首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purpose of this study was to devise a means to use laser-Doppler flowmetry to measure cerebral perfusion before birth. The method has not been used previously, largely because of intrauterine movement artifacts. To minimize movement artifacts, a probe holder was molded from epoxy putty to the contour of the fetal skull. A curved 18-gauge needle was embedded in the holder. At surgery, the holder, probe, and skull were fixed together with tissue glue. Residual signals were recorded after fetal death and after maternal death 1 h later. These averaged <5% of baseline flow signals, indicating minimal movement artifact. To test the usefulness of the method, cerebral flow responses were measured during moderate fetal hypoxia induced by giving the ewes approximately 10% oxygen in nitrogen to breathe. As fetal arterial PO(2) decreased from 21.1 +/- 0.5 to 10.7 +/- 0.4 Torr during a 30-min period, cerebral perfusion increased progressively to 56 +/- 8% above baseline. Perfusion then returned to baseline levels during a 30-min recovery period. These responses are quantitatively similar to those spot observations that have been recorded earlier using labeled microspheres. We conclude that cerebral perfusion can be successfully measured by using laser-Doppler flowmetry with the unanesthetized, chronically prepared fetal sheep as an experimental model. With this method, relative changes of perfusion from a small volume of the ovine fetal brain can be measured on a continuous basis, and movement artifacts can be reduced to 5% of measured flow values.  相似文献   

2.
To find whether the measurement of skin blood flow (SkBF) by laser-Doppler flowmetry (LDF) is influenced by blood flow to underlying skeletal muscle, five subjects performed mild forearm exercise to induce a metabolic hyperemia in muscle in both forearms. This exercise consisted of alternative opening and closing of both hands at a frequency of approximately 1/s for a duration of 3 min. This exercise was performed twice by each subject. Forearm blood flow (FBF) by plethysmography increased from 2.64 +/- 0.49 (rest) to 31.11 +/- 9.95 ml.100 ml-1.min-1 (immediately after exercise) (P less than 0.001). No statistically significant postexercise increase was observed in LDF measured on the dorsal (110 +/- 21 to 105 +/- 21 mV) or ventral surface (266 +/- 113 to 246 +/- 77 mV) of the forearm. LDF measured from the chest also showed no significant change, indicating that the exercise was too mild to have reflex effects on SkBF. Moreover, the slope of the logarithmic linear regression and the half-time for recovery during the postexercise period for FBF were not reflected in LDF measurements from any of the three sites. We conclude that LDF measured from the skin surface is not influenced by blood flow to underlying skeletal muscle.  相似文献   

3.
We have used laser-Doppler flowmetry (LDF), a technique that detects movement of erythrocytes, to measure tracheal and bronchial wall blood flow in anesthetized open-chest sheep. LDF derives continuous measurements noninvasively, although fiber-optic bronchoscopy is necessary to introduce the LDF probe into the airways. The response of the LDF flow signals at four regions of the airway walls to varying bronchial arterial flow rates was examined in both live and dead sheep by cannulation and subsequent perfusion of the common bronchial artery at different flow rates by use of a roller pump. In the live sheep, variations in bronchial arterial blood flow resulted in variations in LDF signals in the principal bronchus and in lobar and segmental bronchi but not in the trachea. In the dead sheep, variations in bronchial arterial blood flow resulted in variations in LDF signals in all four regions. Within regions, the average response of the LDF signals to varying bronchial blood flow rates was approximately linear in both live and dead sheep, but considerable site-to-site variation in response was observed. In the live sheep, significant LDF signals were observed when the bronchial arterial flow was set to zero and when the bronchial artery was perfused with dextran solution, which would in theory be expected to produce no LDF signal. A small LDF signal was also detected under zero flow conditions in the dead sheep. These observations suggest that the LDF technique, in addition to detecting blood flow from the bronchial artery also detects background noise and/or collateral circulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Evaluation of laser-Doppler flowmetry as a measure of tissue blood flow   总被引:5,自引:0,他引:5  
In this study the technique of laser-Doppler flowmetry was evaluated for the measurement of tissue blood flow by comparing laser-Doppler flow (LDF) signal in the renal cortex, gracilis muscle, and cremaster muscle of anesthetized rats to whole-organ blood flow measured with an electromagnetic flowmeter or radioactive microspheres. In vitro, LDF signal was closely correlated (r = 0.99) to changes in erythrocyte velocity generated with a rotating wheel. Although individual LDF readings varied in situ, mean LDF signal calculated from multiple readings on the tissue surface were significantly correlated (r = 0.74-0.95) with tissue blood flows measured at various perfusion pressures. However, significant differences in the slope of the LDF signal vs. blood flow relationship were observed in different tissues and with different methods of measurement in the same tissue. This study indicates that mean laser-Doppler flow signal provides a good estimate of tissue blood flow, provided a sufficient number of points is scanned. However, there appears to be no universal calibration factor for the method.  相似文献   

5.
This article describes a laser Doppler flowmetry (LDF) system that enables repeated measurements and thereby long-term followup of cortical cerebral blood flow (CBF) in awake and freely moving rats. The system consists of a specially designed flow probe adapter, a flow probe connector, and a LDF flow probe, which may thereby rotate through its own axis. During the experiment, the flow adapter is permanently mounted onto the rat's skull bone. A thin layer of skull bone is left intact at the site for cortical CBF measurements. The probe connector and the flow probe may be repeatedly detached and remounted to the adapter, which allows for cortical cerebral blood flow recording from exactly the same anatomical location. The laser Doppler flowmetry system enables stable cortical CBF recordings in the conscious rat while it moves freely in a bowl cage.  相似文献   

6.
Laser-Doppler velocimetry (LDV) has been adapted to measure nasal blood flow (NBF) in the mucosa of human volunteers. Resting NBF was 42.4 +/- 2.1 ml X 100 g-1 X min-1 in 19 nonatopic subjects and 37.9 +/- 1.7 ml X 100 g-1 X min-1 in 24 atopic subjects. Topical saline, but not water, reduced ipsilateral NBF by 15.4 +/- 6.6% (n = 22) without affecting contralateral NBF. Administration of 60 microgram of oxymetazoline reduced NBF by 26.5% (n = 28), whereas 120 microgram resulted in a 54.3% reduction. Phenylephrine produced a dose-related reduction in NBF with an ID50 (dose producing 50% reduction) of 1,456 microgram. Methacholine (0.006 to 12 mg) had no significant effect on NBF when studied alone or after oxymetazoline pretreatment. Therefore, LDV can be employed to monitor NBF, which has been found to be sensitive to alpha-adrenergic, but not cholinergic, stimulation.  相似文献   

7.
8.
9.
10.
We used an in situ isolated diaphragmatic preparation in anesthetized dogs to relate intramuscular pressure (IMP) to the blood flow, tension, and shortening of the diaphragm. In this preparation, the diaphragm shortens in a fashion similar to the intact diaphragm. Tension was measured by transducers attached to the left costal margin, which was detached from the rib cage and abdomen; IMP was measured by a miniature transducer placed between muscle fibers; length was measured by sonomicrometry; and diaphragmatic blood flow was monitored by measuring left phrenic arterial flow. In protocol 1, the relationships between tension, shortening, and IMP were assessed by stimulating the diaphragm for 2 s at various frequencies. Tension and shortening increased with increasing stimulation frequency up to 50 Hz with no change thereafter. Tension was linearly related to IMP. Similarly, there was a linear relationship between the degree of shortening and IMP; however, the slopes varied considerably between dogs. In protocol 2, the diaphragm was paced intermittently (12 trains/min, duty cycle of 0.5) with a gradual increase in stimulation frequency. Blood flow during contraction phase rose slightly at low tension and then declined significantly when tension exceeded 30% of maximum, whereas relaxation-phase flow increased with the increase in tension. IMP rose linearly with the increase in tension, and the IMP, at the point where contraction-phase flow became severely limited, was 50 +/- 14 mmHg (mean +/- SE). We conclude the following. 1) IMP is linearly related to tension and shortening; however, because tension and shortening changed simultaneously during contractions, the independent relationship of either tension or shortening and IMP remained untested.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
It has been proposed that the reduction of nitrite by red cells producing NO plays a role in the regulation of vascular tone. This hypothesis was investigated in rats by measuring the effect of nitrite infusion on mean arterial blood pressure (MAP), cerebral blood flow (CBF) and cerebrovascular resistance (CVR) in conjunction with the accumulation of red cell NO. The relative magnitude of the effects on MAP and CBF as well as the time dependent changes during nitrite infusion are used to distinguish between the effects on the peripheral circulation and the effects on the cerebral circulation undergoing cerebral autoregulation. The nitrite infusion was found to reverse the 96% increase in MAP and the 13% decrease in CBF produced by L-NAME inhibition of e-NOS. At the same time there was a 20-fold increase in oxygen stable red cell NO. Correlations of the red cell NO for individual rats support a role for red cell nitrite reduction in regulating vascular tone in both the peripheral and the cerebral circulation. Furthermore, data obtained prior to treatment is consistent with a contribution of red cell reduced nitrite in regulating vascular tone even under normal conditions.  相似文献   

13.
The distribution of cardiac output between compliant vasculature (e.g., splanchnic organs and skin) and noncompliant vasculature (e.g., skeletal muscle) is proposed to constitute an important determinant of the amount of blood available to the heart (central blood volume and pressure). The aim here was to directly test the hypothesis that diversion of blood flow from a relatively noncompliant vasculature (muscle) to compliant vasculature (splanchnic organs and skin) acts to reduce right atrial pressure. The approach was to inflate an occluder cuff on the terminal aorta for 30 s in one of two modes of ventricular pacing in five awake dogs with atrioventricular block and autonomic blockade. In one trial, cardiac output was maintained constant, meaning cuff inflation caused a portion of terminal aortic flow (a noncompliant circulation) to be diverted to the splanchnic and skin circulations (compliant circulations). In the other trial, arterial pressure was maintained constant, meaning blood flow to these other regions did not change. The response of right atrial pressure (corrected for differences in arterial pressure between the two trials) fit our hypothesis, being lower when blood flow was diverted to compliant regions. We conclude that a small (4% of cardiac output) diversion of blood flow from a noncompliant region to a compliant region reduces right atrial pressure by 0.7 mmHg.  相似文献   

14.
M Y Farooqui  A E Ahmed 《Life sciences》1984,34(24):2413-2418
Circadian fluctuations in tissue glutathione (GSH) concentrations and lipid peroxidation in male Sprague-Dawley rats were investigated. Blood and all the organs studied exhibited distinct circadian variation both in GSH concentrations and peroxidation of polyunsaturated fatty acids. There was a great variation among organs in the periodicity and amplitude of the fluctuations in GSH concentrations. Liver displayed the highest variation (approximately 50%) followed by stomach (approximately 37%), heart (approximately 25%) and kidney (approximately 19%). The changes in other organs were significant but of less magnitude. Implications of such variations and caution in interpretation of experimental results in response to the exposure of animals to xenobiotics are discussed.  相似文献   

15.
The effect of isometric exercise on blood flow, blood pressure, intramuscular pressure as well as lactate and potassium efflux from exercising muscle was examined. The contractions performed were continuous or intermittent (5 s on, 5 s off) and varied between 5% and 50% maximal voluntary contraction (MVC). A knee-extensor and a hand-grip protocol were used. Evidence is presented that blood flow through the muscle is sufficient during low-level sustained contractions (less than 10% MVC). Despite this muscle fatigue occurs during prolonged contractions. One mechanism for this fatigue may be the disturbance of the potassium homeostasis. Such changes may also play a role in the development of fatigue during intermittent isometric contractions and even more so in the recovery from such exercise. In addition the role of impaired transport of substances within the muscle, due to long-lasting daily oedema formation, is discussed in relation to fatigue in highly repetitive, monotonous jobs.  相似文献   

16.
17.
1. Microsomes prepared from guinea-pig and ox brain were incubated for periods of a few seconds with low concentrations of Mg-[(32)P]ATP, the reaction was stopped with trichloroacetic acid and determinations were made of the phosphate bound to the acid-washed, and in some cases solvent-extracted, residue. 2. At 20 mum-ATP, at 37 degrees and in the presence of Na(+) ions, 30-50 mumumoles of phosphate/mg. of microsomal protein were bound by the preparation within 1 sec. of starting the reaction; little further change in level occurred until hydrolysis of ATP exceeded 50%, when the bound phosphate began to decline fairly rapidly to the zero-time value. 3. At 20mum-ATP without Na(+) ions present or in the presence of K(+) ions, the level of bound phosphate increased gradually and did not decline as ATP hydrolysis approached completion. 4. Potassium ions either inhibited the formation of Na(+)-dependent bound phosphate or, when added during the course of the reaction, rapidly reduced its level. 5. At 200 mum-ATP the bound phosphate formed in the presence of Na(+) ions appeared to consist of a mixture of the unstable Na(+)-dependent type and the stable type requiring only Mg(2+) ions for its formation. 6. Non-radioactive ATP added during the course of the reaction at 20 mum-ATP with Na(+)ions present rapidly discharged virtually all the bound (32)P counts; at 200 mum-ATP only a proportion of the label was similarly discharged. The Na(+)-dependent bound phosphate is therefore turning over, in contrast with that formed in the absence of Na(+)ions, which proved more stable. 7. The Na(+)-dependent bound phosphate was not in the form of ATP; experiments with [(14)C]ATP instead of [(32)P]ATP showed a small and invariable binding of ATP by the preparation unaffected by Na(+) ions or time of incubation. 8. Under the usual conditions employed in this work ouabain stimulated formation of Na(+)-dependent bound phosphate when Na(+) ions were suboptimum and inhibited it when optimum Na(+) ions were present. 9. The Na(+)-dependent binding reaction under present conditions did not involve incorporation into phosphorylserine groups. 10. The relation of the findings to the (Na(+),K(+))-ATPase of the preparation, and to observations in brain slices appearing to implicate phosphorylserine groups in cation transport, is discussed.  相似文献   

18.
19.
Fetuses of 12 near-term sheep were prepared for microsphere determination of cerebral blood flow. Experiments were performed 5 days postsurgery. The regional blood flows were measured in successive high (HV), low (LV) and high voltage electrocorticographic states. Comparisons were made between the observations made in the LV and averaged flanking HV cycles. Total cerebral blood flow was 95 +/- 8, 119 +/- 11 and 100 +/- 9 ml/min/100 g in HV, LV and HV, respectively. Low voltage electrocortical activity increased average cerebral blood flow by 22% (P less than 0.01). Significant changes were seen in all regions except the occipital cortex. The maximum change was observed in the thalamus in which the flows were 152 +/- 23, 243 +/- 35 and 138 +/- 20 ml/min/per 100 g tissue, respectively. The increase was 68% (P less than 0.001). The percent changes seen in the cerebrum are as follows: Frontal grey + 18%, frontal white + 22%, parietal white + 22%, temporal + 18%. A + 17% change was seen in the cord (P less than 0.03). It is concluded that in low voltage electrocortical activity all of the brain, except the occipital region, shows an increase in cerebral blood flow. This is probably secondary to a variance in cerebral activity. This preparation may be useful in localizing function in the fetal brain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号