首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Qu F  Morris TJ 《Journal of virology》2000,74(3):1085-1093
The presence of translational control elements and cap structures has not been carefully investigated for members of the Carmovirus genus, a group of small icosahedral plant viruses with positive-sense RNA genomes. In this study, we examined both the 5' and 3' untranslated regions (UTRs) of the turnip crinkle carmovirus (TCV) genomic RNA (4 kb) as well as the 5' UTR of the coat protein subgenomic RNA (1.45 kb) for their roles in translational regulation. All three UTRs enhanced translation of the firefly luciferase reporter gene to different extents. Optimal translational efficiency was achieved when mRNAs contained both 5' and 3' UTRs. The synergistic effect due to the 5'-3' cooperation was at least fourfold greater than the sum of the contributions of the individual UTRs. The observed translational enhancement of TCV mRNAs occurred in a cap-independent manner, a result consistent with the demonstration, using a cap-specific antibody, that the 5' end of the TCV genomic RNA was uncapped. Finally, the translational enhancement activity within the 5' UTR of 1.45-kb subgenomic RNA was shown to be important for the translation of coat protein in protoplasts and for virulent infection in Arabidopsis plants.  相似文献   

3.
The structure of turnip crinkle virus has been determined at 3.2 A resolution, using the electron density of tomato bushy stunt virus as a starting point for phase refinement by non-crystallographic symmetry. The structures are very closely related, especially in the subunit arm and S domain, where only small insertions and deletions and small co-ordinate shifts relate one chain to another. The P domains, although quite similar in fold, are oriented somewhat differently with respect to the S domains. Understanding of the structure of turnip crinkle virus has been important for analyzing its assembly, as described in an accompanying paper.  相似文献   

4.
Plant immunity frequently involves the recognition of pathogen-encoded avirulence (avr) factors by their corresponding plant resistance (R) proteins. This triggers the hypersensitive response (HR) where necrotic lesions formed at the site(s) of infection help restrict pathogen spread. HRT is an Arabidopsis R protein required for resistance to turnip crinkle virus (TCV). In a genetic screen for mutants compromised in the recognition of TCV's avr factor, we identified crt1 (compromised recognition of TCV), a mutant that prematurely terminates an ATPase protein. Following TCV infection, crt1 developed a spreading HR and failed to control viral replication and spread. crt1 also suppressed HR-like cell death induced by ssi4, a constitutively active R protein, and by Pseudomonas syringae carrying avrRpt2. Furthermore, CRT1 interacts with HRT, SSI4, and two other R proteins, RPS2 and Rx. These data identify CRT1 as an important mediator of defense signaling triggered by distinct classes of R proteins.  相似文献   

5.
Dissociation of turnip crinkle virus (TCV) at elevated pH and ionic strength produces free dimers of the coat protein and a ribonucleoprotein complex that contains the viral RNA, six coat-protein subunits, and the minor protein species, p80 (a covalently linked coat-protein dimer). This "rp-complex" is stable for several days in high salt at pH 8.5. Reassembly of TCV can be accomplished under physiological conditions, using isolated coat protein and either rp-complex or protein-free RNA. If rp-complex is used in reassembly, the same subunits remain bound to RNA on subsequent dissociation; if free RNA is used, rp-complex is regenerated. In both cases, the assembly is selective for viral RNA in competition experiments with heterologous RNA. Electron microscopy shows that assembly proceeds by continuous growth of a shell from an initiating structure, rather than by formation of distinct intermediates. We suggest that rp-complex is the initiating structure, suggest a model based on the organization of the TCV particle, and propose a mechanism for TCV assembly.  相似文献   

6.
7.
8.
9.
10.
Structural studies of turnip crinkle virus have been extended to include the identification of high-affinity coat protein binding sites on the RNA genome. Virus was dissociated at elevated pH and ionic strength, and a ribonucleoprotein complex (rp-complex) was isolated by chromatography on Sephacryl S-200. Genomic RNA fragments in the rp-complex, resistant to RNase A and RNase T1 digestion and associated with tightly bound coat protein subunits, were isolated using coat-protein-specific antibodies. The identity of the protected fragments was determined by direct RNA sequencing. These approaches allowed us to study the specific RNA-protein interactions in the rp-complex obtained from dissociated virus particles. The location of one protected fragment downstream from the amber terminator codon in the first and largest of the three viral open reading frames suggests that the coat protein may play a role in the regulation of the expression of the polymerase gene. We have also identified an additional cluster of T1-protected fragments in the region of the coat protein gene that may represent further high-affinity sites involved in assembly recognition.  相似文献   

11.
Inoculation of turnip crinkle virus (TCV) on the resistant Arabidopsis ecotype Di-17 elicits a hypersensitive response (HR), which is accompanied by increased expression of pathogenesis-related (PR) genes. Previous genetic analyses revealed that the HR to TCV is conferred by HRT, which encodes a coiled-coil (CC), nucleotide-binding site (NBS) and leucine-rich repeat (LRR) class resistance (R) protein. In contrast to the HR, resistance to TCV requires both HRT and a recessive allele at a second locus designated rrt. Here, we demonstrate that unlike most CC-NBS-LRR R genes, HRT/rrt-mediated resistance is dependent on EDS1 and independent of NDR1. Resistance is also independent of RAR1 and SGT1. HRT/rrt-mediated resistance is compromised in plants with reduced salicylic acid (SA) content as a consequence of mutations eds5, pad4, or sid2. By contrast, HR is not affected by mutations in eds1, eds5, pad4, sid2, ndr1, rar1, or sgt1b. Resistance to TCV is restored in both SA-deficient Di-17 plants expressing the nahG transgene and mutants containing the eds1, eds5, or sid2 mutations by exogenous application of SA or the SA analog benzo(1,2,3)thiadiazole-7-carbothioic acid (BTH). In contrast, SA/BTH treatment failed to enhance resistance in HRT pad4, Col-0, or hrt homozygous progeny of a cross between Di-17 and Col-0. Thus, HRT and PAD4 are required for SA-induced resistance. Exogenously supplied SA or high endogenous levels of SA, due to the ssi2 mutation, overcame the suppressive effects of RRT and enhanced resistance to TCV, provided the HRT allele was present. High levels of SA upregulate HRT expression via a PAD4-dependent pathway. As Col-0 transgenic lines expressing high levels of HRT were resistant to TCV, but lines expressing moderate to low levels of HRT were not, we conclude that SA enhances resistance in the RRT background by upregulating HRT expression. These data suggest that the HRT-TCV interaction is unable to generate sufficient amounts of SA required for a stable resistance phenotype, and the presence of rrt possibly corrects this deficiency.  相似文献   

12.
F Qu  T J Morris 《Journal of virology》1997,71(2):1428-1435
A protoplast infection assay has been used to reliably examine the viral RNA encapsidation of turnip crinkle virus (TCV). Analysis of the encapsidation of various mutant viral RNAs revealed that a 186-nucleotide (nt) region at the 3' end of the coat protein (CP) gene, with a bulged hairpin loop of 28 nt as its most essential element, was indispensable for TCV RNA encapsidation. When RNA fragments containing the 186-nt region were used to replace the CP gene of a different virus, tomato bushy stunt virus, the resulting chimeric viral RNAs were encapsidated into TCV virions. Furthermore, analysis of the encapsidated chimeric RNA species established that the RNA size was an important determinant of the TCV assembly process.  相似文献   

13.
Turnip crinkle virus (TCV) supports a small family of satellite RNAs (RNAs C, D and F). RNA C is a virulent satellite, producing severe symptoms in host plants, while RNAs D and F are avirulent satellites. The virulent satellite (RNA C) has two major domains--a 5'-domain similar to the avirulent satellites and a 3'-domain similar to the 3'-end of the TCV genome. To demonstrate that the 3'-domain of RNA C determines virulence, a chimeric satellite was constructed composed mostly of the 5'-domain of the avirulent satellite (RNA F) and the 3'-domain of the virulent satellite (RNA C). To locate other functional regions, small DNA fragments were inserted or deleted at various sites in the cDNA of virulent satellite (RNA C). Most small internal deletions and insertions in the midsection of the molecule had no detectable effects while those near the 3'-end of RNA C destroyed infectivity. Modifications in a small region centering on an AGCAGC repeat in the domain of satellite homology blocked the accumulation of monomers and presumably the processing of RNA C. Other modifications in this region produced more intense symptoms. Hence, these experiments reveal regions of the satellite which determine virulence, are essential for infectivity, affect monomer accumulation (RNA processing) and modulate symptom expression.  相似文献   

14.
2015年以来,南美暴发大规模寨卡疫情,因其与新生儿小头症等严重神经发育疾病密切相关,被世界卫生组织列为国际关注的突发公共卫生事件。与其他虫媒黄病毒类似,寨卡病毒为单股正链RNA病毒,其基因组编码的3种结构蛋白构成病毒颗粒,7种非结构蛋白参与病毒复制生活周期的调控。在全球科学家的共同努力下,寨卡病毒蛋白结构与功能的研究取得了突破性进展,极大地促进研究者对病毒复制与致病机制的认识,也为疫苗和药物研发提供了重要科学依据和潜在靶标。本文将对寨卡病毒蛋白的结构与功能的最新研究进展作一综述,并讨论当前面临的挑战和机遇。  相似文献   

15.
The influence of iodine in its positive and negative monovalent form upon the oxygen consumption in euthyroid and thyroidectomized rats and the oxidative phosphorylation in liver mitochondria isolated from both groups of animals, as well as the spontaneous swelling and total ATPase activity of mitochondria have been studied.It was established that the administration of ICI increased the oxygen consumption of normal and thyroidectomized rats while under the same conditions no effect was found with NaI. IBr stimulated the oxygen consumptionin vitro in liver mitochondria isolated both from normal and thyroidectomized rats and decreased the P/O ratio while NaI had no effect. I2 and IBr increased the swelling and inhibited the ATPase activity of isolated rat liver mitochondria, while these effects were not observed when KI was used. The thyroidstatic 1-methyl-2-mercaptoimidazol decreased the stimulating effect of iodine upon the swelling of mitochondria and to a certain extent lowered its inhibiting effect upon the ATPase activity.It is concluded that iodine in its positive monovalent form has a thyroxine-like effect upon the structure and function of isolated rat liver mitochondria, as well asin vivo upon the respiration of euthyroid and thyroidectomized rats.  相似文献   

16.
In order to clarify the effect of amino acid substitutions on the structure and function of the neuraminidase (NA) protein of influenza A virus, we introduced single-point amino acid substitutions into the NA protein of the A/Tokyo/3/67 (H2N2) strain using PCR-based random mutation. The rate of tolerant random one amino acid substitutions in the NA protein was 47%. Rates of tolerant substitutions for the stalk and for the surface and inner portion of the head region of the NA protein were 79, 54, and 19%, respectively. Deleterious changes, such as those causing the NA protein to stop at the Golgi/endoplasmic reticulum, were scattered throughout the protein. On the other hand, the ratio of mutations with which the NA protein lost neuraminidase activity, but was transported to the cell surface, decreased in proportion to the distance from the structural center of enzyme active site. In order to investigate the effect of accumulated amino acid substitutions on the structural character of the N2NA protein during evolution, the same amino acid substitutions were introduced by site-directed mutagenesis at 23 homologous positions on N2 proteins of A/Tokyo/3/67, A/Bangkok/15/85 (H3N2), and A/Mie/1/2004 (H3N2). The results showed a shift, or discordance, in tolerance at some of the positions. An increase in discordance was correlated with the interval in years between virus strains, and the discordance rate was estimated to be 0.6-0.7% per year.  相似文献   

17.
When turnip plants with 3–7 leaves were inoculated with cabbage black ringspot virus (CBRSV) on the 3rd rough-leaf, symptoms only appeared on leaves that had been less than 15 mm long at the time of inoculation, although infection decreased the area and both fresh and dry weight of all leaves. Leaves were ‘aged’ by their appearance and placed in Leaf Age Categories (LACs). Leaves with symptoms senesced (‘aged’) prematurely. CBRSV-infection of cv. Green Top White did not change the distribution of populations of Myzus persicae between LACs, but increased the proportion of the plant suitable for colonisation. All suitable LACs were quickly colonised by adult apterae and nymphs. On CBRSV-infected plants the nymphal period was shorter, F1 adults deposited larvae more frequently and the live body weight and tibial length of the F2 generation was greater, than on healthy plants. The distribution of Brevicoryne brassicae populations on cv. Green Top White differed from that of M. persicae but was also unchanged by CBRSV-infection. On healthy plants the largest colonies were on mature leaves, so that on virus-infected plants premature senescence shortened the life of the colony. On CBRSV-infected plants the nymphal period was prolonged and the live weight of F1 and F2 adult apterae was less than on healthy plants. The differences between the biology of M. persicae and B. brassicae on CBRSV-infected cv. Green Top White were associated with the accelerated senescence of CBRSV-infected leaves. The possibility that CBRSV-infection might reduce the resistance of turnips to aphid infestation was tested. M. persicae and B. brassicae were cultured on two favourable and two less favourable cultivars. No improvement in population growth rate was found when the less favourable host cultivars were infected with CBRSV, but both aphid species weighed less and/or had smaller nymphal populations on cultivars showing the severest symptoms. These results are discussed in relation to the evolution of non-persistent virus transmission by aphids.  相似文献   

18.
19.
Wang J  Simon AE 《Journal of virology》2000,74(14):6528-6537
Many plant RNA viruses are associated with one or more subviral RNAs. Two subviral RNAs, satellite RNA C (satC) and defective interfering RNA G (diG) intensify the symptoms of their helper, turnip crinkle virus (TCV). However, when the coat protein (CP) of TCV was replaced with that of the related Cardamine chlorotic fleck virus (CCFV), both subviral RNAs attenuated symptoms of the hybrid virus TCV-CP(CCFV). In contrast, when the translation initiation codon of the TCV CP was altered to ACG and reduced levels of CP were synthesized, satC attenuated symptoms while diG neither intensified nor attenuated symptoms. The determinants for this differential symptom modulation were previously localized to the 3'-terminal 100 bases of the subviral RNAs, which contain six positional differences (Q. Kong, J.-W. Oh, C. D. Carpenter, and A. E. Simon, Virology 238:478-485, 1997). In the current study, we have determined that certain sequences within the 3'-terminal stem-loop structures of satC and diG, which also serve as promoters for complementary strand synthesis, are critical for symptom modulation. Furthermore, the ability to attenuate symptoms was correlated with weakened binding of TCV CP to the hairpin structure.  相似文献   

20.
Eukaryotic elongation factor Tu has been implicated in responses to heat stress and viral infection. In this study, the turnip mosaic virus (TuMV)-response gene BcLRK01, which encodes a leucine-rich repeat receptor-like kinase, was probed using the cDNA library of TuMV-infected leaves of non-heading Chinese cabbage (Brassica campestris ssp. chinensis). The BcEF-Tu gene, which encodes chloroplast elongation factor Tu, was obtained and verified by a yeast two-hybrid system to interact with the BcLRK01 gene. TuMV infection depressed the expression of this gene, whereas a heat stress induced its expression. Overexpression of BcEF-Tu enhanced the viability of Escherichia coli transformants under the heat stress. These results demonstrate that elongation factor BcEF-Tu responded to the TuMV infection and heat stress. This is the first report on chloroplast EF-Tu in non-heading Chinese cabbage which provides a theoretical basis for the functional research of EF-Tu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号