首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study of the associations between three species of rodents in the Atlantic forest and their parasitic arthropods was undertaken at the Juréia-Itatins Ecological Station, located in the State of S?o Paulo, Southeastern Brazil, from March 1989 to February 1990. Individuals of three species, Oryzomys russatus, Proechimys iheringi and Nectomys squamipes were captured and examined for ectoparasites. Eleven species of parasitic arthropods were found, including four species of insects and seven of Acari. Parasitism intensity, phenology, and rainfall were positively correlated with the abundance of the ectoparasites and their hosts. The most abundant host was O. russatus (Muridae: Sigmodontinae), and the most common parasite on it was the laelapid mite Gigantolaelaps oudemansi. The cuterebrid Metacuterebra apicalis caused myiasis in O. russatus. A mutualistic association between the staphylinid beetle Amblyopinus sp. and its host P. iheringi (Echimyidae) was observed. The few N. squamipes captured had small numbers of ectoparasites.  相似文献   

2.
The transmission pattern of Zonothrix columbianus (Nematoda: Oxyurida) in its host Tropisternus columbianus (Coleoptera: Hydrophilidae), an aquatic beetle, was studied to determine whether parasites were dispersed with their hosts and to examine the possible role of intraspecific competition in limiting population size. Beetles were sampled at regular intervals from fall 1986 through fall 1989 and examined for worms. Worms, absent in larval stages of the host, were uncommon in newly metamorphosed beetles and therefore probably do not infect adult stages until after they have dispersed; worms are not dispersed with the host. Prevalence reached its lowest points in spring and fall when newly metamorphosed beetles were most common, but it was near 100% for most of the year. Worms were uniformly distributed in the host population. Many hosts had exactly 1 male and 1 female worm; the high prevalence suggests that this infrahost population results from interference competition between males on the one hand and females on the other. Only 3 of 285 beetles contained more than 1 male. Females shared the host with members of the same sex more commonly than males, but females from hosts harboring more than 1 female had significantly fewer eggs than lone females in hosts. Numbers of adult stages of beetles were estimated during spring, summer, and fall of 1989 and were lower in early spring and late fall. Because worms do not disperse with hosts, the panmictic unit could be estimated from the number of infected beetles; this probably was about 50 individuals during the winter bottleneck.  相似文献   

3.
Abstract. Close-range interactions with plants and the early stages of feeding behaviour of adult Colorado potato beetles, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), were studied using beetles with and without various mouthpart sensilla. Representative host, potato (Solarium tuberosum) , and non-host, tomato (Lycopersicon esculentum) , leaves were treated very differently by beetles with and without their galeal or palpal sensilla. Galeal sensilla were particularly important for beetles interacting with these two plants. Compared with normal beetles, fewer beetles without galeae fed on potato leaves, and those that did feed spent more time assessing the plant and took more bites before feeding. On tomtato, more beetles without galeae fed, spent less time assessing the plant and took fewer bites before feeding. Beetles without galeae also had lower consumption rates on potato and higher consumption rates on tomato. Beetles were very reluctant to feed on tomato if the galeae were present so removal of maxillary sensilla was studied only on potato. Without the sensilla on the maxillary palpi only the time between first touch and first bite was affected (lengthened). The importance of galeal sensilla in host recognition by this species and the implications for chemosensory studies are discussed here and in a companion paper.  相似文献   

4.
ABSTRACT. The behaviour of newly emerged adult Colorado potato beetles on preferred hosts follows a stereotyped pattern of sampling, feeding, grooming and rest. Reduced meal sizes on less-preferred hosts is accompanied by increased sampling and frequent interruptions in feeding. A systematic increase in pre-ingestive sampling on less-preferred foodplants indicates that beetles discriminate among closely related species within the Solanaceae. This ability may depend primarily on stimuli perceived at, and near, the leaf surface. Three geographic populations of beetles have adapted to different local host plants, but have not lost their preference for feeding on an ancestral host species. Host shifts by oligophagous insects to related plant species may evolve through selection for feeding generalists in isolated populations, and may not require genetic changes affecting the perception of a particular novel host.  相似文献   

5.
The hierarchy threshold model of individual insect diet predicts the acceptance or rejection of individual hosts when encountered by insects. One assumption of the hierarchy threshold model is that post-discrimination phase insects which accept lower ranked hosts will also accept hosts that are ranked higher. This assumption does not however suggest whether or not such insects behave differently when encountering these two hosts. This question is explored using Zygogramma bicolorata Pallister (Coleoptera: Chrysomelidae). Adult beetles that had just fed, or were one inter-meal interval after feeding, or were deprived for three or six days after feeding, were individually observed on a plant that either ranked high, Parthenium hysterophorus L., or low Xanthium occidentale Bertol. (Heliantheae: Ambrosiinae) in choice tests. Just-fed beetles were generally unresponsive to either host plant and did not feed. Beetles held for one inter-meal interval showed more feeding responses (shorter lag time between sampling and feeding, higher proportions of individuals feeding, and more time feeding) towards the higher ranked plant. As the beetles approached six days deprivation, behaviours of sampling, feeding and locomotion differed less between the two plants, but were still apparent. I conclude that food deprived Z. bicolorata beetles do still discriminate between the two plants. This result partially supports the hierarchy threshold model.  相似文献   

6.
1.?We tested the hypotheses that feeding guild structure of beetle assemblages changed with different arboreal microhabitats and that these differences were consistent across rainforest tree species. 2.?Hand collection and beating techniques were used from the gondola of the Australian Canopy Crane to collect beetles from five microhabitats (mature leaves, flush leaves, flowers, fruit and suspended dead wood) within the rainforest canopy. A simple randomization procedure was implemented to test whether the abundances of each feeding guild on each microhabitat were different from that expected based on a null hypothesis of random distribution of individuals across microhabitats. 3.?Beetles from different feeding guilds were not randomly distributed, but congregated on those microhabitats that are likely to provide the highest concentrations of their preferred food sources. Herbivorous beetles, in particular, were over-represented on flowers and flush foliage and under-represented on mature leaves and dead wood. Proportional numbers of species within each feeding guild were remarkably uniform across tree species for each microhabitat, but proportional abundances of feeding guilds were all significantly non-uniformly distributed between host tree species, regardless of microhabitat, confirming patterns previously found for arthropods in trees in temperate and tropical forests. 4.?These results show that the canopy beetle community is partitioned into discrete assemblages between microhabitats and that this partitioning arises because of differences in feeding guild structure as a function of the diversity and the temporal and spatial availability of resources found on each microhabitat.  相似文献   

7.
We investigated host race formation in Galerucella tenella, a leaf beetle which feeds preferentially on meadowsweet (Rosaceae) in its natural habitats, but has become an important pest on strawberry (Rosaceae) in agricultural areas. Beetles from two isolated sites (Skeppsvik in Sweden and Solf in Finland) were compared with respect to preference and performance. At Skeppsvik the beetles were found feeding on meadowsweet, while at Solf large populations only develop in strawberry plantations, despite the presence of meadowsweet.In reciprocal field transplantations and laboratory bioassays, beetles from both sites discriminated against their foreign host, using their natal plant to a significantly higher degree for both egg laying and feeding, but with one interesting exception, namely that beetles from Solf increased their use of and even preferred meadowsweet for feeding in the laboratory. This increased use of meadowsweet by adult Solf beetles in the laboratory (without conspecific competitors) may be attributed to a density-dependent strategy, whereby mothers avoid pre-emptying the nutritional resources of the plants that will host their offspring in cases where no competitors are present.Larval fitness did not differ significantly between host plants, although larval survival of Solf beetles was halved when reared on their non-natal host plant (meadowsweet). Although beetles from both sites preferred to oviposit on their local host plant, our results provide little evidence that this presumed adaptation has to do with the nutritional quality of the plants involved. Instead, we suggest that other factors associated with the plants, such as enemy-free space and resistance to drought may be more important selective agents, shaping host preference in the field.  相似文献   

8.
Geographic isolation is the first step in insect herbivore diet specialization. Such specialization is postulated to increase insect fitness, but may simultaneously reduce insect ability to colonize novel hosts. During the Paleocene‐Eocene, plants from the order Zingiberales became isolated either in the Paleotropics or in the Neotropics. During the Cretaceous, rolled‐leaf beetles diversified in the Neotropics concurrently with Neotropical Zingiberales. Using a community of Costa Rican rolled‐leaf beetles and their Zingiberales host plants as study system, we explored if previous geographic isolation precludes insects to expand their diets to exotic hosts. We recorded interactions between rolled‐leaf beetles and native Zingiberales by combining DNA barcodes and field records for 7450 beetles feeding on 3202 host plants. To determine phylogenetic patterns of diet expansions, we established 20 experimental plots in the field, in which we planted plots five exotic Zingiberales, recording beetles feeding on these exotic hosts. In the laboratory, using both native and exotic host plants, we reared a subset of insect species that had expanded their diets to the exotic plants. The original plant–herbivore community comprised 24 beetle species feeding on 35 native hosts, representing 103 plant–herbivore interactions. After exotic host plant introduction, 20 percent of the beetle species expanded their diets to exotic Zingiberales. Insects only established on exotic hosts that belong to the same plant family as their native hosts. Laboratory experiments show that beetles are able to complete development on these novel hosts. In conclusion, rolled‐leaf beetles are preadapted to expand their diets to novel host plants even after millions of years of geographic isolation.  相似文献   

9.
Coexistence of terrestrial vertebrates and arthropods has been continuing over 200 million years; various forms of parasitism originated independently in various groups of arthropods during this period. The association of Acari and insects with nests and shelters of their hosts (nidicoly) played the main role in the origin of parasitism in these major groups of arthropods. The primary step in the evolution of parasitism was the permanent habitation in nests and borrows of mammals and birds in Mesozoic era. The second step was a substitution of various forms of schizophagy by the regular feeding on products of vital activity and dead parts of host body. The next step was the feeding on various body parts of vertebrate hosts, namely skin, hair, feathers, external excreta, and drops of blood. The final step was the development of the ability to damage skin and suck out the blood of vertebrates. In some taxa of astigmatid mites the parasitism on birds originated from phoresy: hypopi (heteromorphous deutonymphs) obtained the ability to absorb the liquid nutrients from hair follicles and subcutaneous tissues through the cuticle. The development of haematophagous feeding on mammals in several families of Diptera was the second way of the origin of parasitism. Highly mobile dipterans with the piercing-sucking or licking mouthparts were able to change easily from the accidental puncturing of the host skin or licking of the blood, pus, and mucus to the obligatory haematophagy. The evolution of some arthropod taxa did not went beyond a primary domination of spatial relations, as in many astigmatid mites, or trophic relations in the form of micropredatory, as in the haematophagous Diptera.  相似文献   

10.
We observed behaviors and compiled activity budgets of adult Anoplophora glabripennis (Coleoptera: Cerambycidae) given a choice of different species of living trees as hosts in a greenhouse. Frequency of observation of beetles on different tree species provided a good overall indicator of host preference. Beetles were most often observed resting; they were least active early in the day and most active late in the day, but mating was observed with equal frequency during all 4-h time intervals between 0800 and 2400 h. Adults of both sexes were promiscuous, mating repeatedly and with different partners. Males engaged in mate guarding for periods of several hours or more to ensure paternity of the guarded female's progeny.  相似文献   

11.
DNA barcoding facilitates many evolutionary and ecological studies, including the examination of the dietary diversity of herbivores. In this study, we present a survey of ecological associations between herbivorous beetles and host plants from seriously threatened European steppic grasslands. We determined host plants for the majority (65%) of steppic leaf beetles (55 species) and weevils (59) known from central Europe using two barcodes (trnL and rbcL) and two sequencing strategies (Sanger for mono/oligophagous species and Illumina for polyphagous taxa). To better understand the ecological associations between steppic beetles and their host plants, we tested the hypothesis that leaf beetles and weevils differ in food selection as a result of their phylogenetic relations (within genera and between families) and interactions with host plants. We found 224 links between the beetles and the plants. Beetles belonging to seven genera feed on the same or related plants. Their preferences were probably inherited from common ancestors and/or resulted from the host plant's chemistry. Beetles from four genera feed on different plants, possibly reducing intrageneric competition and possibly due to an adaptation to different plant chemical defences. We found significant correlations between the numbers of leaf beetle and weevil species feeding on particular plants for polyphagous taxa, but not for nonpolyphagous beetles. Finally, we found that the previous identifications of host plants based on direct observations are generally concordant with host plant barcoding from insect gut. Our results expand basic knowledge about the trophic relations of steppic beetles and plants and are immediately useful for conservation purposes.  相似文献   

12.
Distribution of the bacterial symbiont Cardinium in arthropods   总被引:2,自引:0,他引:2  
Abstract 'Candidatus Cardinium', a recently described bacterium from the Bacteroidetes group, is involved in diverse reproduction alterations of its arthropod hosts, including cytoplasmic incompatibility, parthenogenesis and feminization. To estimate the incidence rate of Cardinium and explore the limits of its host range, 99 insect and mite species were screened, using primers designed to amplify a portion of Cardinium 16S ribosomal DNA (rDNA). These arthropods were also screened for the presence of the better-known reproductive manipulator, Wolbachia. Six per cent of the species screened tested positive for Cardinium, compared with 24% positive for Wolbachia. Of the 85 insects screened, Cardinium was found in four parasitic wasp species and one armoured scale insect. Of the 14 mite species examined, one predatory mite was found to carry the symbiont. A phylogenetic analysis of all known Cardinium 16S rDNA sequences shows that distantly related arthropods can harbour closely related symbionts, a pattern typical of horizontal transmission. However, closely related Cardinium were found to cluster among closely related hosts, suggesting host specialization and horizontal transmission among closely related hosts. Finally, the primers used revealed the presence of a second lineage of Bacteroidetes symbionts, not related to Cardinium, in two insect species. This second symbiont lineage is closely allied with other arthropod symbionts, such as Blattabacterium, the primary symbionts of cockroaches, and male-killing symbionts of ladybird beetles. The combined data suggest the presence of a diverse assemblage of arthropod-associated Bacteroidetes bacteria that are likely to strongly influence their hosts' biology.  相似文献   

13.
This study focuses on the restoration of chalk grasslands over a 6‐year period and tests the efficacy of two management practices, hay spreading and soil disturbance, in promoting this process for phytophagous beetles. Restoration success for the beetles, measured as similarity to target species–rich chalk grassland, was not found to be influenced by either management practice. In contrast, restoration success for the plants did increase in response to hay spreading management. Although the presence of suitable host plants was considered to dictate the earliest point at which phytophagous beetles could successfully colonized, few beetle species colonized as soon as their host plants became established. Morphological characteristics and feeding habits of 27 phytophagous beetle species were therefore tested to identify factors that limited their colonization and persistence. The lag time between host plant establishment and colonization was greatest for flightless beetles. Beetles with foliage‐feeding larvae both colonized at slower rates than seed‐, stem‐, or root‐feeding species and persisted within the swards for shorter periods. Although the use of hay spreading may benefit plant communities during chalk grassland restoration, it did not directly benefit phytophagous beetles. Without techniques for overcoming colonization limitation for invertebrate taxa, short‐term success of restoration may be limited to the plants only.  相似文献   

14.
Summary Abundances of the specialist herbivore, Acalymma vittata (Fab.) (Coleoptera: Chrysomelidae), were assessed in small experimental plots with three levels of plant diversity (cucumber monoculture, cucumber/corn, and cucumber/tomato) and two levels of host plant growth form (horizontal on the ground and vertical, staked up or growing up other plant species). Host plant growth form more strongly affected beetle abundances than did plant diversity; greater numbers were found on vertically growing than on horizontally growing cucumber plants. The combination of cucumber monoculture and vertical growth form supported significantly greater herbivore abundances than did any other type of plot, emphasizing a strong interaction between diversity and growth form. Beetles were not more common in monocultures with horizontal growth forms than in mixed species plots, and beetles did not respond differently to plots with corn and plots with tomatoes.Feeding experiments demonstrated that the plant diversity under which a host plant is grown strongly influenced herbivore feeding preference. Beetles given a choice of cucumber leaves grown in monoculture and in plots with tomatoes exhibited individual differences in their food selection behavior, however, a significantly greater number of beetles preferred monoculture leaves. Those individuals preferring monoculture leaves and those individuals preferring leaves from plots with tomatoes did not differ in either absolute or relative amounts of feeding damage per leaf.Neither plant size nor the date on which plots were colonized by beetles explained the differences in herbivore abundance. It is suggested that differences in movement patterns and plant quality contributed to the greater numbers of beetles on plants growing vertically in monocultures.  相似文献   

15.
1. Colonization success of species when confronted with novel environments is of interest in ecological, evolutionary and conservation contexts. Such events may represent the first step for ecological diversification. They also play an important role in adaptive divergence and speciation. 2. A species that is able to do well across a range of environments has a higher plasticity than one whose success is restricted to a single or few environments. The breadth of environments in which a species can succeed is ultimately determined by the full pattern of its vital rates in each environment. 3. Examples of organisms colonizing novel environments are insect herbivores expanding their diets to novel host plants. One expectation for insect herbivores is that species with specialized diets may display less plasticity when faced with novel hosts than generalist species. 4. We examine this hypothesis for two generalist and two specialist neotropical beetles (genus Cephaloleia: Chrysomelidae) currently expanding their diets from native to novel plants of the order Zingiberales. Using an experimental approach, we estimated changes in vital rates, life-history traits and lifetime fitness for each beetle species when feeding on native or novel host plants. 5. We did not find evidence supporting more plasticity for generalists than for specialists. Instead, we found similar patterns of survival and fecundity for all herbivores. Larvae survived worse on novel hosts; adults survived at least as well or better, but reproduced less on the novel host than on natives. 6. Some of the novel host plants represent challenging environments where population growth was negative. However, in four novel plant-herbivore interactions, instantaneous population growth rates were positive. 7. Positive instantaneous population growth rates during initial colonization of novel host plants suggest that both generalist and specialist Cephaloleia beetles may be pre-adapted to feed on some novel hosts. This plasticity in host use is a key factor for successful colonization of novel hosts. Future success or failure in the colonization of these novel hosts will depend on the demographic rates described in this research, natural selection and the evolutionary responses of life-history traits in novel environments.  相似文献   

16.
The spatial aggregation of ticks feeding on vertebrate hosts has been recognized for some time but, for hosts supporting more than one stage of the tick, observations of interstadial variation in the site of attachment have not previously been quantified. This study showed that all three parasitic stages of Ixodes ricinus ticks feeding on sheep attach most commonly to the hair-covered areas of the head and limbs while few ticks attach to the fleeced region of the body. However, significant differences were observed in the site of attachment of the three feeding stages of the tick. Larvae attached to distal limbs and rostral areas of the head and adult females attached to the proximal areas of the limbs and around the neck and ears, while nymphs attached in locations between the larvae and adults. The importance of the spatial aggregation of the ticks and interstadial variation in their distribution on the host, for the transmission of tick-borne pathogens and the epidemiology of the diseases they cause, is discussed. © Rapid Science Ltd. 1998  相似文献   

17.
Scydmaenine beetles are commonly described as predators specialized in capturing and feeding on armored mites of the order Oribatida, and documented cases of feeding on other live arthropods have not been known. Based on laboratory observations and a broad choice of Acari (armored and soft‐bodied) and other soil arthropods, food preferences and associated behavior of two scydmaenine species are clarified and described. Adults of Scydmaenus tarsatus ignored oribatid and mesostigmatan mites, but readily attacked and fed on a soft‐bodied Rhizoglyphus sp. (Acaridae), and on small springtails, especially on Ceratophysella denticulata (Hypogastruridae). A water drinking behavior was observed for this species, not reported previously in any Staphylinidae. Scydmaenus hellwigii ignored all tested Acari (including Rhizoglyphus) and scavenged on dead neanurine collembolans or freshly cut pieces of large springtails; a long term culture was maintained by feeding beetles with isotomid springtails. Previously reported strict specialization of Scydmaenus as a predator on Oribatida was not confirmed and it is concluded that the studied species feed on live soft‐bodied organisms and scavenge on dead arthropods.  相似文献   

18.
Vertebrates represent a resource frequently exploited by ectoparasites. But the ectoporosites themselves also represent a resource that can be exploited by specialized predators. Some o f these predators have been classified as ectoparasites, but in some cases the vertebrate blood in their crops comes from their blood-sucking prey. In fact, as Lance Durden explains, the assemblage o f arthropods that inhabit the vertebrate skin surface, or pelage, seems to show a complete spectrum of adaptations from predators to facultative and obligate blood-suckers, together with those feeding on other materials in this special habitat. The dynamics of their interactions are further complicated by responses of the host to the arthropods, and much further study is needed before the role o f predators in controlling ectoparasites can be clarified.  相似文献   

19.
Coevolutionary hypotheses (COEV) predict that parasitic birdsbecome more specialized in host selection over time as morehost species evolve defenses. A contrasting model, PHYLO, suggeststhat brood parasites exhibit a phylogenetic trajectory towardincreasing generalization because there is a positive correlationbetween present-day numbers of host species and the branchingorder of parasitic cowbird species in a DNA-based phylogeny. However, this apparent phylogenetic pattern does not conflictwith COEV, as some have concluded. Assuming allopatric speciation,which is supported by an area cladogram, COEV predicts a correlationbetween branching order and host number because the potentialhosts of the earliest cowbirds to branch off have had the greatestamount of time to evolve defenses. Although PHYLO is more parsimoniousthan COEV, the difference is trivial, with the latter requiring only one more evolutionary change in the entire cowbird cladeto produce the pattern that exists today. Support for COEVover PHYLO comes from brood parasitic cuckoos, which are muchmore specialized than parasitic cowbirds and represent an olderclade, as shown by new DNA data. Cuckoos also have lower interspecificvariance in host numbers than do cowbirds, which conflicts with PHYLO. Unlike COEV, which assumes that the number of hosts aparasite uses is related at least as much to present ecologicalconditions as to phylogenetic history, PHYLO assumes that currenthost numbers reflect historical character states. However,host number is labile, with as much variation within as betweenspecies. Nor are published host numbers reliable measures ofparasite host selectivity, as they are due in part to researchereffort and range size. Although the comparative approach canprovide insights into evolutionary history, some coevolvedfeatures may be too dynamic to retain a phylogenetic signature,and, in the case of parasitic birds, neither PHYLO nor COEVcan be invalidated, although the latter is more consistentwith available evidence. Strict adherence to parsimony mayoften be inappropriate when assessing coevolved characters.  相似文献   

20.
1. The food plant quality influences feeding preferences and various life history traits of herbivorous insects. However, the effects of different host plant qualities on the behavioural phenotype have rarely been studied in behavioural ecology, especially in a pest‐crop‐framework. 2. Behavioural phenotypes of insects may not only be affected by external environmental factors, such as the host plant quality but are also shaped by internal factors, such as the sex and the age of individuals. 3. To study host plant effects on behavioural phenotypes, we reared mustard leaf beetles (Phaedon cochleariae Fabricius) either on their natural host watercress or on the crop cabbage, on which this beetle can be a pest. The behavioural phenotype was characterised twice in the adult lifetime by measuring six behavioural traits tested in distinct contexts. 4. Depending on the context, different behavioural traits were specifically affected by the host plant, the sex and/or the age. Beetles fed on cabbage became more active with age. Furthermore, the boldness tested in an unprotected environment context was influenced by the host, with beetles fed on cabbage being bolder, whereas the boldness in a hiding or predator attack context was affected by the age and/or the interaction of host plant × sex. 5. In conclusion, beetles fed on the crop cabbage develop a different behavioural phenotype compared to beetles fed on watercress. Previous results showed that beetles reared on cabbage have a higher reproductive output. Thus, beetles fed on the crop potentially express a faster pace‐of‐life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号