首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscarinic receptors have been characterized in smooth muscle and brain by the binding of reversible (e.g. atropine, quinuclidinylbenzylate) or irreversible (benzilylcholine or propylbenzilylcholine mustards) ligands. There is a close correlation between affinity constants derived from binding experiments and the affinities of muscarinic ligands for these sites obtained in pharmacological experiments on smooth muscle. Whereas atropine shows a single high affinity binding component (in subcellular preparations) several other ligands (QNB, ACh, oxotremorine) show multiple affinity binding. This indicated the existence of several types of binding sides which show selectivity toward certain cholinergic effectors. Most detergents inhibit the binding of ligands to the receptor site and therefore cannot be used to solubilize the receptor protein from the membrane. Treatment of brain subcellular membrane preparations with high salt concentrations (2M NaI) solubilize proteins which possess the muscarinic ligand binding properties observed in the membrane preparation. The affinities for muscarinic antagonists however are decreased, which suggests that a conformational change occurs in the protein upon solubilization.  相似文献   

2.
S Nomura  S H Zorn  S J Enna 《Life sciences》1987,40(18):1751-1760
Experiments were undertaken to determine whether the anticholinergic actions of tricyclic antidepressants are mediated by a selective interaction with a subclass of muscarinic receptors. To this end, the potencies of these antidepressants to inhibit [3H]-QNB binding to rat brain cerebral cortical membranes was compared to their potencies as antagonists of carbachol-stimulated inositol phosphate accumulation in cerebral cortical slices and carbachol-induced inhibition of GTP-stimulated adenylate cyclase in striatal membranes. Whereas amitriptyline was more potent than pirenzepine, a selective muscarinic M1 receptor antagonist, in competing for [3H]-QNB binding sites and as an antagonist of carbachol-induced inhibition of adenylate cyclase, pirenzepine was substantially more active (ten-fold) than amitriptyline in blocking carbachol-stimulated phosphatidyl inositol turnover. Atropine was more potent than all other agents in these assays, failing to display any significant degree of selectivity. The results suggest that the tricyclic antidepressants, in particular amitriptyline, appear to be selective antagonists for muscarinic receptors associated with adenylate cyclase in striatal membranes. Given the current classification of cholinergic receptors, these findings indicate that the tricyclic antidepressants may be useful for defining the properties of M2 receptors in brain.  相似文献   

3.
The M1-selective muscarinic antagonists aprophen, caramiphen, carbetapentane, 2-DAEX, dicyclomine, hexahydrosiladifenidol, iodocaramiphen, nitrocaramiphen, oxybutynin and trihexyphenidyl potently inhibited binding to sigma sites in brain. Both basic ester and non-ester structural type compounds which exhibit affinity for the muscarinic receptor also demonstrated affinity for the sigma site, while the classical antimuscarinic agents atropine and QNB, and the tricyclic pirenzepine, were ineffective in binding to this site. We also observed a significant correlation between the Ki values for sigma compounds to inhibit [3H]pirenzepine binding and their IC50 values to inhibit carbachol-stimulated phosphoinositide turnover. These observations may aid in elucidating the relationship of sigma binding to inhibition of phosphoinositide turnover stimulated by cholinergic agonists.  相似文献   

4.
Allosteric modulators have been identified for several G protein-coupled receptors, most notably muscarinic receptors. To study their mechanism of action, we made use of a recently developed technique to generate fluorescence resonance energy transfer (FRET)-based sensors to monitor G protein-coupled receptor activation. Cyan fluorescent protein was fused to the C terminus of the M2 muscarinic receptor, and a specific binding sequence for the small fluorescent compound fluorescein arsenical hairpin binder, FlAsH, was inserted into the third intracellular loop; the latter site was labeled in intact cells by incubation with FlAsH. We then measured FRET between the donor cyan fluorescent protein and the acceptor FlAsH in intact cells and monitored its changes in real time. Agonists such as acetylcholine and carbachol induced rapid changes in FRET, indicative of agonist-induced conformational changes. Removal of the agonists or addition of an antagonist caused a reversal of this signal with rate constants between 400 and 1100 ms. The allosteric ligands gallamine and dimethyl-W84 caused no changes in FRET when given alone, but increased FRET when given in the presence of an agonist, compatible with an inactivation of the receptors. The kinetics of these effects were very rapid, with rate constants of 80–100 ms and ≈200 ms for saturating concentrations of gallamine and dimethyl-W84, respectively. Because these speeds are significantly faster than the responses to antagonists, these data indicate that gallamine and dimethyl-W84 are allosteric ligands and actively induce a conformation of the M2 receptor with a reduced affinity for its agonists.  相似文献   

5.
The nicotinic acetylcholine receptor from Torpedo was immobilised in tethered membranes. Surface plasmon resonance was used to quantify the binding of ligands and antibodies to the receptor. The orientation and structural integrity of the surface-reconstituted receptor was probed using monoclonal antibodies, demonstrating that approximately 65% of the receptors present their ligand-binding site towards the lumen of the flow cell and that at least 85% of these receptors are structurally intact. The conformation of the receptor in tethered membranes was investigated with Fourier transform infrared spectroscopy and found to be practically identical to that of receptors reconstituted in lipid vesicles. The affinity of small receptor ligands was determined in a competition assay against a monoclonal antibody directed against the ligand-binding site which yielded dissociation constants in agreement with radioligand binding assays. The presented method for the functional immobilisation of the nicotinic acetylcholine receptor in tethered membranes might be generally applicable to other membrane proteins.  相似文献   

6.
A crude membrane preparation from the supraoesophageal ganglion of the locust (Schistocerca gregaria) shows specific binding of muscarinic cholinergic ligands. Analysis of the kinetics of binding reveals the presence of at least two binding sites with dissociation constants, Kd of 0.76 and 37.7 nM. The pharmacological profile of the higher affinity site is different from that seen for muscarinic receptor sites in mammalian brain.The binding sites reported here are quite distinct from nicotinic-like receptor sites in the same tissue and lend further support to suggestions that there are at least two types of acetylcholine receptors in insects.  相似文献   

7.
8.
Birdsall NJ  Lazareno S  Popham A  Saldanha J 《Life sciences》2001,68(22-23):2517-2524
Proteins and small molecules are capable of regulating the agonist binding and function of G-protein coupled receptors by multiple allosteric mechanisms. In the case of muscarinic receptors, there is the well-characterised allosteric site that binds, for example, gallamine and brucine. The protein kinase inhibitor, KT5720, has now been shown to bind to a second allosteric site and to regulate agonist and antagonist binding. The binding of brucine and gallamine does not affect KT5720 binding nor its effects on the dissociation of [3H]-N-methylscopolamine from M1 receptors. Therefore it is possible to have a muscarinic receptor with three small ligands bound simultaneously. A model of the M1 receptor, based on the recently determined structure of rhodopsin, has the residues that have been shown to be important for gallamine binding clustered within and to one side of a cleft in the extracellular face of the receptor. This cleft may represent the access route of acetylcholine to its binding site.  相似文献   

9.
The muscarinic antagonists pirenzepine and telenzepine were derivatized as alkylamino derivatives at a site on the molecules corresponding to a region of bulk tolerance in receptor binding. The distal primary amino groups were coupled to the cross-linking reagent meta-phenylene diisothiocyanate, resulting in two isothiocyanate derivatives that were found to inhibit muscarinic receptors irreversibly and in a dose-dependent fashion. Preincubation of rat forebrain membranes with an isothiocyanate derivative followed by radioligand binding using [3H]N-methylscopolamine diminished the Bmax value, but did not affect the Kd value. The receptor binding site was not restored upon repeated washing, indicating that irreversible inhibition had occurred. IC50 values for the irreversible inhibition at rat forebrain muscarinic receptors were 0.15 nM and 0.19 nM, for derivatives of pirenzepine and telenzepine, respectively. The isothiocyanate derivative of pirenzepine was non-selective as an irreversible muscarinic inhibitor, and the corresponding derivative prepared from telenzepine was 5-fold selective for forebrain (mainly m1) vs. heart (m2) muscarinic receptors.  相似文献   

10.
The effects of the organophosphorus anticholinesterase paraoxon on the binding of radioactive ligands to the M3 subtype of the muscarinic receptor and receptor-coupled synthesis of second messengers in intact rat submaxillary gland (SMG) cells were investigated. The binding of [3H]quinuclidinyl benzilate ([3H]QNB) was most sensitive to atropine and the M3-specific antagonist 4-DAMP followed by pirenzepine and least sensitive to the cardioselective M2 antagonist AFDX116. This, and the binding characteristics of [3H]4-DAMP, confirmed that the muscarinic receptors in this preparation are of the M3 subtype. Activation of these muscarinic receptors by carbamylcholine (CBC) produced both stimulation of phosphoinositide (PI) hydrolysis and inhibition of cAMP synthesis, suggesting that this receptor subtype couples to both effector systems. Paraoxon (100 μM) reduced Bmax of [3H]4-DAMP binding from 27 ± 4 to 13 ± 3 fmol/mg protein with nonsignificant change in affinity, suggesting noncompetitive inhibition of binding by paraoxon. Like the agonist CBC, paraoxon inhibited the forskolininduced cAMP formation in SMG cells with an EC50 of 200 nM, but paraoxon was > 500 fold more potent than CBC. However, while the inhibition by CBC was counteracted by 2 μM atropine, that by paraoxon was unaffected by up to 100 μM atropine. It suggested that this effect of paraoxon was not via binding to the muscarinic receptor. Paraoxon did not affect β-adrenoreceptor function in the preparation, since it did not affect the 10 μM isoproterenol-induced cAMP synthesis, which was inhibited totally by 10 μM propranolol and partially by CBC. Paraoxon had a small but significant effect on CBC-stimulated PI metabolism in the SMG cells. It is suggested that paraoxon binds to two different sites in these SMG cells. One is an allosteric site on the M3 muscarinic receptor which affects ligand binding and may modulate receptor function. The other site may be on the Gi proteinadenylyl cyclase system, and produces CBC-like action, that is, inhibition of the forskolin-stimulated [3H]cAMP synthesis, and is unaffected by atropine inhibition of the muscarinic receptor. This adds to the complexity of paraoxon actions on muscarinic receptors and their effector systems.  相似文献   

11.
We studied the effects of acute and chronic in vivo inhibition of acetylcholinesterase on both the density and function of brain muscarinic cholinergic receptors. Adult male rats were treated either once or multiple times over a period of 10 days with the irreversible acetylcholinesterase inhibitor diisopropylfluorophosphate (DFP). The concentration and affinity of muscarinic receptors in various brain regions were determined using radioligand binding techniques. Acute DFP treatment resulted in a significant reduction in receptor number only in the brain stem, while chronic treatment caused receptor down-regulation in the brain stem, cerebral cortex, and striatum. There was no change in ligand affinity in any of the brain regions. In sharp contrast, muscarinic receptor function was fully preserved, in terms of coupling of the receptors to increased phosphoinositide hydrolysis in the cerebral cortex, hippocampus, and striatum, or inhibition of cyclic AMP formation in the cerebral cortex or striatum. Therefore, there is a marked lack or correlation between DFP-induced muscarinic receptor down-regulation and receptor desensitization.  相似文献   

12.
We studied the effects of acute and chronic in vivo inhibition of acetylcholinesterase on both the density and function of brain muscarinic cholinergic receptors. Adult male rats were treated either once or multiple times over a period of 10 days with the irreversible acetylcholinesterase inhibitor diisopropylfluorophosphate (DFP). The concentration and affinity of muscarinic receptors in various brain regions were determined using radioligand binding techniques. Acute DFP treatment resulted in a significant reduction in receptor number only in the brain stem, while chronic treatment caused receptor downregulation in the brain stem, cerebral cortex, and striatum. There was no change in ligand affinity in any of the brain regions. In sharp contrast, muscarinic receptor function was fully preserved, in terms of coupling of the receptors to increased phosphoinositide hydrolysis in the cerebral cortex, hippocampus, and striatum, or inhibition of cyclic AMP formation in the cerebral cortex or striatum. Therefore, there is a marked lack or correlation between DFP-induced muscarinic receptor down-regulation and receptor desensitization.  相似文献   

13.
Both [D-Ala2,Glu4]Deltorphin and [D-Ala2,4'-I-Phe3,Glu4]Deltorphin are highly selective ligands for delta, relative to mu, opioid receptors. Radiolabeled [D-Ala2, 4'-125I-Phe3,Glu4]Deltorphin ([125I]Deltorphin) was prepared with a specific activity of 2200 Ci/mmol from [D-Ala2, 4'-NH2-Phe3, Glu4]Deltorphin through a diazonium salt intermediate. The inhibition of [125I]Deltorphin binding to rat brain membranes by ligands selective for mu, delta, and kappa opioid receptors is consistent with binding by the radioligand to a single site having the properties of a delta opioid receptor. The results of these studies are in good agreement with those obtained by structurally different delta opioid receptor ligands. The similarity between the delta receptor site labeled by [125I]Deltorphin and those labeled by other delta receptor agonists, in contrast to differences seen by in vivo studies of their analgesic effects, is discussed.  相似文献   

14.
A monoclonal antibody raised against the muscarinic acetylcholine affinity-alkylating antagonist propylbenzilylcholine mustard was tested for its ability to recognize affinity-alkylated muscarinic receptors. We demonstrate here that although the antibody will not recognize the mustard when it is covalently linked to the native muscarinic receptor, trypsinization of affinity-labeled membranes releases a proteolytic labeled fragment that can be specifically immunoprecipitated by the antibody. Electrophoretic analysis of the immunoprecipitate indicates that the ligand was associated with a polypeptide of molecular weight 5,000. The recognition of this fragment by the antibody provides a means to immunopurify a portion of the muscarinic receptor that is at or near the ligand binding site.  相似文献   

15.
The binding of one irreversible and two reversible radioactive antagonists to muscarinic receptors in synaptosome preparations of rat cerebral cortex has been studied. The ligands all bind to the same receptor pool and directly and competitively yield self-consistent binding constants closely similar to those obtained by pharmacological methods on intact smooth muscle. The binding process for antagonists seems to be a simple mass action-determined process with a Hill slope of 1.0. The quantitative correlations strongly support the view that the receptor studied by ligand binding corresponds to the receptor studied by pharmacological methods. Inhibition of antagonist binding by most agonists shows a reduced Hill slope which also applies to direct binding studies of [3H] acetylcholine. Mechanisms that might account for the behavior of agonists are discussed but do not conclusively point to any single mechanism.  相似文献   

16.
Polyclonal antibodies have been raised in rabbits against the glycine receptor antagonist strychnine, coupled through a 2-amino substituent to the antigenic protein key-hole limpet haemocyanin. Strychnine binding of the predominantly immunoglobulin G (IgG) class of antibodies was measured by incubation with [3H]strychnine, followed by adsorption of IgG onto Staphylococcus aureus cells and filtration through glass-fibre filters under vacuum. Only strychnine and structurally related alkaloids or derivatives were able to inhibit [3H]strychnine binding to the IgG. A significant rank correlation was found between the potencies of these compounds to inhibit [3H]strychnine binding to the antibodies and to the glycine receptor in mouse spinal cord membranes. In contrast, preincubation of strychnine antibodies with a variety of ligands at other neurotransmitter, drug, or hormone receptors in the CNS (at 10(-4) M) failed to inhibit binding significantly. The failure of glycine to inhibit strychnine antibody binding is consistent with previous suggestions that the recognition sites for this amino acid on the CNS receptor may be conformationally distinct from those for the antagonist alkaloid. Strychnine antibodies may now help in the identification and purification of possible endogenous ligands at this alkaloid binding site in the CNS.  相似文献   

17.
B Klangkalya  A Chan 《Life sciences》1988,42(23):2307-2314
The in vitro and in vivo effects of estrogen and progesterone on muscarinic and beta-adrenergic receptors of cardiac tissue were studied in ovariectomized (OVX) rats. The binding assay for muscarinic receptors was performed under a nonequilibrium condition; whereas the binding assay for beta-adrenergic receptors, under an equilibrium condition. Estrogenic compounds and progesterone were found to have no effect on the binding of the radioligand, [3H]-dihydroalprenolol, to beta-adrenergic receptors in vitro. However, progestins but not estrogenic compounds inhibited the binding of the radioligand, [3H]-quinuclidinyl benzilate, to muscarinic receptors in vitro, with progesterone as the most potent inhibitor (IC50 = 37 microM, apparent Ki = 13 microM). Progesterone was found to decrease the apparent affinity of muscarinic receptors for [3H](-)QNB in vitro. Daily treatment of OVX rats with estradiol benzoate (4 micrograms) or progesterone (2.5 mg) for 4 days had no effect on the muscarinic or beta-adrenergic receptors with respect to the binding affinity and receptor density. However, administrations of these hormones together for 4 days caused an increase in the receptor density of muscarinic receptors without a significant effect on their apparent binding affinity; also these hormones induced a decrease in the binding affinity and an increase in the receptor density of beta-adrenergic receptors. The results of this study demonstrate that progestins are capable of interacting with the cardiac muscarinic receptors in vitro, and indicate that estrogen and progesterone have a synergistic effect to increase the receptor densities of muscarinic and beta-adrenergic receptors as well as to cause a decrease in the binding affinity of beta-adrenergic receptors in vivo.  相似文献   

18.
Identification of the critical residues in a receptor's ligand-binding site provides valuable structural information important for understanding the basis for ligand recognition. The design of specific ligands targeted for receptor action will depend to a great extent on detailed structural knowledge of this kind. Although the nicotinic acetylcholine receptor (nAChR) is perhaps the best characterized of all receptors, the detailed configuration of the ligand-binding site remains unknown. Structural comparisons of nicotinic agonists and antagonists have long predicted a negative subsite on the receptor to interact with the positively charged alkyl-ammonium moiety common to nearly all nicotinic agents. We have used intrinsic fluorescence spectroscopic analyses together with binding studies of selectively modified peptide fragments of the nAChR to suggest that one or two invariant tyrosine residues at positions 190 and 198 on the alpha-subunit provide the critical negative subsite required for ligand binding. Tyrosines may similarly be part of the negative subsite of muscarinic receptors and other neurotransmitter receptors that bind cationic ligands.  相似文献   

19.
The nerve cord of the cockroach (Periplaneta americana) contains distinct saturable components of specific binding for the ligands N-[propionyl-3H]propionylated alpha-bungarotoxin and L-[benzilic-4,4'-3H]quinuclidinyl benzilate. N-[Propionyl-3H]propionylated alpha-bungarotoxin bound reversibly to homogenates with a Kd of 4.8 nM and Bmax of 910 fmol mg-1. The association rate constant (1.9 X 10(5) M-1 s-1) and dissociation rate constant (1.2 X 10(-4) s-1) yielded a Kd of 0.6 nM. Nicotinic ligands were found to displace toxin binding most effectively. The binding sites characterized in this way showed many similarities with the properties of the vertebrate neuronal alpha-bungarotoxin binding site. For a range of cholinergic ligands, inhibition constants calculated from toxin binding studies closely corresponded to their effectiveness in blocking the depolarizing response to acetylcholine recorded by electrophysiological methods from an identified cockroach motoneurone. The N-[propionyl-3H]propionylated alpha-bungarotoxin binding component therefore appears to be a constituent of a functional CNS acetylcholine receptor. Binding of L-[benzilic-4,4'-3H]quinuclidinyl benzilate was reversible with a Kd of 8 nM and Bmax of 138 fmol mg-1, determined from equilibrium binding experiments. The Kd calculated from the association rate constant (2.4 X 10(5) M-1 s-1) and dissociation rate constant (1.3 X 10(-4) s-1) was 1.9 nM. Muscarinic ligands were the most potent inhibitors of quinuclidinyl benzilate binding. The characteristics of this binding site resembled those of vertebrate CNS muscarinic cholinergic receptors. In contrast with vertebrate CNS, the nerve cord of Periplaneta americana contains more (approximately X 7) alpha-bungarotoxin binding sites than quinuclidinyl benzilate binding sites.  相似文献   

20.
Muscarinic acetylcholine receptor in chick limb bud during morphogenesis   总被引:1,自引:0,他引:1  
Summary In the chick embryo a cholinesterase activity appears in various organ anlagen which has been correlated with morphogenetic movements (Drews 1975). The cholinesterase activity is present in the mesenchyme of the limb bud during aggregation of the central chondrogenic core. In the present study binding of tritium labelled quinuclidinyl benzilate ((3H)QNB), a muscarinic antagonist, to homogenates of chick limb buds was investigated by a filtration assay. In the homogenate of limb buds at Stage 24 specific binding of (3H)QNB was demonstrated. Determination of binding constants and inhibition of binding by agonists and antagonists was studied at Stage 25/26. Specific binding was defined by the difference in binding in the absence and presence of atropine (1 M). Specific binding of (3H)QNB reflected a muscarinic receptor. The Kd in two experiments was 0.11 nM and 0.16 nM, the binding capacity was 15.7 fmol (3H)QNB/mg protein and 12.0 fmol (3H)QNB/mg protein, respectively. Data on displacement of specific bound (3H)QNB by various nicotinic and muscarinic ligands confirmed the muscarinic nature of the receptor. Muscarinic ligands inhibited the (3H) QNB binding, whereas nicotinic ligands caused no inhibition at pharmacological concentrations. I conclude that a specific muscarinic acetylcholine receptor is part of the cholinergic system whose presence is indicated by cholinesterase activity in the chondrogenic core of the limb bud during morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号