首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nitrendipine receptor associated with the voltage-dependent calcium channel from rabbit skeletal muscle transverse tubule membranes has been solubilized by detergent extraction. A highly stable solubilized receptor preparation was obtained using 3-[(3-cholamidopropyl)dimethyl-ammonio]-1-propanesulfonate as detergent with phospholipids or glycerol present as stabilizing agents. Binding of [3H]nitrendipine to the solubilized receptor was reversible and saturable. At 4 degrees C the equilibrium dissociation constant of the [3H]nitrendipine X receptor complex was 7 +/- 3 nM and was close to that determined from the rate constants of association (k1 = 1.3 10(5) M-1 s-1) and dissociation (k-1 = 1.10 X 10(-3) s-1) of 8.4nM. The nitrendipine concentration that gave a half-maximal inhibition of [3H]nitrendipine binding to the solubilized receptor was 10 nM, which was similar to the values for the dissociation constant determined for the radiolabelled ligand. [3H]Nitrendipine binding to its solubilized receptor was also inhibited by other antiarrythmic drugs, such as bepridil and verapamil, and enhanced by d-cis-diltiazem. Since these drugs are apparent non-competitive inhibitors of [3H]nitrendipine binding it was concluded that these different binding sites are tightly coupled. Sucrose density sedimentation of solubilized nitrendipine receptor resulted in the separation of three [3H]nitrendipine binding activities with apparent sedimentation coefficients of 11.4 S, 14.4 S and 21 S.  相似文献   

2.
The binding of the dihydropyridine calcium channel antagonist [3H]nitrendipine to whole rat brain synaptosomes was studied. Binding was specific, saturable, and of high affinity (Kd = 170 pM). The calcium channel antagonist diltiazem enhanced [3H]nitrendipine binding in synaptosomes in concentrations of 1 and 10 μM. Equilibrium saturation analysis demonstrated that this effect was mediated by a decrease in the dissociation constant, due to a 3-fold reduction in the rate of ligand-receptor complex dissociation. It is concluded that diltiazem allosterically modulates the calcium channel drug receptor labeled by [3H]nitrendipine in this preparation.  相似文献   

3.
Calcium antagonist binding sites were solubilized from rat brain membranes using the detergent 3-[(3-cholamidopropyl)dimethylammonio] 1-propanesulfonate (CHAPS). CHAPS-solubilized [3H]nitrendipine binding sites are saturable over a range of 0.05-4 nM and Scatchard analysis reveals a single, high-affinity (KD = 0.49 +/- 0.10 nM), low-capacity (Bmax = 56 +/- 4 fmol/mg of protein) binding site. Reversible ligand competition experiments using solubilized binding sites demonstrated appropriate pharmacologic specificity, with dihydropyridines (nifedipine = nitrendipine greater than Bay K 8644) completely displacing binding, verapamil partially displacing binding, and diltiazem enhancing binding, as previously described in membrane preparations. Lyophilized Crotalus atrox venom was purified by ion exchange chromatography followed by gel filtration to a single peptide band on sodium dodecyl sulfatepolyacrylamide gel electrophoresis. This fraction of molecular weight 60,000 competitively inhibits [3H]nitrendipine binding to both membrane and soluble preparations with an IC50 of 5 micrograms/ml. This polypeptide should serve as a useful ligand for future efforts in purifying the dihydropyridine calcium channel binding site in brain.  相似文献   

4.
Binding of [3H]nitrendipine, [3H]nimodipine, and (+)[3H]PN 200-110 to microsomal preparations of guinea pig smooth and cardiac muscle and brain synaptosomes revealed high affinity interaction with KD values in the sequence, (+)PN 200-110 greater than nitrendipine greater than nimodipine. Bmax values for a particular tissue were independent of the 1,4-dihydropyridine employed in radioligand binding at 25 degrees C. The temperature dependence of [3H]nitrendipine binding in cardiac and smooth muscle microsomal preparations and brain synaptosomes was measured from 0 degrees to 37 degrees C and for skeletal muscle preparations from 0 degrees to 30 degrees C. Bmax values increased with temperature for cardiac membranes, but did not vary in other tissues. van't Hoff plots were nonlinear in all tissues, enthalpy and entropy changes becoming increasingly negative with increasing temperature. Competition binding of the activator-antagonist enantiomeric 1,4-dihydropyridine pairs of Bay k 8644 and PN 202-791 for [3H]nitrendipine in smooth muscle did not reveal significant thermodynamic differences between activator and antagonist molecules.  相似文献   

5.
In primary cultures of cerebellar granule cells, [3H]nitrendipine binds with high affinity to a single site (KD 1 nM and Bmax 20 fmol/mg protein). The 1,4-dihydropyridine (DHP) class of compounds such as nitrendipine, nifedipine, and BAY K 8644 displace [3H]nitrendipine binding at nanomolar concentrations. Verapamil partially inhibits whereas diltiazem slightly increases the [3H]nitrendipine binding. In these cells, the calcium influx that is induced by depolarization is very rapid and is blocked by micromolar concentrations of inorganic calcium blockers such as cadmium, cobalt, and manganese. The calcium influx resulting from cell depolarization is potentiated by BAY K 8644 and partially inhibited (approximately 40%) by nitrendipine and nifedipine. Other non-DHP voltage-sensitive calcium channel (VSCC) antagonists, such as verapamil and diltiazem, completely blocked the depolarization-induced calcium influx. This suggested that nitrendipine and nifedipine block only a certain population of VSCCs. In contrast, verapamil and diltiazem do not appear to be selective and block all of VSCCs. Perhaps some VSCCs can be allosterically modulated by the binding site for the DHPs, whereas verapamil and diltiazem may block completely the function of all VSCCs by occupying a site that differs from the DHP binding site.  相似文献   

6.
A high affinity [3H]ryanodine receptor has been solubilized from rabbit brain membranes and biochemically characterized. [3H]Ryanodine binding to rabbit brain membranes is specific and saturable, with a Kd of 1.3 nM. [3H]Ryanodine binding is enriched in membranes from the hippocampus but is significantly lower in membranes from the brain stem and spinal cord. Approximately 60% of [3H]ryanodine-labeled receptor is solubilized from brain membranes using 2.5% CHAPS and 10 mg/ml phosphatidylcholine containing 1 M NaCl. The solubilized brain [3H]ryanodine receptor sediments through sucrose gradients like the skeletal receptor as a large (approximately 30 S) complex. Solubilized receptor is specifically immunoprecipitated by sheep polyclonal antibodies against purified skeletal muscle ryanodine receptor coupled to protein A-Sepharose. [3H]Ryanodine-labeled receptor binds to heparin-agarose, and a protein of approximately 400,000 Da, which is cross-reactive with two polyclonal antibodies raised against the skeletal muscle ryanodine receptor, elutes from the column and is enriched in peak [3H]ryanodine binding fractions. These results suggest that the approximately 400,000-Da protein is the brain form of the high affinity ryanodine receptor and that it shares several properties with the skeletal ryanodine receptor including a large oligomeric structure composed of approximately 400,000-Da subunits.  相似文献   

7.
Binding of 125I-omega-conotoxin GVIA and [3H]nitrendipine to membranes from bovine adrenal medulla was investigated to test for the presence of N- and L-type Ca2+ channels in adrenal chromaffin cells. Saturable, high-affinity binding sites for 125I-omega-conotoxin and [3H]nitrendipine were detected in a membrane fraction from adrenal medulla. [3H]Nitrendipine binding sites were found to have a KD of 500 +/- 170 pM and a Bmax of 26 +/- 11 pmol/g of protein. 125I-omega-Conotoxin binding sites had a KD of 215 +/- 56 pM and a Bmax of 105 +/- 18 pmol/g of protein, about four times the number of sites found for [3H]nitrendipine. 125I-omega-Conotoxin binding was potently inhibited by unlabeled toxin and Ca2+ but was unaffected by dihydropyridines, verapamil, and diltiazem. [3H]Nitrendipine binding was not affected by omega-conotoxin, whereas it was inhibited by other dihydropyridines. Bay K 8644 potentiated K+-evoked cytosolic Ca2+ transients measured by fura-2 fluorescence, and this potentiation was completely blocked by nifedipine. In contrast, omega-conotoxin had no effect on Bay K 8644-evoked Ca2+ transients. Thus, the binding sites for omega-conotoxin and for nitrendipine appear to be different. The results confirm the presence of L-type Ca2+ channels and open the possibility of N-type Ca2+ channels as the omega-conotoxin binding sites in chromaffin cell membranes.  相似文献   

8.
Affinity chromatography represents a potentially valuable approach to study the calcium antagonist receptor in many tissues. Methods have been developed to synthesize carboxy-analogues of the 1,4-dihydropyridine calcium antagonists. Carboxy-nifedipine ([+/-]1,4-dihydro-2,6 dimethyl-4-[3-nitrophenyl] pyridine-3-carboxylic acid-5-carboxylic methyl ester) was prepared with a yield of 50% and its structure has been thoroughly characterized. Carboxy-nifedipine has been coupled to a hexamine-agarose resin through an acid chloride intermediate producing an affinity resin (1.6 mumol of drug/ml). Experiments have shown that this affinity resin is capable of binding the [3H]nitrendipine receptor solubilized from transverse tubule membranes.  相似文献   

9.
The effects of the novel 1,4-dihydropyridine Bay K 8644 [methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)-pyridine- 5-carboxylate] on the release of [3H]noradrenaline in cultured PC 12 cells were investigated. K+ in a concentration-dependent manner evoked 3H-transmitter release with an EC50 of 50-56 mM. Bay K 8644 at 30 nM potentiated the K+-evoked [3H]noradrenaline release; however, in the absence of calcium neither K+ evoked nor Bay K 8644 enhanced [3H]noradrenaline release. At a K+ concentration of 25 mM, Bay K 8644 stimulated [3H]noradrenaline release fivefold, with an EC50 of 10 nM, and 100 nM of the calcium channel blocker nitrendipine shifted the concentration response curve of Bay K 8644 to the right in an apparently competitive fashion. Nitrendipine blocked the Bay K 8644-potentiated release with an EC50 of 700 nM in the presence of 500 nM Bay K 8644. [3H]Nitrendipine bound to a saturable population of binding sites on PC 12 cell membranes with a Bmax of 180 fmol X mg-1 of membrane protein and a KD of 0.9 nM. Bay K 8644 inhibited [3H]nitrendipine binding with a Ki of 16 nM. It is concluded that Bay K 8644 binds to, and stabilizes, the open state of calcium channels and thus acts as a "calcium agonist" to mediate calcium-dependent cellular events such as catecholamine release from PC 12 cells.  相似文献   

10.
[3H]Nitrendipine was used to label sites in homogenates of bovine anterior and neurointermediate lobes of the pituitary gland. The amount of specific binding in the anterior lobe was 1.82 +/- 0.30 pmol/g wet weight of tissue and the KD was 1.44 +/- 0.02 X 10(-10) M. Preliminary experiments indicated a similar amount of binding in bovine neurointermediate lobe. In competition studies nimodipine and nisoldipine (two potent voltage-sensitive calcium channel blockers) displayed IC50 values of 1.6 and 6.8 X 10(-10) M, respectively. Verapamil and the verapamil-like calcium channel blockers D-600 and tiapamil competed in a complex manner for the [3H]nitrendipine specific binding to bovine anterior pituitary homogenates. Autoradiographical studies demonstrated specific [3H]nitrendipine binding sites distributed approximately equally in the anterior and posterior lobes, but not in the intermediate lobe of the rat pituitary. In general the properties of [3H]nitrendipine binding in the pituitary tissue resemble strongly the properties of [3H]nitrendipine binding in the brain which is believed to be to voltage-sensitive calcium channels. These results provide support for the hypothesis that calcium channels are involved in pituitary hormone secretion and that drugs that interact with calcium channels may modulate the secretory process directly at the level of the pituitary.  相似文献   

11.
We describe the rapid incorporation of the CHAPS solubilized dihydropyridine receptor into phospholipid vesicles. A series of sucrose gradient sedimentation experiments demonstrate that the (+)-[3H]PN200-110-labeled dihydropyridine receptor is associated with lipid vesicles following detergent removal by Extracti-gel chromatography. Solubilization of the receptor results in a loss of (+)-[3H]PN200-110 binding affinity relative to that observed in native membranes; the high affinity binding of (+)-[3H]PN200-110 can be restored upon reincorporation of the receptor into phospholipid vesicles. Similarly, the incorporation of the receptor restores its stability to incubation at 37 degrees C relative to that of the detergent solubilized receptor, thereby mimicking the properties of the membrane bound form of the receptor. The dissociation rate of (+)-[3H]PN200-110 from the reconstituted receptor is shown to be allosterically regulated by verapamil and diltiazem, indicating that the binding sites for these calcium antagonists have been inserted along with the dihydropyridine receptor into phospholipid vesicles. The results presented in this report, thus demonstrate the successful reconstitution of the dihydropyridine receptor into phospholipid vesicles by a variety of criteria. The reconstitution method described here is rapid and efficient, and should now facilitate structure-function studies of this receptor and its interrelationships with other regulatory components of the voltage-sensitive calcium channel system.  相似文献   

12.
Effects of temperature and d-cis-diltiazem (DTZ) on [3H]nitrendipine (NTD) and [3H]nimodipine (NIM) binding to skeletal muscle t-tubular membranes were studied. A decrease in temperature from 37 degrees C to 10 degrees C decreased KD and increased Bmax slightly. DTZ increased binding by increasing Bmax under all conditions and also decreased KD for NTD at 37 degrees C. The binding protein labeled with [3H]isothiocyanate dihydropyridine revealed a molecular weight of 36,000. The binding site for NTD was solubilized by deoxycholate and dihydropyridine binding was still stimulated by DTZ in the solubilized form.  相似文献   

13.
The Ca2+ antagonist binding sites associated with the voltage dependent calcium channel in rabbit myocardium were found to distribute with the sarcolemmal Na + K+ ATPase and adenylate cyclase activities during subcellular fractionation on sucrose-density gradients. The equilibrium dissociation constants (KD) for the binding of [3H]nitrendipine and [3H]verapamil were 0.31 ± 0.04 nM and 4.1 ± 0.5 nM respectively, and displayed an average density of 0.55 ± 0.05 pmol/mg and 0.4 ± 0.03 pmol/mg protein respectively for the most enriched membrane fraction. The Ca2+2 antagonist binding sites were solubilized from the membranes with the detergent 3-[(3-cholamidopropyl)dimethylammonio]propanesulfonate, and specific binding sites for [3H]PN200-110, [3H]verapamil and [3H]diltiazem were isolated on a wheat-germ lectin column. The binding sites for [3H]PN200-110 were enriched about 2500 fold as compared with the original homogenate and displayed a density of 28.5 ± 8 pmole/mg protein in the isolated fraction. Sodium dodecyl sulfate gel electrophoresis of the isolated drug binding proteins indicated enrichment of proteins of Mr 170000, 140000, 130000, 100 000 and 53000. The isolated receptor contained an intrinsic kinase activity that phosphorylated glycoproteins of Mr 170 000 and 53000. Exogenously added cAMP-kinase stimulated phosphorylation of the 170000, 100000, 53 000 and 28000 Mr glycoproteins in the receptor fraction. The results of this study indicate that the binding sites for [3H]nitrendipine, [3H]PN200-110, [3H]verapamil and [3H]diltiazem residue on glycoprotein(s) which are of sarcolemmal origin, and co-purify together on wheat germ lectin columns. The polypeptide composition of the Ca2+ antagonist binding sites from cardiac muscle appears to be very similar to that of the dihydropyridine receptor in skeletal muscle.Abbreviations CHAPS 3-[-(3-cholamidopropyl) dimethylammonio]-propanesulphonate - SDS sodium dodecyl sulphate Scholar of the Ontario Heart and Stroke Foundation.  相似文献   

14.
The physiologic regulation of aldosterone secretion is dependent on extracellular calcium and appears to be mediated by increases in cytosolic free calcium concentration in the zona glomerulosa cell. A specific role for voltage-dependent calcium channels was suggested by previous studies with the calcium channel antagonist verapamil. We therefore studied the [3H]nitrendipine calcium channel binding site in adrenal capsules. These studies revealed a single class of saturable, high affinity sites with KD = .26 +/- .04 nM and Bmax = 105 +/- 5.7 fmol/mg protein. Specific binding of [3H]nitrendipine was inhibited by calcium channel antagonists with potencies nitrendipine = nifedipine much greater than verapamil, while diltiazem had no inhibitory effect. In the rat, binding sites for [3H]nitrendipine were located in the adrenal capsule and medulla and were undetectable in the zona fasciculata. Physiologic studies with collagenase-dispersed adrenal glomerulosa cells demonstrated that nifedipine selectively inhibited angiotensin-II and potassium-stimulated steroidogenesis. These observations suggest both a pharmacologic and physiologic role for the nitrendipine binding site in aldosterone production.  相似文献   

15.
M E Goldman  J J Pisano 《Life sciences》1985,37(14):1301-1308
Phospholipase A2 from several sources inhibited [3H]nitrendipine binding to membranes from brain, heart and ileal longitudinal muscle. The enzymes from bee venom and Russell's viper venom were most potent, having IC50 values of approximately 5 and 14 ng/ml, respectively, in all three membrane preparations. Inhibition of binding by bee venom phospholipase A2 was time- and dose-dependent. Mastoparan, a known facilitator of phospholipase A2 enzymatic activity, shifted the bee venom phospholipase A2 dose-response curve to the left. Pretreatment of brain membranes with bee venom phospholipase A2 (10 ng/ml) for 15 min caused a 2-fold increase in the Kd without changing the Bmax compared with untreated membranes. Extension of the preincubation period to 30 min caused no further increase in the Kd but significantly decreased the Bmax to 71% the value for untreated membranes. [3H]Nitrendipine, preincubated with bee venom phospholipase A2, was recovered and found to be fully active, indicating that the phospholipase A2 did not modify the ligand. It is concluded that phospholipase A2 acts on the membrane at or near the [3H]nitrendipine binding site and that phospholipids play a key role in the interactions of 1,4 dihydropyridine calcium channel antagonists with the dihydropyridine binding site.  相似文献   

16.
Two distinct and interdependent binding sites for inhibitors of voltage-dependent Ca2+ channels have been identified. They include one site for molecules of the 1,4-dihydropyridine serie such as nitrendipine, nifedipine or PN200-110 and one site for a chemically heterogenous group of compounds comprising verapamil, D600 and desmethoxyverapamil, bepridil and diltiazem. Ca2+ binds to its own coordination site which is distinct from the receptor site for organic Ca2+ channel inhibitors. The molecular size of the native [3H] nitrendipine receptor of transverse tubule membrane, brain and heart, have been determined using the radiation inactivation technique. The [3H] nitrendipine receptor is found to have a Mr of 210,000 +/- 20,000. CHAPS solubilization and purification indicate that the dihydropyridine receptor contains polypeptides of apparent molecular weights of 142,000, 32,000 and 33,000 which copurifie with (+) [3H] PN200-110 binding activity. Two stages in which there is an increased binding of [3H]nitrendipine have been observed during chick myogenesis. The first one occurs during embryonic life and has the same properties as in the in vitro development. The second stage occurs near hatching and corresponds to a large increase in the number of nitrendipine receptors. This increase is accompanied by a decrease in the affinity of nitrendipine for its receptor by a factor of 4 to 10. The second stage of development is partly under innervation control and its expression is modulated by the intracellular cyclic AMP content. The two dihydropyridines Bay K8644 and CGP 28932 work preferentially on polarized membranes. 45Ca2+ flux experiments yielded results which are in good agreement with electrophysiological, contraction and binding data obtained with rat cardiac cells and skeletal muscle cells.  相似文献   

17.
Dopamine D1 receptors were solubilized from canine and bovine striatal membranes with the detergent digitonin. The receptors retained the pharmacological characteristics of membrane-bound D1 receptors, as assessed by the binding of the selective antagonist [3H]SCH 23390. The binding of [3H]SCH 23390 to solubilized receptor preparations was specific, saturable, and reversible, with a dissociation constant of 5 nM. Dopaminergic antagonists and agonists inhibited [3H]SCH 23390 binding in a stereoselective and concentration-dependent manner with an appropriate rank order of potency for D1 receptors. Moreover, agonist high affinity binding to D1 receptors and its sensitivity to guanine nucleotides was preserved following solubilization, with agonist dissociation constants virtually identical to those observed with membrane-bound receptors. To ascertain the molecular basis for the existence of an agonist-high affinity receptor complex, D1 receptors labeled with [3H] dopamine (agonist) or [3H]SCH 23390 (antagonist) prior to, or following, solubilization were subjected to high pressure liquid steric-exclusion chromatography. All agonist- and antagonist-labeled receptor species elute as the same apparent molecular size. Treatment of brain membranes with the guanine nucleotide guanyl-5'-yl imidodiphosphate prior to solubilization prevented the retention of [3H]dopamine but not [3H]SCH 23390-labeled soluble receptors. This suggests that the same guanine nucleotide-dopamine D1 receptor complex formed in membranes is stable to solubilization and confers agonist high affinity binding in soluble preparations. These results contrast with those reported on the digitonin-solubilized dopamine D2 receptor, and the molecular mechanism responsible for this difference remains to be elucidated.  相似文献   

18.
The ontogeny of chick brain and heart ventricle calcium antagonist binding sites was determined, using [3H]nitrendipine ([3H]NDP), as the ligand. The binding of [3H]NDP to adult heart and brain was kinetically very similar, with the former displaying a KD of 0.28 +/- 0.02 nM and a Bmax of 138 +/- 17 fmol/mg protein, and the latter a KD of 0.30 +/- 0.02 nM and a Bmax of 160 +/- 12 fmol/mg protein. The binding site in both brain and heart was highly specific for dihydropyridine calcium antagonists, such as nifedipine, nimodipine, and nisoldipine, since these drugs were several orders of magnitude more potent as inhibitors of [3H]NDP binding than verapamil, methoxyverapamil, or diltiazem. The developmental appearance of [3H]NDP binding sites in brain was rather gradual, with adult levels being attained just prior to birth. This was in contrast to the profile in heart ventricle which showed essentially adult levels at seven days gestation. The acquisition of [3H]NDP binding sites in chick brain roughly paralleled the onset of neuronal maturation and functional activity. In both chick brain and heart, verapamil and methoxyverapamil were weak inhibitors of [3H]NDP binding. However, the inhibition of binding in both tissues was markedly biphasic, with only 50% of the binding sites being susceptible to inhibition by each agent, suggesting that multiple calcium antagonist binding sites may exist in both tissues.  相似文献   

19.
The dihydropyridine receptor was purified from rabbit skeletal muscle microsomes in the presence of [3H]nitrendipine plus diltiazem or [3H](+)PN 200-110 to an apparent density of 1.5-2 nmol binding sites/mg protein. Sodium dodecyl sulfate gel electrophoresis in the absence of reducing agents yielded three peptide bands of 142, 56 and 30 kDa in a relative ratio of 11:1:1.3, whereas in the presence of 40 mM dithiothreitol bands of 142, 122, 56, 31, 26 and 22 kDa were obtained in a relative ratio of 5.5:2.2:1:0.9:14:0.09. This gel pattern was observed regardless of whether the receptor was purified as a complex with nitrendipine plus diltiazem or with (+)PN 200-110. cAMP-dependent protein kinase phosphorylated preferentially the 142-kDa band up to a stoichiometry of 0.82 +/- 0.07 (15) mol phosphate/mol peptide. The 56-kDa band was phosphorylated only in substoichiometric amounts. [3H]PN 200-110 bound at 4 degrees C to one site with apparent Kd and Bmax values of 9.3 +/- 1.7 nM and 2.2 +/- 0.3 (3) nmol/mg protein, respectively. The binding was stereospecific and was not observed in the presence of 1 mM EGTA. Desmethoxyverapamil interfered with the binding of [3H]PN 200-110 in an apparent allosteric manner. (-)Desmethoxyverapamil inhibited the binding of [3H]PN 200-110 at 37 degrees C and stimulated it at 18 degrees C. In agreement with these results, (-)desmethoxyverapamil increased the dissociation rate of [3H]PN 200-110 from 0.29 min-1 to 0.38 min-1 at 37 degrees C and decreased it threefold from 0.046 min-1 to 0.017 min-1 at 18 degrees C. The (+)isomer of desmethoxyverapamil inhibited PN 200-110 binding at all temperatures tested. d-cis-Diltiazem stimulated the binding of [3H]PN 200-110 at 37 degrees C with an apparent EC50 of 1.4 microM and decreased the dissociation rate from 0.29 min-1 to 0.11 min-1. The stimulatory effect of d-cis-diltiazem was temperature-dependent and was seen only at temperatures above 18 degrees C. These results suggest that the purified dihydropyridine receptor retains the basic properties of the membrane-bound receptor and contains separate sites for at least dihydropyridines and phenylalkylamines.  相似文献   

20.
Detailed kinetic and equilibrium studies of the binding of two radiolabeled 1,4-dihydropyridine calcium antagonists to putative calcium channels in rat brain membranes were performed. (+/-)-[3H]Nitrendipine, a racemic ligand, and (+)-[3H]isopropyl 4-(2,1,3-benzoxadiazol-4-yl)-1, 4-dihydro-2,6-dimethyl-5-methoxycarbonylpyridine-3-carboxylate (PN200-110), a pure isomer, were used and their binding properties were quantitated and compared. Analysis of equilibrium binding revealed a single high affinity component for each radioligand with the same density of binding sites for both ligands. Association rates were determined over a 60-fold range of concentration of each radioligand. For both radioligands, the pseudo-first order association time courses were biphasic with the rate of the faster component dependent on radioligand concentration and the rate of the slower component independent of both the structure of the radioligand and the concentration of the radioligand. Dissociation rates were determined after various times of association. The dissociation of the optically pure radioligand, (+)-[3H]PN200-110, was monophasic at all association times, consistent with a single bound species being present throughout association. However, (+/-)-[3H]nitrendipine dissociation was biphasic after short association times (1-10 min). The biphasic dissociation observed with (+/-)-[3H]nitrendipine is consistent with the two optical isomers binding with approximately the same association rate but having different dissociation rates. These results appear to reflect the existence of two interconvertible binding states of the putative calcium channel in the membrane, one which binds the radioligands with high affinity in a simple bimolecular reaction and one which has no detectable affinity for the ligands. This mechanism of isomerization before ligand binding has been modeled by numerical solution of the differential equations of the scheme providing estimates of the rate constants for each reaction in the scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号