首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Outer dense fibers (ODFs) and the fibrous sheath (FS) are unique structures of the mammalian sperm tail. Recently, progress has been made in the molecular cloning of ODF and FS proteins, and because of this, questions addressing the morphogenesis and underlying protein network that make up sperm tail structures and their function can now be addressed. Using the N-terminal leucine zipper motif of the major ODF protein ODF1, we had previously isolated interacting proteins Odf2, Spag4, and Spag5. We report here a yeast two-hybrid strategy to isolate a novel rat testicular protein, OIP1, that binds to the evolutionarily conserved Cys-Gly-Pro repeats in the C-terminus of ODF1. OIP1 is expressed in round spermatids as well as in spermatocytes and several somatic tissues, albeit at a lower level. No expression was detectable in epididymis, heart, and smooth muscle. OIP1 protein localizes to the sperm tail in a pattern expected for an ODF1-interacting protein. OIP1 belongs to the family of RING finger proteins of the H2 subclass. Deletion of the putative RING motif significantly decreased binding to ODF1. Genomic analysis of rat Oip1 and Oip1 homologs indicates that Oip1 is highly conserved. Oip1 is subject to differential splicing and alternative polyadenylation events. It is interesting that Oip1 mRNAs have been reported that lack the exon encoding the putative RING finger.  相似文献   

4.
Cdk5 and p35 are integral components of the sperm tail outer dense fibers (ODFs), which contribute to the distinct morphology and function of the sperm tail. In this study, we sought to characterize and investigate the significance of Cdk5/p35 association with ODFs. We show that ODF2 interacts with Cdk5 and p35 but not with the Cdk5/p35 heterodimer. By using deletion mutants, the ODF2 binding region in p35 was mapped to residues 122 to 198. This overlaps the Cdk5 binding region in p35, explaining the inability of ODF2 to bind to the Cdk5/p35 complex. In vitro phosphorylation assay showed that although Cdk5/p35 does not phosphorylate ODF2, it phosphorylates ODF1. Mass spectrometry revealed that Cdk5/p35 specifically phosphorylates Ser193 in the ODF1 C-terminal region containing the Cys-X-Pro motif, the interaction site for the novel RING finger protein, ODF1 interacting protein (OIP1), a candidate E3 ubiquitin ligase, that also localizes in the sperm tail. Cdk5 phosphorylation of ODF1 Ser193 results in enhanced ODF1-OIP1 interaction. These findings suggest that Cdk5 may be important in promoting ODF1 degradation, and potentially, the detachment and fragmentation of the sperm tail following fertilization.  相似文献   

5.
Nuclear shaping is a critical event during sperm development as demonstrated by the incidence of male infertility associated with abnormal sperm ad shaping. Herein, we demonstrate that mouse and rat spermatids assemble in the subacrosomal space a cytoskeletal scaffold containing F-actin and Sak57, a keratin ortholog. The cytoskeletal plate, designated acroplaxome, anchors the developing acrosome to the nuclear envelope. The acroplaxome consists of a marginal ring containing keratin 5 10-nm-thick filaments and F-actin. The ring is closely associated with the leading edge of the acrosome and to the nuclear envelope during the elongation of the spermatid head. Anchorage of the acroplaxome to the gradually shaping nucleus is not disrupted by hypotonic treatment and brief Triton X-100 extraction. By examining spermiogenesis in the azh mutant mouse, characterized by abnormal spermatid/sperm head shaping, we have determined that a deformity of the spermatid nucleus is restricted to the acroplaxome region. These findings lead to the suggestion that the acroplaxome nucleates an F-actin-keratin-containing assembly with the purpose of stabilizing and anchoring the developing acrosome during spermatid nuclear elongation. The acroplaxome may also provide a mechanical planar scaffold modulating external clutching forces generated by a stack of Sertoli cell F-actin-containing hoops encircling the elongating spermatid nucleus.  相似文献   

6.
Outer dense fibers (ODFs), as unique accessory structures in mammalian sperm, are considered to play a role in the protection of the sperm tail against shear forces. However, the role and relevant mechanisms of ODFs in modulating sperm motility and its pathological involvement in asthenozoospermia were unknown. Here, we found that the percentage of ODF defects was higher in asthenozoospermic samples than that in control samples and was significantly correlated with the percentage of axoneme defects and non‐motile sperm. Furthermore, the expression levels of ODF major components (Odf1, 2, 3, 4) were frequently down‐regulated in asthenozoospermic samples. Intriguingly, the positive relationship between ODF size and sperm motility existed across species. The conditional disruption of Odf2 expression in mice led to reduced sperm motility and the characteristics of asthenozoospermia. Meanwhile, the expression of acetylated α‐tubulin was decreased in sperm from both Odf2 conditional knockout (cKO) mice and asthenozoospermic men. Immunofluorescence and biochemistry analyses showed that Odf2 could bind to acetylated α‐tubulin and protect the acetylation level of α‐tubulin in HEK293T cells in a cold environment. Finally, we found that lithium elevated the expression levels of Odf family proteins and acetylated α‐tubulin, elongated the midpiece length and increased the percentage of rapidly moving sperm in mice. Our results demonstrate that ODFs are beneficial for sperm motility via stabilization of the axoneme and that hypo‐expression of Odf family proteins is involved in the pathogenesis of asthenozoospermia. The lithium administration assay will provide valuable insights into the development of new treatments for asthenozoospermia.  相似文献   

7.
We have identified a possible role for the KIFC1 motor protein in formation of the acrosome, an organelle unique to spermatogenesis. KIFC1, a C-terminal kinesin motor, first appears on membrane-bounded organelles (MBOs) in the medulla of early spermatids followed by localization to the acrosomal vesicle. KIFC1 continues to be present on the acrosome of elongating spermatids as it flattens on the spermatid nucleus; however, increasing amounts of KIFC1 are found at the caudal aspect of the spermatid head and in distal cytoplasm. The KIFC1 motor is also found in the nucleus of very immature round spermatids just prior to its appearance on the acrosome. In some cases, KIFC1 appears localized just below the nuclear membrane adjacent to the subacrosomal membrane. We demonstrate that KIFC1 is associated with importin beta and colocalizes with this nuclear transport factor on curvilinear structures associated with the spermatid nuclei. These data support a model in which KIFC1, perhaps in association with nuclear factors, assists in the formation and/or elongation of the spermatid acrosome. This article represents the first demonstration of a direct association of a molecular motor with the spermatid acrosome, the formation of which is essential for fertilization.  相似文献   

8.
Sperm motility and hence male fertility strictly depends on proper development of the sperm tail and its tight anchorage to the head. The main protein of sperm tail outer dense fibers, ODF1/HSPB10, belongs to the family of small heat shock proteins that function as molecular chaperones. However, the impact of ODF1 on sperm tail formation and motility and on male fecundity is unknown. We therefore generated mutant mice in which the Odf1 gene was disrupted. Heterozygous mutant male mice are fertile while sperm motility is reduced, but Odf1-deficient male mice are infertile due to the detachment of the sperm head. Although headless tails are somehow motile, transmission electron microscopy revealed disturbed organization of the mitochondrial sheath, as well as of the outer dense fibers. Our results thus suggest that ODF1, besides being involved in the correct arrangement of mitochondrial sheath and outer dense fibers, is essential for rigid junction of sperm head and tail. Loss of function of ODF1, therefore, might account for some of the cases of human infertility with decapitated sperm heads. In addition, since sperm motility is already affected in heterozygous mice, impairment of ODF1 might even account for some cases of reduced fertility in male patients.  相似文献   

9.
The synthesis of peptides containing 0, 1 and 2 cysteine residues related to the human sperm tail protein, tpx-1, is described. These synthetic peptides, following conjugation to keyhole limpet hemocyanin modified with maleimidobenzoic acid N-hydroxysuccinimide ester, were used as immunogens to generate polyclonal antibodies in female New Zealand white rabbits. The binding characteristics of the derived antipeptide sera were evaluated using indirect and competitive ELISA procedures. Western immunoblot experiments also confirmed that these synthetic peptide immunogens are able to generate high-titer polyclonal antibodies capable of cross-reacting with the mature tpx-1 protein present in crude rat sperm tail/testis preparations as well as in outer dense fiber preparations. Consequently, these synthetic peptides represent promising candidates for investigations into the role of tpx-1 in the immunoregulation of sperm function in the rat and other mammalian models, with the derived antisera also providing an avenue to explore possible sites of expression of tpx-1 proteins in other tissues.  相似文献   

10.
Outer dense fibers (ODF) are specific subcellular components of the sperm flagellum. The functions of ODF have not yet been clearly elucidated. We have investigated the protein composition of purified ODF from bovine spermatozoa and found that one of the most abundant proteins is a 30-32-kDa polypeptide. This protein was analyzed by sequencing peptides derived following limited proteolysis. Peptide sequences were found to match VDAC2 and VDAC3. VDACs (voltage-dependent, anion-selective channels) or eukaryotic porins are a group of proteins first identified in the mitochondrial outer membrane that are able to form hydrophilic pore structures in membranes. In mammals, three VDAC isoforms (VDAC1, -2, -3) have been identified by cDNA cloning and sequencing. Antibodies against synthetic peptides specific for the three mammal VDAC isoforms were generated in rabbits. Their specificity was demonstrated by immunoblotting using recombinant VDAC1, -2, and -3. In protein extracts of bovine spermatozoa, VDAC1, -2, and -3 were detected by specific antibodies, while only VDAC2 and -3 were found as solubilized proteins derived from purified bovine ODFs. Immunofluorescence microscopy of spermatozoa revealed that anti-VDAC2 and anti-VDAC3 antibodies clearly bound to the sperm flagellum, in particular to the ODF. Transmission electron immunomicroscopy supported the finding that VDAC2 protein is abundant in the ODF. Since the ODF does not have any known membranous structure, it is tempting to speculate that VDAC2 and VDAC3 might have an alternative structural organization and different functions in ODF than in mitochondria.  相似文献   

11.
The outer dense fibers (ODF) are the main cytoskeletal structures of the sperm tail found in animals with internal fecundation. They consist of at least 14 polypeptides from which only a few are identified due to difficulties in isolation of the protein components. Here we report the isolation and molecular characterization of Odf3, encoding a novel protein of rat sperm ODF. Odf3 is transcribed in testes and more specifically in spermatids but it is also expressed in epididymides and brain suggesting a possible involvement in building of the cellular cytoskeleton. Odf3 encodes a putative protein of approximately 110 kDa. Secondary structure predictions indicated that ODF3 is a coiled-coil protein. The identification of coiled-coil proteins as constituents of outer dense fibers reveals a model for ODF formation.  相似文献   

12.
Outer dense fibers are structures unique to the sperm tail. No definite function for these fibers has been found, but they may play a role in motility and provide elastic recoil. Their composition had been described before, but only two of the fiber proteins, Odf1 and Odf2, are cloned. We cloned Odf2 by virtue of its functional and specific interaction with Odf1, which, we show, is mediated by a leucine zipper. Further work demonstrated that the 84-kDa Odf2 protein localizes to both the cortex and the medulla of the fibers, whereas the 27-kDa Odf1 protein is present only in the medulla. Here we report the cloning and characterization of a new Odf1-interacting protein, Spag4. Spag4 mRNA is spermatid specific, and the 49-kDa Spag4 protein complexes specifically with Odf1, but not Odf2, mediated by a leucine zipper. It also self-associates. In contrast to Odf1 and Odf2, Spag4 protein localizes to two microtubule-containing spermatid structures. Spag4 is detectable in the transient manchette and it is associated with the axoneme in elongating spermatids and epididymal sperm. Our data suggest a role for Spag4 in protein localization to two major sperm tail structures.  相似文献   

13.
Small pieces of the sperm sacs of Lumbricus herculeus were fixed for 4 hours in chrome-osmium, embedded in methacrylate, sectioned with a Porter-Blum microtome, and studied with a R.C.A. EMU-2C electron microscope. Each spermatid of a group developing synchronously is attached by a cytoplasmic strand to a common nutrient protoplasmic mass. This mass contains mitochondria and yolk bodies but is anucleate. The proximal centriole, that is, the centriole nearer the nucleus, is at first associated with a small peg which becomes firmly attached to the nuclear membrane. Later these two bodies become separated during the development of the middle-piece which is differentiated in the usual manner from a nebenkern formed by the fusion of 6 or 7 mitochondria. The acrosome develops in relation to the dictyosome (Golgi body), itself composed of 8 or more individual flattened sacs and situated in the cytoplasm opposite the point of attachment of the spermatid to the nutrient mass. Soon after its formation, the acrosome becomes incorporated into a cytoplasmic appendage or acrosome carrier. The carrier moves from its original position, along the lateral border of the elongating nucleus, to the distal margin of the nucleus where the acrosome is deposited. No evidence was found of a centriole located at the point of junction between nucleus and acrosome as suggested by earlier workers.  相似文献   

14.
Vesicular membrane trafficking during acrosome biogenesis in bull and rhesus monkey spermatogenesis differs from the somatic cell paradigm as imaged dynamically using the Golgi apparatus probes beta-COP, giantin, Golgin-97, and Golgin-95/GM130. In particular, sorting and delivery of proteins seemed less precise during spermatogenesis. In early stages of spermiogenesis, many Golgi resident proteins and specific acrosomal markers were present in the acrosome. Trafficking in both round and elongating spermatids was similar to what has been described for somatic cells, as judged by the kinetics of Golgi protein incorporation into endoplasmic reticulum-like structures after brefeldin A treatment. These Golgi components were retrieved from the acrosome at later stages of differentiation and were completely devoid of immature spermatozoa. Our data suggest that active anterograde and retrograde vesicular transport trafficking pathways, involving both beta-COP- and clathrin-coated vesicles, are involved in retrieving Golgi proteins missorted to the acrosome and in controlling the growth and shape of this organelle.  相似文献   

15.
An ultrastructural and immunocytochemical study of rat male germ cells at different stages of development has been carried out. Investigation of morphological changes of spermatogenic cells showed the presence of close associations between chromatoid bodies (CBs) and other cell organelles, particularly with the nucleus and Golgi apparatus. In addition, a connection of manchette noncentosomal microtubules (MTs) with spermatid perinuclear ring plasma membrane (PM) in the zone of adhesion intercellular contact, zonula adhaerens (ZA), was revealed. These results, as well as the available literary data, make it possible to analyze expected pathways of noncentrosomal MT nucleation in the late spermatids. It is possible to suggest that noncentorosomal MT are nucleated on the sites of perinuclear ring ZA. The immunocytochemical analysis revealed two novel proteins for these cells: BASP1 and MARCKS. It was shown that these proteins were present in CBs in early spermatids. During spermatozoid differentiation, these proteins are located along the outer dense fibers (ODFs) of the sperm tail. BASP1 and MARCKS are believed to be involved in the processes of calcium accumulation in CBs and ODFs. Calcium ions seem to play a significant role in RNA processing and protein synthesis in spermatids. Calcium is also necessary for sperm mobility defined mainly by ODFs.  相似文献   

16.
17.
Previous studies from our laboratory have reported empirical associations between bovine seminal plasma protein(s) (BSP) A1/A2 and 30 kDa and osteopontin (OPN) in accessory sex gland fluid and bull fertility. These BSP and OPN are believed to bind to sperm at ejaculation and to remain bound until sperm reach the oviduct. The objective of the present study was to evaluate the topographical distribution of BSP A1/A2, 30 kDa and OPN binding on: (1) bovine ejaculated sperm; (2) ejaculated sperm incubated with isthmic oviductal fluid (ODF); (3) ejaculated sperm+isthmic ODF incubated in ampullary ODF. From each of these media, aliquots of sperm for BSP and OPN were processed for immunocytochemistry and analysis by laser scanning confocal microscopy. Isthmic and ampullary ODF was collected from indwelling catheters and used as pools from three cows in the non-luteal phase of the estrous cycle. Anti-BSP A1/A2 was detected bound to the midpiece, post-equatorial and equatorial segments and acrosome of sperm after ejaculation and after incubation with isthmic and ampullary ODF. The BSP A1/A2 fluorescence was more concentrated on the midpiece and increased as acrosome-intact sperm came in contact with ODF. As compared with acrosome-intact sperm, non-intact acrosome intact sperm had 39 and 68% reductions of acrosome fluorescence and 36% and 90% increases of post-equatorial fluorescence after contact with isthmic and ampullary ODF (P<0.05). Anti-BSP 30 kDa was more intense on the midpiece than on post-equatorial, equatorial and acrosome regions of sperm after ejaculation and contact with ODF. However, equatorial fluorescence was 141% and 89% more intense and acrosome stainning was 80% and 76% less (P<0.05) in non-intact acrosome sperm than in acrosome intact cells, during all ODF incubations. Anti-OPN was identified on the acrosome of ejaculated sperm, but with less fluorescence (P<0.05) on the post-equatorial segment and midpiece. Incubation of sperm with isthmic ODF increased fluorescence on post-equatorial segment (P<0.05). There were 72% and 78% reductions (P<0.05) of acrosome fluorescence and intensification (P<0.05) in equatorial fluorescence in non-intact acrosome sperm as compared with acrosome intact cells incubated with isthmic and ampullary ODF. In summary, interactions of BSP A1/A2 and 30 kDa and osteopontin with the sperm membrane undergo modifications dictated by the oviductal fluid. The BSP are thought to modulate cholesterol and phospholipid movement from the sperm membrane and help sperm binding to the oviductal epithelium. Furthermore, our model suggests that OPN participates in sperm-oocyte interaction, affecting fertilization and early embryonic development.  相似文献   

18.
The ultrastructural and immunocytochemical study of rat male germ cells on different developing stages has been made. The investigation of morphological changes of spermatogenic cells has demonstrated the presence of tight connections between chromatoid bodies (CBs) and other cell organelles, particularly with the nucleus and Golgi apparatus; has revealed the association of manchette noncentrosomal microtubules (MT) with spermatid perinuclear ring plasma membrane (PM) in the zone of the adhesion intercellular contact--zonula adhaerens (ZA). The comparison of the results obtained in this work with available literary data has given possibility to analyze expected pathways of noncentrosomal MT nucleation in the late spermatids. This paper puts the supposition that noncentrosomal MTs are nucleated on the sites of perinuclear ring ZA. The immunocytochemical analysis discovered two novel proteins for these cells--BASP1 and MARCKS. It has been shown that these proteins present in the CBs in the early spermatids. During the spermatozoid differentiation these proteins are revealed along the outer dense fibers (ODFs) of the sperm tail. BASP1 and MARCKS are supposed to involve in the processes of calcium accumulation in the CBs and ODFs. Calcium ions seem to play the significant role in RNA processing and protein synthesis in spermatids. Calcium is also necessary for the mobility of sperms which is mainly determined by ODFs.  相似文献   

19.
20.
Small pieces of the sperm sacs of Lumbricus herculeus were fixed for 4 hours in chrome-osmium, embedded in methacrylate, sectioned with a Porter-Blum microtome, and studied with a R.C.A. EMU-2C electron microscope. Each spermatid of a group developing synchronously is attached by a cytoplasmic strand to a common nutrient protoplasmic mass. This mass contains mitochondria and yolk bodies but is anucleate. The proximal centriole, that is, the centriole nearer the nucleus, is at first associated with a small peg which becomes firmly attached to the nuclear membrane. Later these two bodies become separated during the development of the middle-piece which is differentiated in the usual manner from a nebenkern formed by the fusion of 6 or 7 mitochondria. The acrosome develops in relation to the dictyosome (Golgi body), itself composed of 8 or more individual flattened sacs and situated in the cytoplasm opposite the point of attachment of the spermatid to the nutrient mass. Soon after its formation, the acrosome becomes incorporated into a cytoplasmic appendage or acrosome carrier. The carrier moves from its original position, along the lateral border of the elongating nucleus, to the distal margin of the nucleus where the acrosome is deposited. No evidence was found of a centriole located at the point of junction between nucleus and acrosome as suggested by earlier workers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号