首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Yasukawa  Y Inoue  N Kimura    S Fujita 《Journal of virology》1995,69(12):8114-8117
Herpesvirus saimiri (HVS) has recently been shown to immortalize human CD4+ and CD8+ T cells expressing T-cell receptor alpha beta (TCR-alpha beta) with the maintenance of their original phenotypes and functional properties. However, the immortalization of human T cells expressing TCR-gamma delta by HVS has not been successful. Here we report that HVS can also infect and immortalize human T cells expressing TCR-gamma delta. Two human TCR-gamma delta+ T-cell clones, which continuously proliferated in interleukin-2-containing culture medium without any exogenous stimulation or addition of feeder cells for more than 8 months, were established by HVS infection. Morphologically, the HVS-transformed TCR-gamma delta+ T-cell clones were granular lymphocytes which exhibited wide-range HLA-unrestricted cytotoxicity as untransformed TCR-gamma delta+ T cells. Their phenotypes and cytotoxic activities were not altered during long-term culture. The immortalization of human TCR-gamma delta+ T cells by HVS infection would be useful for functional analysis of this lymphocyte population, which is believed to play an important role in protection against various infectious diseases.  相似文献   

2.
3.
CD4+ T-cell depletion in AIDS patients involves induction of apoptosis in human immunodeficiency virus (HIV)-infected and noninfected T cells. The HIV type 1 (HIV-1)-transactivating protein Tat enhances apoptosis and activation-induced cell death (AICD) of human T cells. This effect is mediated by the CD95 (APO-1/Fas) receptor-CD95 ligand (CD95L) system and may be linked to the induction of oxidative stress by Tat. Here we show that HIV-1 Tat-induced oxidative stress is necessary for sensitized AICD in T cells caused by CD95L expression. Tat-enhanced apoptosis and CD95L expression in T cells are inhibited by neutralizing anti-Tat antibodies, antioxidants, and the Tat inhibitor Ro24-7429. Chimpanzees infected with HIV-1 show viral replication resembling early infection in humans but do not show T-cell depletion or progression towards AIDS. The cause for this discrepancy is unknown. Here we show that unlike Tat-treated T cells in humans, Tat-treated chimpanzee T cells do not show downregulation of manganese superoxide dismutase or signs of oxidative stress. Chimpanzee T cells are also resistant to Tat-enhanced apoptosis, AICD, and CD95L upregulation.  相似文献   

4.
5.
Viruses have evolved different strategies to interfere with host cell apoptosis. Herpesvirus saimiri (HVS) and other lymphotropic herpesviruses code for proteins that are homologous to the cellular antiapoptotic Bcl-2. In this study HVS-Bcl-2 was stably expressed in the human leukemia cell line Jurkat and in the murine T-cell hybridoma DO to assess its antiapoptotic spectrum and to gain further insight into its mode of action. HVS- Bcl-2 prevented apoptosis that occurs as a result of a disturbance of intracellular homeostasis by, for example, DNA damage or menadione, which gives rise to oxygen radicals. In Jurkat cells, HVS-Bcl-2 also inhibited apoptosis mediated by the death receptor CD95. In DO cells, HVS-Bcl-2 did not interfere with CD95-mediated apoptosis but blocked dexamethasone-induced cell death. Mitochondrial damage is a central coordinating event in apoptosis induced by different stimuli. To assess the integrity of mitochondria, we used rhodamine 123, which is released upon disturbance of the mitochondrial membrane potential, and determined the release of cytochrome c into the cytosol. Both signs of mitochondrial damage were prevented by HVS-Bcl-2. This viral protein also inhibited the generation of caspase-3-like DEVDase activity and blocked the cleavage of poly(ADP-ribose) polymerase, a natural substrate of caspase-3-like proteases. In conclusion, HVS-Bcl-2 protects against a great variety of apoptotic stimuli, stabilizes mitochondria, and acts upstream of the generation of caspase-3-like activity.  相似文献   

6.
A nonproducer lymphoblastoid cell line (7710) containing the herpesvirus saimiri (HVS) genome was established from the HVS-positive spleen of a male, inbred New Zealand White rabbit (III/J strain) which had developed a well-differentiated lymphoma after inoculation of HVS and 12-O-tetradecanoylphorbol-13-acetate (TPA). Antibodies to HVS early and late antigens were detected in the serum of rabbit 7710 by indirect immunofluorescence and immunoprecipitation. The cell line was of T-cell origin, did not produce HVS, and could not be superinfected with HVS. However, HVS early antigens could be induced in the cells with n-butyric acid and TPA or TPA alone. On the other hand, late antigens were never observed, and infectious virus could not be rescued by cocultivation of 7710 cell with OMK cells. The 7710 cells were T-cell growth factor dependent, even after many in vitro passages. The 7710 cell line contained multiple copies of a nonintegrated, covalently closed circular HVS genome. As is characteristic of some other HVS-transformed nonproducer lymphoid cell lines, a large segment of unique light (L) DNA was missing in the persistent circular viral DNA present in 7710 cells. This deletion spanned at least 42.5 kilobases, corresponding to the segment between 12.3 and 50.7 map units of full-length, infectious virion L-DNA. The 7710 cells failed to induce tumors in athymic nude mice, but inbred rabbits inoculated with as few as 100 of these cells developed fatal lymphomas. Chromosomal analysis showed that tumors were due to the growth of donor cells. Cells recovered from one of the rabbits inoculated with 7710 cells also contained HVS DNA and, after in vitro culture, induced the same type of lymphoma when inoculated into two other III/J-strain rabbits. None of the previously described HVS-transformed cell lines have been able to induce tumors in either their host species or nude mice. Thus, our demonstration that the 7710 cell line is readily transplantable in syngeneic rabbits represents the first available model which allows analysis of many biological and molecular aspects of the in vivo oncogenicity of HVS.  相似文献   

7.
The characteristics of 4 T-cell clones, each capable of producing phagocytosis-inducing factor (PIF), were compared before and after transformation with human T-lymphotropic virus Type 1 (HTLV-I). Before transformation, the four clones produced PIF transiently after stimulation with antigen or mitogen and expressed the phenotype T3(CD3)+, T4(CD4)+, T8(CD8)-, 4B4+, and 2H4-; the three clones that could be studied also expressed the OKT17 marker. After transformation, the cells expressed the same phenotypic markers, except for two clones that lost the CD3 antigen. The clones that were available for study before and after transformation also expressed the antigen detected by the monoclonal antibody 5/9. In addition, all clones secreted PIF constitutively after transformation. These characteristics of the four transformed T-cell clones closely resembled those of three long-term HTLV-I-transformed T-cell lines, HUT-102, C5/MJ, and MT-2, which also produced PIF constitutively and expressed the CD4 and 4B4, but not 2H4, markers. In addition, two other HTLV-I-transformed lines generated in the present study produced PIF constitutively. Since all nine HTLV-I transformed cell lines and all four untransformed clones secreted PIF, and since our previous studies have shown that only approximately 20% of CD4+ peripheral blood lymphocytes secrete PIF, these results suggest that HTLV-I may preferentially transform PIF-secreting CD4+ lymphocytes. The predominant 4B4+, 5/9+, 2H4- phenotype (characteristic of antigen-responsive T cells) of the untransformed and transformed clones as well as the long-term HTLV-I-transformed lines also suggests that the subset of CD4+ lymphocytes that proliferates in response to soluble antigen may be especially susceptible to transformation with this virus.  相似文献   

8.
The local cellular immune response to herpes simplex virus (HSV) is important in the control of recurrent HSV infection. The antiviral functions of infiltrating CD4-bearing T cells may include cytotoxicity, inhibition of viral growth, lymphokine secretion, and support of humoral and CD8 responses. The antigens recognized by many HSV-specific CD4 T cells localizing to genital HSV-2 lesions are unknown. T cells recognizing antigens encoded within map units 0.67 to 0.73 of HSV DNA are frequently recovered from herpetic lesions. Expression cloning with this region of DNA now shows that tegument protein VP22 and the viral dUTPase, encoded by genes UL49 and UL50, respectively, are T-cell antigens. Separate epitopes in VP22 were defined for T-cell clones from each of three patients. Reactivity with the tegument protein encoded by UL21 was identified for an additional patient. Three new epitopes were identified in VP16, a tegument protein associated with VP22. Some tegument-specific CD4 T-cell clones exhibited cytotoxic activity against HSV-infected cells. These results suggest that herpes simplex tegument proteins are processed for antigen presentation in vivo and are possible candidate compounds for herpes simplex vaccines.  相似文献   

9.
The role of the T-cell activation antigen CD26 was evaluated in viral entry and infection of CD4+/CXCR4+cells by the lymphotropic HIV-1 Lai isolate. For this purpose, CEM T cells, which are permissive to HIV infection and express low levels of CD26, were used to establish by transfection four groups of cell clones expressing either low, high, and very high levels of CD26, or expressing the anti-sense RNA of CD26. Entry was monitored by the detection of proviral DNA synthesis and the kinetics of virus production, whereas the cytopathic effect was demonstrated by the occurrence of apoptosis. HIV entry and infection were consistently accelerated by at least 24 to 48 h in clones expressing high levels of CD26 compared to the parental cells or to the clones expressing low levels of CD26. Interestingly, infection of clones expressing very high levels of CD26 was not accelerated and showed a kinetics of infection similar to that of low CD26 expressing clones. Moreover, HIV infection was significantly reduced in the clones expressing CD26 anti-sense RNA. In the different clones, apoptosis was dependent on the severity of virus infection and occurred after the accumulation of HIV envelope glycoproteins. Our results demonstrate that with equivalently expressed levels of CD4 and CXCR4 in cell lines established from CEM cells, relatively high levels of CD26 contribute to an increased rate of HIV entry, infection, and apoptosis. Furthermore, they point out that overexpression of CD26 in a given cell line may lead to a negative effect on HIV infection. Consequently, CD26 appears to regulate HIV entry and apoptosis, processes which are critical for viral pathogenesis.  相似文献   

10.
P.J. Dyson  K. Quade  J.A. Wyke 《Cell》1982,30(2):491-498
Somatic cell hybrids have been made between clones of rat cells transformed by avian sarcoma virus and rat or mouse cells that are untransformed. Intraspecies hybrids were either predominantly morphologically normal or predominantly transformed, some clones that formed transformed intraspecies hybrids yielding normal interspecies hybrids. Untransformed hybrids usually showed no detectable alteration in the structure or location of the integrated provirus, but viral RNA and pp60src kinase activities were much reduced. No decrease in viral gene expression was seen in transformed hybrids. Thus hybrid suppression of viral transformation, mediated in trans by the untransformed parent, is a specific event that depends on both untransformed and transformed parental parameters.  相似文献   

11.
We have taken advantage of a recently described technique of transformation and immortalization of T lymphocytes using the lymphotropic Herpesvirus saimiri, to achieve long-lasting T-cell lines from gastric cancer patients and healthy volunteers. Blood samples were drawn and T lymphocytes were transformed. Once sustained growth was observed, lines were subjected to phenotypic and functional analyses, and the results compared with freshly isolated peripheral blood mononuclear cells. Cytofluorometric analysis revealed that CD3 and CD45 were found at lower proportion in primary cells from patients than from control individuals (54% vs 75%, p<0.001, 90% vs 96%, p<0.05, respectively), and in HVS-derived T-cell lines (90% vs 98%, p<0.05, 97% vs 100%, p<0.05, respectively). Proliferative analyses showed that primary isolated cells were unable to respond adequately to CD3-, CD2-, and PHA-mediated stimulation, as compared to controls. Similarly, T-cell lines from patients proliferated to a lesser extent when CD3- and CD2-mediated stimuli were considered, especially when simultaneous stimulation via CD3 and CD2 molecules was carried out (47,824 counts per minute [cpm] vs 121,478 cpm, p<0.05). Altogether these results show that the defects reported in T cells from patients with cancer are not exclusively due to tumour-derived factors, since the alterations persist in long-lasting, HVS-transformed, T-cell lines, suggesting that this model seems a suitable one to disclose them.APV and MP-B should be considered as joint first authors  相似文献   

12.
Apoptosis of uninfected bystander CD4(+) T cells contributes to T-cell depletion during human immunodeficiency virus type 1 (HIV-1) pathogenesis. The viral and host mechanisms that lead to bystander apoptosis are not well understood. To investigate properties of the viral envelope glycoproteins (Env proteins) that influence the ability of HIV-1 to induce bystander apoptosis, we used molecularly cloned viruses that differ only in specific amino acids in Env. The ability of these strains to induce bystander apoptosis was tested in herpesvirus saimiri-immortalized primary CD4(+) T cells (CD4/HVS), which resemble activated primary T cells. Changes in Env that increase affinity for CD4 or CCR5 or increase coreceptor binding site exposure enhanced the capacity of HIV-1 to induce bystander apoptosis following viral infection or exposure to nonreplicating virions. Apoptosis induced by HIV-1 virions was inhibited by CD4, CXCR4, and CCR5 antibodies or by the CXCR4 inhibitor AMD3100, but not the fusion inhibitor T20. HIV-1 virions with mutant Envs that bind CXCR4 but are defective for CD4 binding or membrane fusion induced apoptosis, whereas CXCR4 binding-defective mutants did not. These results demonstrate that HIV-1 virions induce apoptosis through a CXCR4- or CCR5-dependent pathway that does not require Env/CD4 signaling or membrane fusion and suggest that HIV-1 variants with increased envelope/receptor affinity or coreceptor binding site exposure may promote T-cell depletion in vivo by accelerating bystander cell death.  相似文献   

13.
Herpesvirus saimiri (HVS) was used to infect and transform human CD8+ cytotoxic T lymphocytes (CTL), and the phenotypic and functional consequences of HVS infection of CD8+ T lymphocytes were investigated. HVS-transformed CTL no longer require antigen restimulation yet maintain their phenotype and HLA-restricted cytolytic function and specificity. The ability of HVS to transform CTL may have an important role in the functional analysis of human antigen-specific CTL.  相似文献   

14.
Xie L  Green PL 《Journal of virology》2005,79(23):14536-14545
Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are related deltaretroviruses but are distinct in their disease-inducing capacity. These viruses can infect a variety of cell types, but only T lymphocytes become transformed, which is defined in vitro as showing indefinite interleukin-2-independent growth. Studies have indicated that HTLV-1 has a preferential tropism for CD4+ T cells in vivo and is associated with the development of leukemia and neurological disease. Conversely, the in vivo T-cell tropism of HTLV-2 is less clear, although it appears that CD8+ T cells preferentially harbor the provirus, with only a few cases of disease association. The difference in T-cell transformation tropism has been confirmed in vitro as shown by the preferential transformation of CD4+ T cells by HTLV-1 versus the transformation of CD8+ T cells by HTLV-2. Our previous studies showed that Tax and overlapping Rex do not confer the distinct T-cell transformation tropisms between HTLV-1 and HTLV-2. Therefore, for this study HTLV-1 and HTLV-2 recombinants were generated to assess the contribution of LTR and env sequences in T-cell transformation tropism. Both sets of proviral recombinants expressed p19 Gag following transfection into cells. Furthermore, recombinant viruses were replication competent and had the capacity to transform T lymphocytes. Our data showed that exchange of the env gene resulted in altered T-cell transformation tropism compared to wild-type virus, while exchange of long terminal repeat sequences had no significant effect. HTLV-2/Env1 preferentially transformed CD4+ T cells similarly to wild-type HTLV-1 (wtHTLV-1), whereas HTLV-1/Env2 had a transformation tropism similar to that of wtHTLV-2 (CD8+ T cells). These results indicate that env is a major viral determinant for HTLV T-cell transformation tropism in vitro and provides strong evidence implicating its contribution to the distinct pathogenesis resulting from HTLV-1 versus HTLV-2 infections.  相似文献   

15.
CD4+ T-cell death is a crucial feature of AIDS pathogenesis, but the mechanisms involved remain unclear. Here, we present in vitro findings that identify a novel process of HIV1 mediated killing of bystander CD4+ T cells, which does not require productive infection of these cells but depends on the presence of neighboring dying cells. X4-tropic HIV1 strains, which use CD4 and CXCR4 as receptors for cell entry, caused death of unstimulated noncycling primary CD4+ T cells only if the viruses were produced by dying, productively infected T cells, but not by living, chronically infected T cells or by living HIV1-transfected HeLa cells. Inducing cell death in HIV1-transfected HeLa cells was sufficient to obtain viruses that caused CD4+ T-cell death. The addition of supernatants from dying control cells, including primary T cells, allowed viruses produced by living HIV1-transfected cells to cause CD4+ T-cell death. CD4+ T-cell killing required HIV1 fusion and/or entry into these cells, but neither HIV1 envelope-mediated CD4 or CXCR4 signaling nor the presence of the HIV1 Nef protein in the viral particles. Supernatants from dying control cells contained CD95 ligand (CD95L), and antibody-mediated neutralization of CD95L prevented these supernatants from complementing HIV1 in inducing CD4+ T-cell death. Our in vitro findings suggest that the very extent of cell death induced in vivo during HIV1 infection by either virus cytopathic effects or immune activation may by itself provide an amplification loop in AIDS pathogenesis. More generally, they provide a paradigm for pathogen-mediated killing processes in which the extent of cell death occurring in the microenvironment might drive the capacity of the pathogen to induce further cell death.  相似文献   

16.
17.
18.
Studies of human immunodeficiency virus (HIV) and nonhuman primate models of pathogenic and nonpathogenic simian immunodeficiency virus (SIV) infections have suggested that enhanced ex vivo CD4 T-cell death is a feature of pathogenic infection in vivo. However, the relative contributions of the extrinsic and intrinsic pathways to programmed T-cell death in SIV infection have not been studied. We report here that the spontaneous death rate of CD4+ T cells from pathogenic SIVmac251-infected rhesus macaques ex vivo is correlated with CD4 T-cell depletion and plasma viral load in vivo. CD4+ T cells from SIVmac251-infected macaques showed upregulation of the death ligand (CD95L) and of the proapoptotic proteins Bim and Bak, but not of Bax. Both CD4+ and CD8+ T cells from SIVmac251-infected macaques underwent caspase-dependent death following CD95 ligation. The spontaneous death of CD4+ and CD8+ T cells was not prevented by a decoy CD95 receptor or by a broad-spectrum caspase inhibitor (zVAD-fmk), suggesting that this form of cell death is independent of CD95/CD95L interaction and caspase activation. IL-2 and IL-15 prevented the spontaneous death of CD4+ and CD8+ T cells, whereas IL-10 prevented only CD8 T-cell death and IL-7 had no effect on T-cell death. Our results indicate that caspase-dependent and caspase-independent pathways are involved in the death of T cells in pathogenic SIVmac251-infected primates.  相似文献   

19.
Immunotherapy based on T cell responses to the tumor is believed to involve killing of cancer cells by induction of apoptosis. The predominant mechanisms are death ligand-induced signaling mainly by TNF-related apoptosis-inducing ligand (TRAIL) mediated by CD4 T cells, monocytes and dendritic cells, and perforin/granzyme mediated apoptosis mediated by CD8 T cells and NK cells. Resistance against TRAIL involves loss of TRAIL death receptors and/or activation of the MEK and/or Akt signal pathways. Resistance to CD8 CTL responses also involves activation of the MEK and/or Akt pathways. Apoptosis induced by immune responses is regulated by the Bcl-2 family of proteins. Many reagents have been developed against the Bcl-2 antiapoptotic proteins and clinical trials combining them with immunotherapy are awaited. The second group of agents that regulate the Bcl-2 family of proteins are the signal pathway inhibitors. Clinical trials with inhibitors of RAS, RAF or MEK are in progress and would appear an exciting combination with immunotherapy. One of the main drivers of resistance to apoptosis are adaptive mechanisms that allow cancer cells to overcome endoplasmic reticulum (ER) stress. These adaptive mechanisms inhibit practically all known apoptotic pathways and create an acidic environment that may reduce infiltration of lymphocytes against the tumor. The signal pathway inhibitors may be effective against these adaptive processes but additional agents that target ER stress pathways are in development. In conclusion, combination of immunotherapy with agents that target antiapoptotic mechanisms in cancer cells offers a new approach that requires evaluation in clinical trials.  相似文献   

20.
Umbilical cord blood (CB) is increasingly used for allogeneic hematopoietic stem cell transplantation. To determine whether viral antigen-specific cytotoxic T-lymphocytes (CTL) could be generated from the predominantly naive T-cell populations in CB, CB-derived mononuclear cells were stimulated with autologous Epstein-Barr virus (EBV) transformed B-lymphoblastoid cell lines over several weeks in the presence of recombinant human interleukin-2 (IL-2). By 28 days of culture, T-lymphocytes from all six CB that had been treated with IL-2 displayed EBV-specific cytotoxicity. These cells were largely CD4(+), with complete inhibition of cytotoxicity by anti-CD3 and variable inhibition by anti-HLA DR monoclonal antibodies. The EBV-specific effectors were cloned by limiting dilution, and most of the CTL clones were CD4(+). The cytotoxicity of the CB-derived CD4(+) CTL clones was inhibited by EGTA but not by anti-Fas ligand mAb, suggesting that this cytotoxicity was mediated by perforin/granzyme B. These data indicate that virus-specific CTL can be cultivated and cloned from CB, a human T-cell source that may not have prior in vivo antigenic exposure or reactivity. This finding may have applications in adoptive immunotherapy to recipients of CB transplants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号