PLD from eukaryotes, is a duplicated motif named HKD involved in the catalysis. However, other residues are strictly conserved among these organisms and their role remains obscure. To gain further insights into PLD structure and the role of these conserved residues, we first looked for all the plant PLDα sequences available in public databases. With >200 sequences retrieved, a generic sequence was constructed showing that 138 residues are strictly conserved among plant PLDα, with some of them identical to residues found in mammalian PLDs. Using site-directed mutagenesis of the PLDα from Arabidopsis thaliana, we demonstrated that mutation of some of these residues abolished the PLD activity. Moreover, mutation of the residues around both HKD motifs enabled us to re-define the consensus sequence of these motifs. By sequential deletions of the N-terminal extremity, the minimum length of the domain required for catalytic activity was determined. Overall, this work furthers our understanding of the structure of eukaryotic PLDs and it may lead to the discovery of new regions involved in the catalytic reaction that could be targeted by small molecule modulators of PLDs.  相似文献   

3.
Rat brain phospholipase D1 (rPLD1) belongs to a superfamily defined by the highly conserved catalytic motif (H(X)K(X)(4)D, denoted HKD. rPLD1 contains two HKD domains, located in the N- and C-terminal regions. The integrity of the two HKD domains is essential for enzymatic activity. Our previous studies showed that the N-terminal half of rPLD1 containing one HKD motif can associate with the C-terminal half containing the other HKD domain to reconstruct wild type PLD activity (Xie, Z., Ho, W.-T. and Exton, J. H. (1998) J. Biol. Chem. 273, 34679-34682). In the present study, we have shown by mutagenesis that conserved amino acids in the HKD domains are important for both the catalytic activity and the association between the two halves of rPLD1. Furthermore, we found that rPLD1 could be modified by Ser/Thr phosphorylation. The modification occurred at the N-terminal half of the enzyme, however, the association of the N-terminal domain with the C-terminal domain was required for the modification. The phosphorylation of the enzyme was not required for its catalytic activity or response to PKCalpha and small G proteins in vitro, although the phosphorylated form of rPLD1 was localized exclusively in the crude membrane fraction. In addition, we found that the individually expressed N- and C-terminal fragments did not interact when mixed in vitro and were unable to reconstruct PLD activity under these conditions. It is concluded that the association of the N- and C-terminal halves of rPLD1 requires their co-expression in vivo and depends on conserved residues in the HKD domains. The association is also required for Ser/Thr phosphorylation of the enzyme.  相似文献   

4.
Recently, we identified Ala426 and Lys438 of phospholipase D from Streptomyces septatus TH-2 (TH-2PLD) as important residues for activity, stability and selectivity in transphosphatidylation. These residues are located in a C-terminal flexible loop separate from two catalytic HxKxxxxD motifs. To study the role of these residues in substrate recognition, we evaluated the affinities of inactive mutants, in which these residues were substituted with Phe and His, toward several phospholipids by SPR analysis. By substituting Ala426 and Lys438 with Phe and His, respectively, the inactive mutant showed a much stronger interaction with phosphatidylcholine and a weaker interaction with phosphatidylglycerol than the inactive TH-2PLD mutant. We demonstrated that Ala426 and Lys438 of TH-2PLD play a role in sensing the head group of phospholipids.  相似文献   

5.
Phospholipase D (PLD) of Streptomyces antibioticus was labelled with fluorescent-labelled substrate, 1-hexanoyl-2-{6-[(7-nitro-2-1, 3-benzoxadiazol-4-yl)-amino]hexanoyl}-sn-glycero-3-phosphocholine, when it was incubated with the substrate and the reaction followed by SDS/PAGE. Mutant enzymes lacking the catalytic activity were not labelled under the same conditions, indicating that labelling of the PLD occurred as the result of its catalytic action. This confirmed that the labelled protein was the phosphatidyl PLD intermediate. PLDs contain two copies of the highly conserved catalytic HxKxxxxD (HKD) motif. Therefore, two protein fragments were separately prepared with recombinant strains of Escherichia coli. One of the fragments was the N-terminal half of the intact PLD containing one HKD motif, and the other was the C-terminal half with the other motif. An active enzyme was reconstructed from these two fragments, and therefore designated fragmentary PLD (fPLD). When fPLD was subjected to the labelling experiment, only the C-terminal half was labelled. Therefore, it was concluded that the catalytic nucleophile that bound directly to the phosphatidyl group of the substrate was located on the C-terminal half of PLD, and that the N-terminal half did not contain such a nucleophile.  相似文献   

6.
A recombinant phospholipase D from white cabbage (PLD2) composed of 812 amino acid residues was studied by site-directed mutagenesis and limited proteolysis to obtain first information on its tertiary structure. Limited proteolysis by thermolysin resulted in the formation of some large fragments of PLD2. From mass spectrometry and N-terminal sequencing of the peptides, the cleavage sites could be identified (1. Thr41-Ile42, 2. Asn323-Leu324 or Gly287-Leu288 and Ser319-Ile320 in case of the mutant L324S-PLD2). This suggested an exposed loop in the C2 domain of PLD2 and a large flexible region close to the N-terminal side of the first catalytic (HKD) motif. Calcium ions, the substrate 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and the competitive inhibitor 1,3-dipalmitoylglycero-2-phosphocholine influenced the proteolytic cleavage. Calcium ions exerted a destabilizing effect on the conformation of PLD2.  相似文献   

7.
To determine the catalytic site of Streptomyces chromofuscus phospholipase D (PLD), which lacks an HKD motif, we examined the effects of inhibitors on the hydrolytic activity of the PLD by comparing it with cabbage and Streptomyces PLDs, which have two HKD motifs. We showed that dichloro-(2,2':6',2'-terpyridine)-platinum (II) dihydrate, a His- and Cys-directed chemical modifier, had inhibitory effects on the activities of all types of PLD examined. On the other hand, N-ethylmaleimide, a thiol-directed modifier had no such effects on PLD activity. These results suggest that the His residue plays an important role in the activity of Streptomyces chromofuscus PLD.  相似文献   

8.
To determine the catalytic site of Streptomyces chromofuscus phospholipase D (PLD), which lacks an HKD motif, we examined the effects of inhibitors on the hydrolytic activity of the PLD by comparing it with cabbage and Streptomyces PLDs, which have two HKD motifs. We showed that dichloro-(2,2′:6′,2"-terpyridine)-platinum (II) dihydrate, a His- and Cys-directed chemical modifier, had inhibitory effects on the activities of all types of PLD examined. On the other hand, N -ethylmaleimide, a thiol-directed modifier had no such effects on PLD activity. These results suggest that the His residue plays an important role in the activity of Streptomyces chromofuscus PLD.  相似文献   

9.
The gene that encodes phospholipase D (PLD) from Streptoverticillium cinnamoneum contains three consensus regions (Region I, II and IV as shown in Fig. 1A) that are conserved among the PLD superfamily. The glycine-glycine (GG) motif in Region I and the glycine-serine (GS) motif in Region IV are also conserved in the PLD superfamily. These (GG and GS) motifs are located 7 residues downstream from each HKD motif. In an investigation of fifteen GG/GS motif mutants, generated as fusion proteins with maltose-binding protein (MBP-PLDs), three highly active mutants were identified. Three of the mutants (G215S, G216S, and G216S-S489G) contained a serine residue in the GG motif, and exhibited approximately a 9-27-fold increased transphosphatidylation activity to DPPC compared with recombinant wild type MBP-PLD. When heat stability was compared between three mutants and the recombinant wild type, only G216S-S489G showed heat labile properties. It appears that the 489th serine residue in the GS motif also contributes to the thermal stability of the enzyme. In addition, the GG/GS motif was very close to the active center residue, including two HKD motifs, as shown by computer modeling. The findings suggest that the GG/GS motif of PLD is a key motif that affects catalytic function and enzymatic stability.  相似文献   

10.
Rat brain phospholipase D1 (rPLD1) has two highly conserved motifs [H(X)K(X)4D, denoted HKD] located at the N-terminal and C-terminal halves, which are required for activity. Association of the two halves is essential for rPLD1 activity, which probably brings the two HKD domains together to form a catalytic center. In the present study, we find that an intact C-terminus is also essential for the catalytic activity of rPLD1. Serial deletion of the last four amino acids, EVWT, which are conserved in all mammalian PLD isoforms, abolished the catalytic activity of rPLD1. This loss of catalytic activity was not due to a lack of association of the N-terminal and C-terminal halves. Mutations of the last three amino acids showed that substitutions with charged or less hydrophobic amino acids all reduced PLD activity. For example, mutations of Thr1036 and Val1034 to Asp or Lys caused marked inactivation, whereas mutation to other amino acids had less effect. Mutation of Trp1035 to Leu, Ala, His or Tyr caused complete inactivation, whereas mutation of Glu1033 to Ala enhanced activity. The size of the amino acids at the C-terminus also affected the catalytic activity of PLD, reduced activity being observed with conservative mutations within the EVWT sequence (such as T/S, V/L or W/F). The enzyme was also inactivated by the addition of Ala or Val to the C-terminus of this sequence. Interestingly, the inactive C-terminal mutants could be complemented by cotransfection with a wild-type C-terminal half to restore PLD activity in vivo. These data demonstrate that the integrity of the C-terminus of rPLD1 is essential for its catalytic activity. Important features are the hydrophobicity, charge and size of the four conserved C-terminal amino acids. It is proposed that these play important roles in maintaining a functional catalytic structure by interacting with a specific domain within rPLD1.  相似文献   

11.
The genes of two phospholipase D (PLD) isoenzymes, PLD1 and PLD2, from poppy seedlings (2829 and 2828 bp) were completely sequenced. The two genes have 96.9% identity in the encoding region and can be assigned to the alpha-type of plant PLDs. The corresponding amino acid sequences do not contain any signal sequences. One Asn-glycosylation site, six and two phosphorylation sites for protein kinase C and tyrosine kinase, respectively, and two phosphatidylinositol-4,5-bisphosphate binding motifs could be identified. Like in most plant PLDs, two HKD motifs and one C2 domain are present. PLD1 and PLD2 have ten and nine cysteine residues. The two enzymes were expressed in E. coli and purified to homogeneity by Ca2+ ion-mediated hydrophobic interaction chromatography. The Ca2+ ion concentration needed for carrier binding of the two enzymes in chromatography as well as for optimum activity was found to be considerably higher (>100 mM) than with other alpha-type plant PLDs. Although PLD1 and PLD2 differ in eleven amino acids only, they showed remarkable differences in their transphosphatidylation activity. Two amino acid exchanges within and near the first HKD motif contribute to this difference as shown by the A349E/E352Q-variant of PLD2.  相似文献   

12.
To isolate thermostability-related amino acid residues of Streptomyces phospholipase D (PLD), we constructed a chimeral genes library between two highly homologous plds, which exhibited different thermostabilities, by an in vivo DNA shuffling method using Escherichia coli that has a mutation of a single-stranded DNA-binding protein gene. To confirm the location of the recombination site, we carried out the restriction mapping of 68 chimeral pld genes. The recombination sites were widely dispersed over the entire pld sequence. Moreover, we examined six chimeral PLDs by comparing their thermostabilities with those of parental PLDs. To identify a thermostability-related amino acid residue, we investigated the thermostability of chimera C that was the most thermolabile among the six chimeras. We identified the thermostability-related factor Gly-188, which is located in the alpha-7 helix of PLD from Streptomyces septatus TH-2 (TH-2PLD). TH-2PLD mutants, in which Gly-188 was substituted with Phe, Val or Trp, exhibited higher thermostabilities than that of the parental PLD. Gly-188 substituted with the Phe mutant, which was the most stable among the mutants, showed an enzyme activity almost the same as that of TH-2PLD as determine by kinetic analysis.  相似文献   

13.
Phospholipase D (PLD), an important enzyme involved in signal transduction in mammals, is also secreted by many microorganisms. A highly conserved HKD motif has been identified in most PLD homologs in the PLD superfamily. However, the Ca(2+)-dependent PLD from Streptomyces chromofuscus exhibits little homology to other PLDs. We have cloned (using DNA isolated from the ATCC type strain), overexpressed in Escherichia coli (two expression systems, pET-23a(+) and pTYB11), and purified the S. chromofuscus PLD. Based on attempts at sequence alignment with other known Ca(2+)-independent PLD enzymes from Streptomyces species, we mutated five histidine residues (His72, His171, His187, His200, His226) that could be part of variants of an HKD motif. Only H187A and H200A showed dramatically reduced activity. However, mutation of these histidine residues to alanine also significantly altered the secondary structure of PLD. Asparagine replacements at these positions yielded enzymes with structure and activity similar to the recombinant wild-type PLD. The extent of phosphatidic acid (PA) activation of PC hydrolysis by the recombinant PLD enzymes differed in magnitude from PLD purified from S. chromofuscus culture medium (a 2-fold activation rather than 4-5-fold). One of the His mutants, H226A, showed a 12-fold enhancement by PA, suggesting this residue is involved in the kinetic activation. Another notable difference of this bacterial PLD from others is that it has a single cysteine (Cys123); other Streptomyces Ca(2+)-independent PLDs have eight Cys involved in intramolecular disulfide bonds. Both C123A and C123S, with secondary structure and stability similar to recombinant wild-type PLD, exhibited specific activity reduced by 10(-5) and 10(-4). The Cys mutants still bound Ca(2+), so that it is likely that this residue is part of the active site of the Ca(2+)-dependent PLD. This would suggest that S. chromofuscus PLD is a member of a new class of PLD enzymes.  相似文献   

14.
Phospholipase D (PLD) is a ubiquitous enzyme in eukaryotes that participates in various cellular processes. Its catalytic domain is characterized by two HKD motifs in the C-terminal part. Until now, two subfamilies were recognized based on their N-terminal domain structure. The first has a PX domain in combination with a PH domain and is designated as PXPH-PLD. Members of the second subfamily, named C2-PLD, have a C2 domain and have, so far, only been found in plants. Here we describe a novel PLD subfamily that we identified in Phytophthora, a genus belonging to the class oomycetes and comprising many important plant pathogens. We cloned Pipld1 from Phytophthora infestans and retrieved full-length sequences of its homologues from Phytophthora sojae and Phytophthora ramorum genome databases. Their promoters contain two putative regulatory elements, one of which is highly conserved in all three genes. The three Phytophthora pld1 genes encode nearly identical proteins of around 1807 amino acids, with the two characteristic HKD motifs in the C-terminal part. Homology of the predicted proteins with known PLDs however is restricted to the two catalytic HKD motifs and adjacent domains. In the N-terminal part Phytophthora PLD1 has a PX-like domain, but it lacks a PH domain. Instead the N-terminal region contains five putative membrane spanning domains suggesting that Phytophthora PLD1 is a transmembrane protein. Since Phytophthora PLD1 cannot be categorized in one of the two existing subfamilies we propose to create a novel subfamily named PXTM-PLD.  相似文献   

15.
To investigate the contribution of amino acid residues to the thermostability of phospholipase D (PLD), a chimeric form of two Streptomyces PLDs (thermolabile K1PLD and thermostable TH-2PLD) was constructed. K/T/KPLD, in which residues 329-441 of K1PLD were recombined with the homologous region of TH-2PLD, showed a thermostability midway between those of K1PLD and TH-2PLD. By comparing the primary structures of Streptomyces PLDs, the seven candidates of thermostability-related amino acid residues of K1PLD were identified. The K1E346DPLD mutant, in which Glu346 of K1PLD was substituted with Asp by site-directed mutagenesis, exhibited enhanced thermostability, which was almost the same as that of TH-2PLD.  相似文献   

16.
The phospholipase D (PLD) from Streptomyces chromofuscus belongs to the superfamily of PLDs. All the enzymes included in this superfamily are able to catalyze both hydrolysis and transphosphatidylation activities. However, S. chromofuscus PLD is calcium dependent and is often described as an enzyme with weak transphosphatidylation activity. S. chromofuscus PLD-catalyzed hydrolysis of phospholipids in aqueous medium leads to the formation of phosphatidic acid. Previous studies have shown that phosphatidic acid-calcium complexes are activators for the hydrolysis activity of this bacterial PLD. In this work, we investigated the influence of diacylglycerols (naturally occurring alcohols) as candidates for the transphosphatidylation reaction. Our results indicate that the transphosphatidylation reaction may occur using diacylglycerols as a substrate and that the phosphatidylalcohol produced can be directly hydrolyzed by PLD. We also focused on the surface pressure dependency of PLD-catalyzed hydrolysis of phospholipids. These experiments provided new information about PLD activity at a water-lipid interface. Our findings showed that classical phospholipid hydrolysis is influenced by surface pressure. In contrast, phosphatidylalcohol hydrolysis was found to be independent of surface pressure. This latter result was thought to be related to headgroup hydrophobicity. This work also highlights the physiological significance of phosphatidylalcohol production for bacterial infection of eukaryotic cells.  相似文献   

17.
A panel of random mutants within the DNA encoding the carboxy-terminal domain of Clostridium perfringens alpha-toxin was constructed. Three mutants were identified which encoded alpha-toxin variants (Lys330Glu, Asp305Gly, and Asp293Ser) with reduced hemolytic activity. These variants also had diminished phospholipase C activity toward aggregated egg yolk phospholipid and reduced cytotoxic and myotoxic activities. Asp305Gly showed a significantly increased enzymatic activity toward the monodisperse substrate rhoNPPC, whereas Asp293Ser displayed a reduced activity toward this phospholipid analogue. In addition, Asp293Ser showed an increased dependence on calcium for enzymatic activity toward aggregated phospholipid and appeared calcium-depleted in PAGE band-shift assays. In contrast, neither Lys330Glu nor Asp305Gly showed altered dependence on calcium for enzymatic activity toward aggregated phospholipid. Asp305 is located in the interface between the amino- and carboxy-terminal domains, whereas Asp293 and Lys330 are surface exposed residues which may play a role in the recognition of membrane phospholipids.  相似文献   

18.
The activity of phospholipase D (PLD) is regulated by a variety of hormonal stimuli and provides a mechanistic pathway for response of cells to extracellular stimuli. The two identified mammalian PLD enzymes possess highly homologous C termini, which are required for catalytic activity. Mutational analysis of PLD1 and PLD2 reveals that modification of as little as the C-terminal threonine or the addition of a single alanine attenuates activity of the enzyme. Protein folding appears to be intact because mutant enzymes express to similar levels in Sf9 cells and addition of peptides representing the C-terminal amino acids, including the simple hexamer PMEVWT, restores partial activity to several of the mutants. Analysis of several mutants suggests a requirement for the hydrophobic reside at the -2-position but not an absolute requirement for the hydroxyl side chain of threonine at the C terminus. The inability of peptides amidated at their C termini to effect restoration of activity indicates the involvement of the C-terminal alpha carboxyl group in functional activity of these enzymes. The ability of peptides to restore activity to PLD enzymes mutated at the C terminus suggests a flexible interaction of this portion of the molecule with a catalytic core constructed on conserved HKD motifs. Participation of these C termini residues in either stabilization of the catalytic site or the enzymatic reaction itself remains to be determined. This requirement for the C terminus provides an excellent potential site for interaction with regulatory proteins that may either enhance or down-regulate the activity of these enzymes in vitro.  相似文献   

19.
This review is focusing on an industrially important enzyme, phospholipase D (PLD), exhibiting both transphosphatidylation and hydrolytic activities for various phospholipids. The transphosphatidylation activity of PLD is particularly useful for converting phosphatidylcholine (PC) into other phospholipids. During the last decade, the genes coding for PLD have been identified from various species including mammals, plants, yeast, and bacteria. However, detailed basic and applied enzymological studies on PLD have been hampered by the low productivity in these organisms. Efficient production of a recombinant PLD has also been unsuccessful so far. We recently isolated and characterized the PLD gene from Streptoverticillium cinnamoneum, producing a secretory PLD. Furthermore, we constructed an overexpression system for the secretory enzyme in an active and soluble form using Streptomyces lividans as a host for transformation of the PLD gene. The Stv. cinnamoneum PLD was proven to be useful for the continuous and efficient production of phosphatidylethanolamine (PE) from phosphatidylcholine. Thus, the secretory PLD is a promising catalyst for synthesizing new phospholipids possessing various polar head groups that show versatile physiological functions and may be utilized in food and pharmaceutical industries.  相似文献   

20.
Chlorophyllases (Chlases), cloned so far, contain a lipase motif with the active serine residue of the catalytic triad of triglyceride lipases. Inhibitors specific for the catalytic serine residue in serine hydrolases, which include lipases effectively inhibited the activity of the recombinant Chenopodium album Chlase (CaCLH). From this evidence we assumed that the catalytic mechanism of hydrolysis by Chlase might be similar to those of serine hydrolases that have a catalytic triad composed of serine, histidine and aspartic acid in their active site. Thus, we introduced mutations into the putative catalytic residue (Ser162) and conserved amino acid residues (histidine, aspartic acid and cysteine) to generate recombinant CaCLH mutants. The three amino acid residues (Ser162, Asp191 and His262) essential for Chlase activity were identified. These results indicate that Chlase is a serine hydrolase and, by analogy with a plausible catalytic mechanism of serine hydrolases, we proposed a mechanism for hydrolysis catalyzed by Chlase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号