首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurofibrillary tangles (NFTs), which consist of highly phosphorylated tau, are hallmarks of neurodegenerative diseases including Alzheimer disease (AD). In neurodegenerative diseases, neuronal dysfunction due to neuronal loss and synaptic loss accompanies NFT formation, suggesting that a process associated with NFT formation may be involved in neuronal dysfunction. To clarify the relationship between the tau aggregation process and synapse and neuronal loss, we compared two lines of mice expressing human tau with or without an aggregation-prone P301L mutation. P301L tau transgenic (Tg) mice exhibited neuronal loss and produced sarcosyl-insoluble tau in old age but did not exhibit synaptic loss and memory impairment. By contrast, wild-type tau Tg mice neither exhibited neuronal loss nor produced sarcosyl-insoluble tau but did exhibit synaptic loss and memory impairment. Moreover, P301L tau was less phosphorylated than wild-type tau, suggesting that the tau phosphorylation state is involved in synaptic loss, whereas the tau aggregation state is involved in neuronal loss. Finally, increasing concentrations of insoluble tau aggregates leads to the formation of fibrillar tau, which causes NFTs to form.  相似文献   

2.
Stem cell (SC) lines that capture the genetics of disease susceptibility provide new research tools. To assess the utility of mouse central nervous system (CNS) SC-containing neurosphere cultures for studying heritable neurodegenerative disease, we compared neurosphere cultures from transgenic mice that express human tau with the P301L familial frontotemporal dementia (FTD) mutation, rTg(tau(P301L))4510, with those expressing comparable levels of wild type human tau, rTg(tau(wt))21221. rTg(tau(P301L))4510 mice express the human tau(P301L) variant in their forebrains and display cellular, histological, biochemical and behavioral abnormalities similar to those in human FTD, including age-dependent differences in tau phosphorylation that distinguish them from rTg(tau(wt))21221 mice. We compared FTD-hallmark tau phosphorylation in neurospheres from rTg(tau(P301L))4510 mice and from rTg(tau(wt))21221 mice. The tau genotype-specific phosphorylation patterns in neurospheres mimicked those seen in mice, validating use of neurosphere cultures as models for studying tau phosphorylation. Genotype-specific tau phosphorylation was observed in 35 independent cell lines from individual fetuses; tau in rTg(tau(P301L))4510 cultures was hypophosphorylated in comparison with rTg(tau(wt))21221 as was seen in young adult mice. In addition, there were fewer human tau-expressing cells in rTg(tau(P301L))4510 than in rTg(tau(wt))21221 cultures. Following differentiation, neuronal filopodia-spine density was slightly greater in rTg(tau(P301L))4510 than rTg(tau(wt))21221 and control cultures. Together with the recapitulation of genotype-specific phosphorylation patterns, the observation that neurosphere lines maintained their cell line-specific-differences and retained SC characteristics over several passages supports the utility of SC cultures as surrogates for analysis of cellular disease mechanisms.  相似文献   

3.
Tau pathology is implicated in mechanisms of neurodegenerative tauopathies, including Alzheimer’s disease (AD) and hereditary frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). It has been reported that transgenic mice expressing FTDP-17 mutation P301L of human tau (P301L mice) display extensive tau pathology and exhibit behavioral deficits with aging. In this study, we investigated the effects of T-817MA, a neuroprotective agent, on the motor and cognitive impairments associated with neuronal degeneration in P301L mice. T-817MA prevented the progression of motor deficit and the loss of spinal cord motor neurons in P301L mice. Furthermore, T-817MA significantly attenuated the spatial memory impairment and the reduction in synaptic terminal density in the hippocampal dentate gyrus of P301L mice. These results indicate that T-817MA improved the motor and cognitive impairments as a result of inhibiting neuronal degeneration derived from tau pathology in the P301L mice. Therefore, it is expected that T-817MA has a therapeutic potential for tau-related neurodegenerative diseases such as AD.  相似文献   

4.
5.
Transgenic mice overexpressing the P301L mutant human tau protein exhibit an accumulation of hyperphosphorylated tau and develop neurofibrillary tangles. The consequences of tau pathology were investigated here by proteomics followed by functional analysis. Mainly metabolism-related proteins including mitochondrial respiratory chain complex components, antioxidant enzymes, and synaptic proteins were identified as modified in the proteome pattern of P301L tau mice. Significantly, the reduction in mitochondrial complex V levels in the P301L tau mice revealed using proteomics was also confirmed as decreased in human P301L FTDP-17 (frontotemporal dementia with parkinsonism linked to chromosome 17) brains. Functional analysis demonstrated a mitochondrial dysfunction in P301L tau mice together with reduced NADH-ubiquinone oxidoreductase activity and, with age, impaired mitochondrial respiration and ATP synthesis. Mitochondrial dys-function was associated with higher levels of reactive oxygen species in aged transgenic mice. Increased tau pathology as in aged homozygous P301L tau mice revealed modified lipid peroxidation levels and the up-regulation of antioxidant enzymes in response to oxidative stress. Furthermore, P301L tau mitochondria displayed increased vulnerability toward beta-amyloid (Abeta) peptide insult, suggesting a synergistic action of tau and Abeta pathology on the mitochondria. Taken together, we conclude that tau pathology involves a mitochondrial and oxidative stress disorder possibly distinct from that caused by Abeta.  相似文献   

6.
目的:建立含P301L突变的tau转基因小鼠的纯合子品系。方法:雄原核显微注射法获得含P301L突变的tau转基因阳性首建鼠,通过SYBR Green实时荧光定量PCR法和传统育种方式结合鉴定纯合子和杂合子。结果:共选育出95只纯合子,鉴定出的纯合子具有优于杂合子模拟老年痴呆生物学特性改变的优势。结论:外源性基因tau能稳定遗传,采用的SYBR Green实时荧光定量PCR和传统育种方式结合筛选鉴定纯合子和杂合子快速、经济、可靠。  相似文献   

7.
Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), an autosomal, dominantly inherited neurodegenerative disorder caused by tau gene mutations, is neuropathologically characterized by intraneuronal filamentous inclusions of hyperphosphorylated tau protein. Biochemical and immunocytochemical analyses have shown that only mutant tau is deposited in patients harboring P301L missense mutation, whereas both wild-type and mutant tau are deposited in patients harboring R406W mutation (Miyasaka, T., Morishima-Kawashima, M., Ravid, R., Kamphorst, W., Nagashima, K., and Ihara, Y. (2001) J. Neuropathol. Exp. Neurol. 60, 872- 884 and Miyasaka, T., Morishima-Kawashima, M., Ravid, R., Heutink, P., van Swieten, J. C., Nagashima, K., and Ihara, Y. (2001) Am. J. Pathol. 158, 373-379). Here we have tested the nucleation ability of monomeric tau and the seeding ability of fibrillogenic nuclei obtained from bacterially expressed human tau. P301L mutant tau showed a higher nucleation ability than wild-type tau, whereas R406W mutant tau shows similar ability to wild-type tau. Surprisingly, fibrillogenic nuclei composed of P301L mutant tau enhanced the assembly of P301L mutant tau into filaments but did not promote filament formation from wild-type tau. In contrast, nuclei composed of R406W mutant tau supported filament formation from both wild-type tau and R406W mutant tau, as did nuclei composed of wild-type tau. Proteolytic analyses indicated that the substructure of nuclei composed of P301L mutant tau was different from that of nuclei composed of wild-type or R406W mutant tau. Thus, the interaction between fibrillogenic nuclei and monomeric protein appears to play an important role in the mechanism of tau filament assembly.  相似文献   

8.
Filamentous inclusions made of the microtubule-associated protein tau in a hyperphosphorylated state are a defining feature of a large number of human neurodegenerative diseases. Here we show that (trans,trans)-1-fluoro-2,5-bis(3-hydroxycarbonyl-4-hydroxy)styrylbenzene (FSB), a fluorescent Congo red derivative, labels tau inclusions in tissue sections from a mouse line transgenic for human P301S tau and in cases of familial frontotemporal dementia and sporadic Pick's disease. Labelling by FSB required the presence of tau filaments. More importantly, tau inclusions in the spinal cord of human P301S tau transgenic mice were labelled following a single intravenous injection of FSB. These findings indicate that FSB can be used to detect filamentous tau in vivo.  相似文献   

9.
Deposits of tau and alpha-synuclein are hallmarks of distinct neurodegenerative diseases: tauopathies and alpha-synucleinopathies. Affinity chromatography experiments demonstrated a direct binding of the two proteins, and alpha-synuclein was shown to induce fibrillization of tau. Here, we verify the presence of this physical interaction by using different cellular systems. This binding was abolished by the most common tau mutation (P301L) associated with frontotemporal dementia. We restored the impaired interaction by inducing heat shock proteins 70 and 90. In addition, we show that P301L tau mutation strongly affects tau and alpha-synuclein neuronal distribution.  相似文献   

10.
ObjectiveThe P301S mutation in exon 10 of the tau gene causes a hereditary tauopathy. While mitochondrial complex I inhibition has been linked to sporadic tauopathies. Piericidin A is a prototypical member of the group of the piericidins, a class of biologically active natural complex I inhibitors, isolated from streptomyces spp. with global distribution in marine and agricultural habitats. The aim of this study was to determine whether there is a pathogenic interaction of the environmental toxin piericidin A and the P301S mutation.MethodsTransgenic mice expressing human tau with the P301S-mutation (P301S+/+) and wild-type mice at 12 weeks of age were treated subcutaneously with vehicle (N = 10 P301S+/+, N = 7 wild-type) or piericidin A (N = 9 P301S+/+, N = 9 wild-type mice) at a dose of 0.5 mg/kg/d for a period of 28 days via osmotic minipumps. Tau pathology was measured by stereological counts of cells immunoreative with antibodies against phosphorylated tau (AD2, AT8, AT180, and AT100) and corresponding Western blot analysis.ResultsPiericidin A significantly increased the number of phospho-tau immunoreactive cells in the cerebral cortex in P301S+/+ mice, but only to a variable and mild extent in wild-type mice. Furthermore, piericidin A led to increased levels of pathologically phosphorylated tau only in P301S+/+ mice. While we observed no apparent cell loss in the frontal cortex, the synaptic density was reduced by piericidin A treatment in P301S+/+ mice.DiscussionThis study shows that exposure to piericidin A aggravates the course of genetically determined tau pathology, providing experimental support for the concept of gene-environment interaction in the etiology of tauopathies.  相似文献   

11.
Transgenic mice expressing mutant (P301L) human tau develop neurofibrillary tangles, amyotrophy and progressive motor disturbance. We present ultrastructural features of neuronal degeneration in this model that suggests involvement of both neurofibrillary and autophagic processes in neurodegeneration. Neurons undergoing neurofibrillary degeneration contain tau-immunoreactive, 15–20 nm-wide straight or wavy filaments with no periodic twists. Tau filaments were found in two types of affected neurons. One type resembled neurons with neurofibrillary tangles (NFT) that were filled with numerous filaments that displaced sparse cytoplasmic organelles to the periphery. Microtubules were almost completely absent. The nucleus remained centrally located, but showed lobulations due to deep infoldings. The other type resembled ballooned neurons seen in some human tauopathies. The nucleus was peripherally placed, but normal appearing. The cytoplasmic organelles were dispersed throughout the swollen perikarya, the Golgi complex was fragmented and duplicated, while mitochondria and other organelles appeared normal. Tau filaments similar to those in NFT were sparse and not tightly packed. Microtubules were also sparse. Many autophagic vacuoles were present in these cells. Heterogeneous appearing axonal swellings resembling spheroids in human tauopathies were present in gray and white matter. Unlike normal appearing axons, axonal spheroids were filled with tau-immunoreactive filaments and autophagic vacuoles, in addition to normal appearing neurofilaments and microtubules. These P301L transgenic mice exhibit many features common to human tauopathies, making them a valuable model to study the pathogenesis of these uncommon disorders.  相似文献   

12.
13.
Alzheimer's disease (AD) is characterized by Abeta peptide-containing plaques and tau-containing neurofibrillary tangles (NFTs). Both pathologies have been combined by crossing Abeta plaque-forming APP mutant mice with NFT-forming P301L tau mutant mice or by stereotaxically injecting beta-amyloid peptide 1-42 (Abeta42) into brains of P301L tau mutant mice. In cell culture, Abeta42 induces filamentous tau aggregates. To understand which processes are disrupted by Abeta42 in the presence of tau aggregates, we applied comparative proteomics to Abeta42-treated P301L tau-expressing neuroblastoma cells and the amygdala of P301L tau transgenic mice stereotaxically injected with Abeta42. Remarkably, a significant fraction of proteins altered in both systems belonged to the same functional categories, i.e. stress response and metabolism. We also identified model-specific effects of Abeta42 treatment such as differences in cell signaling proteins in the cellular model and of cytoskeletal and synapse associated proteins in the amygdala. By Western blotting (WB) and immunohistochemistry (IHC), we were able to show that 72% of the tested candidates were altered in human AD brain with a major emphasis on stress-related unfolded protein responsive candidates. These data highlight these processes as potentially important initiators in the Abeta42-mediated pathogenic cascade in AD and further support the role of unfolded proteins in the course of AD.  相似文献   

14.
The microtubule associated protein tau causes primary and secondary tauopathies by unknown molecular mechanisms. Post-translational O-GlcNAc-ylation of brain proteins was demonstrated here to be beneficial for Tau.P301L mice by pharmacological inhibition of O-GlcNAc-ase. Chronic treatment of ageing Tau.P301L mice mitigated their loss in body-weight and improved their motor deficits, while the survival was 3-fold higher at the pre-fixed study endpoint at age 9.5 months. Moreover, O-GlcNAc-ase inhibition significantly improved the breathing parameters of Tau.P301L mice, which underpinned pharmacologically the close correlation of mortality and upper-airway defects. O-GlcNAc-ylation of brain proteins increased rapidly and stably by systemic inhibition of O-GlcNAc-ase. Conversely, biochemical evidence for protein Tau.P301L to become O-GlcNAc-ylated was not obtained, nor was its phosphorylation consistently or markedly affected. We conclude that increasing O-GlcNAc-ylation of brain proteins improved the clinical condition and prolonged the survival of ageing Tau.P301L mice, but not by direct biochemical action on protein tau. The pharmacological effect is proposed to be located downstream in the pathological cascade initiated by protein Tau.P301L, opening novel venues for our understanding, and eventually treating the neurodegeneration mediated by protein tau.  相似文献   

15.
Neurofibrillary tangles (NFTs) of tau are one of the defining hallmarks of Alzheimer’s disease (AD), and are closely associated with neuronal degeneration. Although it has been suggested that calcium dysregulation is important to AD pathogenesis, few studies have probed the link between calcium homeostasis, synapse loss and pathological changes in tau. Here we test the hypothesis that pathological changes in tau are associated with changes in calcium by utilizing in vivo calcium imaging in adult rTg4510 mice that exhibit severe tau pathology due to over-expression of human mutant P301L tau. We observe prominent dendritic spine loss without disruptions in calcium homeostasis, indicating that tangles do not disrupt this fundamental feature of neuronal health, and that tau likely induces spine loss in a calcium-independent manner.  相似文献   

16.
The intraneuronal accumulation of the microtubule associated protein tau in a hyperphosphorylated state and the extracellular deposit of ?amyloid protein constitute the defining neuropathological signature of Alzheimer's disease, the most common type of dementia in ageing Homo sapiens.There is accumulating evidence suggesting that transplantation of embryonic and adult derived neuronal precursor cells (NPCs) has a major role for cell based repair strategies in models of acute and chronic injury. In order to determine whether NPCs could rescue tau related neuronal cell death NPCs were transplanted into the transgenic mouse cortex of transgenic mice expressing human P301S tau protein at 2 month of age and the effect followed 2 and 3 months after transplantation. The results demonstrated that following transplantation mouse NPCs differentiated into astrocytes and exerted a neuroprotective effect. In particular, the expression of ciliary neurotrophic factor, nerve growth factor and glial cell derived neurotrophic factor was increased near the transplanted cells. A nonsignificant increase of brain derived neurotrophic factor expression was instead found in the area of the cortex where neuronal death was rescued.  相似文献   

17.
The neuropathological hallmark shared between Alzheimer's disease (AD) and familial frontotemporal dementia (FTDP-17) are neurofibrillary tangles (NFT) which are composed of filamentous aggregates of the microtubule-associated protein tau. Their formation has been reproduced in transgenic mice, which express the FTDP-17-associated mutation P301L of tau. In these mice, tau aggregates are found in many brain areas including the hippocampus and the amygdala, both of which are characterized by NFT formation in AD. Previous studies using an amygdala-specific test battery revealed an increase in exploratory behavior and an accelerated extinction of conditioned taste aversion in these mice. Here, we assessed P301L mice in behavioral tests known to depend on an intact hippocampus. Morris water maze and Y-maze revealed intact spatial working memory but impairment in spatial reference memory at 6 and 11 months of age. In addition, a modest disinhibition of exploratory behavior at 6 months of age was confirmed in the open field and the elevated O-maze and was more pronounced during aging.  相似文献   

18.
One of the major pathological hallmarks of Alzheimer disease is neurofibrillary tangles. Neurofibrillary tangles are bundles of paired helical filaments composed of hyperphosphorylated tau. Cyclin-dependent kinase 5 (Cdk5) is one of the tau protein kinases that increase paired helical filament epitopes in tau by phosphorylation. Recently, various mutations of tau have been identified in frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). Here, we investigated the phosphorylation of FTDP-17 mutant tau proteins, K257T, P301L, P301S, and R406W, by Cdk5 complexed with p35, p25, or p39 in vitro and in cultured cells. The extent of phosphorylation by all Cdk5 species was slightly lower in mutant tau than in wild-type tau. Major phosphorylation sites, including Ser202, Ser235, and Ser404, were the same among the wild-type, K257T, P301L, and P301S tau proteins phosphorylated by any Cdk5. On the other hand, R406W tau was less phosphorylated at Ser404 than were the other variants. This was not due to the simple replacement of amino acid Arg406 with Trp close to the phosphorylation site, because Ser404 in a R406W peptide was equally phosphorylated in a wild-type peptide. The decreased phosphorylation of mutant tau by Cdk5s was canceled when tau protein bound to microtubules was phosphorylated. These results indicate that FTDP-17 mutations do not affect the phosphorylatability of tau by Cdk5 complexed with p35, p25, or p39 and may explain part of the discrepancy reported previously between in vivo and in vitro phosphorylation of FTDP-17 tau mutants.  相似文献   

19.
Protein tau-3R/4R isoform ratio and phosphorylation regulates binding to microtubules and, when disturbed by aging or mutations, results in diverse tauopathies and in neurodegeneration. The underlying mechanisms were studied here in three transgenic mouse strains with identical genetic background, all expressing the tau-4R/2N isoform driven specifically in neurons by the thy1 gene promoter. Two strains, expressing human tau-4R/2N or mutant tau-4R/2N-P301L at similar, moderate levels, developed very different phenotypes. Tau-4R/2N mice became motor-impaired already around age 6-8 weeks, accompanied by axonopathy (dilatations, spheroids), but no tau aggregates, and surviving normally. In contrast, tau-P301L mice developed neurofibrillary tangles from age 6 months, without axonal dilatations and, despite only minor motor problems, all succumbing before the age of 13 months. The third strain, obtained by tau knock-out/knock-in (tau-KOKI), expressed normal levels of wild-type human tau-4R/2N replacing all mouse tau isoforms. Tau-KOKI mice survived normally with minor motor problems late in life and without any obvious pathology. Biochemically, a fraction of neuronal tau in aging tau-P301L mice was hyperphosphorylated concomitant with conformational changes and aggregation, but overall, tau-4R/2N was actually more phosphorylated than tau-P301L. Significantly, tau with changed conformation and with hyperphosphorylation colocalized in the same neurons in aging tau-P301L mice. Taken together, we conclude that excessive binding of tau-4R/2N as opposed to reduced binding of tau-P301L to microtubules is responsible for the development of axonopathy and tauopathy, respectively, in tau-4R/2N and tau-P301L mice and that the conformational change of tau-P301L is a major determinant in triggering the tauopathy.  相似文献   

20.
FTDP-17 missense tau mutations: G272V, P301L, V337M and R406W promote tau phosphorylation in human and transgenic mice brains by interfering with the tau phosphorylation/dephosphorylation balance. The effect of FTDP-17 mutations on tau phosphorylation by different kinases has been studied previously. However, it is not known how various FTDP-17 mutations affect tau dephosphorylation by phosphoprotein phosphatases. In this study we have observed that when transfected into HEK-293 cells, tau is phosphorylated on various sites that are also phosphorylated in diseased human brains. When transfected cells are lysed and incubated, endogenously phosphorylated tau is dephosphorylated by cellular protein phosphatase 1 (PP1), phosphatase 2A (PP2A) and phosphatase 2B (PP2B), which are also present in the lysate. By using this assay and specific inhibitors of PP1, PP2A and PP2B, we have observed that the G272V mutation promotes tau dephosphorylation by PP2A at Ser(396/404), Ser(235), Thr(231), Ser(202/205) and Ser(214) and by PP2B at Ser(214) but inhibits dephosphorylation by PP2B at Ser(396/404). The P301L mutation promotes tau dephosphorylation at Thr(231) by PP1 and at Ser(396/404), Thr(231), Ser(235) and Ser(202/205) by PP2A but inhibits dephosphorylation at Ser(214) by PP2B. The V337M mutation promotes tau dephosphorylation at Ser(235), Thr(231) and Ser(202/205) by PP2A and at Ser(202/205) by PP2B whereas the R406W mutation promotes tau dephosphorylation at Ser(396/404) by PP1, PP2A and PP2B but inhibits dephosphorylation at Ser(202/205) and Ser(235) by PP1 and PP2A, respectively. Our results indicate that each FTDP-17 tau mutation not only site-specifically inhibits tau dephosphorylation on some sites but also promotes dephosphorylation by phosphatases on other sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号