首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Eighteen isolates of fluorescent pseudomonads and Bacillus spp. were isolated from Alternaria triticina suppressive soils of wheat fields. These isolates were evaluated in the laboratory and greenhouse for the biocontrol of A. triticina. Six isolates were considered to have potential for the biocontrol of A. triticina on the basis of antibiotic sensitivity, fluorescence produced by Pseudomonas, inhibitory effect on A. triticina and root colonization of wheat roots by these isolates. These six isolates (Pa22, Pf27, Pa28, B25, B28, and B30) were further tested for their biocontrol potential against A. triticina on wheat in a pot test. Out of six isolates, isolate B28 was best in improving wheat growth of A. triticina inoculated plants. Isolate B28 also caused higher reduction in percentage infected leaf area caused by A. triticina while isolate Pa22 was found best in improving growth of plants without A. triticina.  相似文献   

2.
3.
4.
The influence of plant growth promoting (PGP) activity of bacterial communities recovered from each of six weed species (barnyard grass (Echinochloa crusfalli (L.) Beauv.), corn spurrey (Spergula arvensis L.), goldenrod (Sonchus sp.), Italian ryegrass (Lolium multiflorum L.), lamb's-quarters (Chenopodium album L.), and quack grass (Agropyron repens (L.) Beauv.)) was examined in relation to the effect it had on the growth of the potato cultivar Russet Burbank. Bacterial species composition and community structure were compared, species-abundance relationships were determined, and those members conferring positive benefits for potato growth and development were identified. Of the genera identified, Bacillus, Arthrobacter, Stenotrophomonas, Acinetobacter, and Pseudomonas were the most common, and Stenotrophomonas maltophilia was the most frequent species recovered across all sources. Significantly higher population densities were found in the root zones of quack grass, compared with Italian ryegrass and lamb's-quarters. There were no significant differences in species richness among the root zones; however, evenness indices (species distribution) were significantly lower in corn spurrey (P = 0.05). Significantly higher diversity indices (Hill-1 and Hill-2 numbers) (P = 0.05) were found in the root zone soil communities of potato and goldenrod, indicating a decrease in the proportional abundance of common and very abundant species, respectively, while in barnyard grass, corn spurrey, and Italian ryegrass the reverse was the case. In both years of the study, Italian ryegrass and corn spurrey were consistently better sources of PGP rhizobacteria for potatoes, significantly (P < 0.001) increasing the mean wet weight of shoots and roots in in vitro bacterization studies. Barnyard grass was a consistently poor source of such isolates. Species-abundance measures of root zone bacterial biodiversity were not found, in this instance, to be a particularly good predictor of the presence or absence of PGP rhizobacteria. We consider that the study of complementary crops and soil-conditioning treatments should not preclude the examination of weed species as possible beneficials, as alterations in rhizobacterial biodiversity and functional versatility can influence the numbers and types of PGP bacterial strains, and consequently may serve to improve soil quality.  相似文献   

5.
One of the proposed mechanisms by which rhizobacteria enhance plant growth is through the production of plant growth regulators. Five plant growth promoting rhizobacterial (PGPR) strains produced the cytokinin dihydrozeatin riboside (DHZR) in pure culture. Cytokinin production by Pseudomonas fluorescens G20-18, a rifampicin-resistant mutant (RIF), and two TnphoA-derived mutants (CNT1, CNT2), with reduced capacity to synthesize cytokinins, was further characterized in pure culture using immunoassay and thin layer chromatography. G20-18 produced higher amounts of three cytokinins, isopentenyl adenosine (IPA), trans-zeatin ribose (ZR), and DHZR than the three mutants during stationary phase. IPA was the major metabolite produced, but the proportion of ZR and DHZR accumulated by CNT1 and CNT2 increased with time. No differences were observed between strain G20-18 and the mutants in the amounts of indole acetic acid synthesized, nor were gibberellins detected in supernatants of any of the strains. Addition of 10(-5) M adenine increased cytokinin production in 96- and 168-h cultures of strain G20-18 by approximately 67%. G20-18 and the mutants CNT1 and CNT2 may be useful for determination of the role of cytokinin production in plant growth promotion by PGPR.  相似文献   

6.
A plant growth-promoting isolate of a fluorescent Pseudomonas sp. EM85 and two bacilli isolates MR-11(2) and MRF, isolated from maize rhizosphere, were found strongly antagonistic to Fusarium moniliforme, Fusarium graminearum and Macrophomina phaseolina, causal agents of foot rots and wilting, collar rots/stalk rots and root rots and wilting, and charcoal rots of maize, respectively. Pseudomonas sp. EM85 produced antifungal antibiotics (Afa+), siderophore (Sid+), HCN (HCN+) and fluorescent pigments (Flu+) besides exhibiting plant growth promoting traits like nitrogen fixation, phosphate solubilization, and production of organic acids and IAA. While MR-11(2) produced siderophore (Sid+), antibiotics (Afa+) and antifungal volatiles (Afv+), MRF exhibited the production of antifungal antibiotics (Afa+) and siderophores (Sid+). Bacillus spp. MRF was also found to produce organic acids and IAA, solubilized tri-calcium phosphate and fixed nitrogen from the atmosphere. All three isolates suppressed the diseases caused by Fusarium moniliforme, Fusarium graminearum and Macrophomina phaseolina in vitro. A Tn5:: lacZ induced isogenic mutant of the fluorescent Pseudomonas EM85, M23, along with the two bacilli were evaluated for in situ disease suppression of maize. Results indicated that combined application of the two bacilli significantly (P = 0.05) reduced the Macrophomina-induced charcoal rots of maize by 56.04%. Treatments with the MRF isolate of Bacillus spp. and Tn5:: lacZ mutant (M23) of fluorescent Pseudomonas sp. EM85 significantly reduced collar rots, root and foot rots, and wilting of maize caused by Fusarium moniliforme and F. graminearum (P = 0.05) compared to all other treatments. All these isolates were found very efficient in colonizing the rhizotic zones of maize after inoculation. Evaluation of the population dynamics of the fluorescent Pseudomonas sp. EM85 using the Tn5:: lacZ marker and of the Bacillus spp. MRF and MR-11(2) using an antibiotic resistance marker revealed that all the three isolates could proliferate successfully in the rhizosphere, rhizoplane and endorhizosphere of maize, both at 30 and 60 days after seeding. Four antifungal compounds from fluorescent Pseudomonas sp. EM85, one from Bacillus sp. MR-11(2) and three from Bacillus sp. MRF were isolated, purified and tested in vitro and in thin layer chromatography bioassays. All these compounds inhibited R. solani, M. phaseolina, F. moniliforme, F. graminearum and F. solani strongly. Results indicated that antifungal antibiotics and/or fluorescent pigment of fluorescent Pseudomonas sp. EM85, and antifungal antibiotics of the bacilli along with the successful colonization of all the isolates might be involved in the biological suppression of the maize root diseases.  相似文献   

7.
A bench study was carried out to characterize the kinetics of two plant growth promoting rhizobacteria (PGPR) Azotobacter chroococcum and Bacillus megaterium to adsorb heavy metals from solution. Adsorption of Pb2+ and Cd2+ by bacterial cells was processed quickly with an equilibration achieved within 5 min. The adsorptions were fitted well with Freundlich and Langmuir isotherm models. The comparison of isotherm parameters indicated that A. chroococcum had a stronger capacity to bind metal ions than B. megaterium, with an average increase of 59.8% for Pb2+ and 75.6% for Cd2+, respectively. Both bacteria had a stronger affinity to Pb2+ than Cd2+ since Pb2+ was more easily bound with the phosphoryl groups on the cell surface than Cd2+. This demonstrated that the presence of bacteria in the rhizosphere may result in the reduction of mobile ions in soil solution.  相似文献   

8.
9.
In order to adapt to the fluctuations in soil salinity/osmolarity the bacteria of the genusAzospirillum accumulate compatible solutes such as glutamate, proline, glycine betaine, trehalose, etc. Proline seems to play a major role in osmoadaptation. With increase in osmotic stress the dominant osmolyte inA. brasilense shifts from glutamate to proline. Accumulation of proline inA. brasilense occurs by both uptake and synthesis. At higher osmolarityA. brasilense Sp7 accumulates high intracellular concentration of glycine betaine which is taken up via a high affinity glycine betaine transport system. A salinity stress induced, periplasmically located, glycine betaine binding protein (GBBP) of ca. 32 kDa size is involved in glycine betaine uptake inA. brasilense Sp7. Although a similar protein is also present inA. brasilense Cd it does not help in osmoprotection. It is not known ifA. brasilense Cd can also accumulate glycine betaine under salinity stress and if the GBBP-like protein plays any role in glycine betaine uptake. This strain, under salt stress, seems to have inadequate levels of ATP to support growth and glycine betaine uptake simultaneously. ExceptA. halopraeferens, all other species ofAzospirillum lack the ability to convert choline into glycine betaine. Mobilization of thebet ABT genes ofE. coli intoA. brasilense enables it to use choline for osmoprotection. Recently, aproU-like locus fromA. lipoferum showing physical homology to theproU gene region ofE. coli has been cloned. Replacement of this locus, after inactivation by the insertion of kanamycin resistance gene cassette, inA. lipoferum genome results in the recovery of mutants which fail to use glycine betaine as osmoprotectant.  相似文献   

10.
Bacteria were isolated from roots of sugarcane varieties grown in the fields of Punjab. They were identified by using API20E/NE bacterial identification kits and from sequences of 16S rRNA and amplicons of the cpn60 gene. The majority of bacteria were found to belong to the genera of Enterobacter, Pseudomonas, and Klebsiella, but members of genera Azospirillum, Rhizobium, Rahnella, Delftia, Caulobacter, Pannonibacter, Xanthomonas, and Stenotrophomonas were also found. The community, however, was dominated by members of the Pseudomonadaceae and Enterobacteriaceae, as representatives of these genera were found in samples from every variety and location examined. All isolates were tested for the presence of five enzymes and seven factors known to be associated with plant growth promotion. Ten isolates showed lipase activity and eight were positive for protease activity. Cellulase, chitinase, and pectinase were not detected in any strain. Nine strains showed nitrogen fixing ability (acetylene reduction assay) and 26 were capable of solubilizing phosphate. In the presence of 100 mg/l tryptophan, all strains except one produced indole acetic acid in the growth medium. All isolates were positive for ACC deaminase activity. Six strains produced homoserine lactones and three produced HCN and hexamate type siderophores. One isolate was capable of inhibiting the growth of 24 pathogenic fungal strains of Colletotrichum, Fusarium, Pythium, and Rhizoctonia spp. In tests of their abilities to grow under a range of temperature, pH, and NaCl concentrations, all isolates grew well on plates with 3% NaCl and most of them grew well at 4 to 41degrees C and at pH 11.  相似文献   

11.
Technogenic activities (industrial—plastic, textiles, microelectronics, wood preservatives; mining—mine refuse, tailings, smelting; agrochemicals—chemical fertilizers, farm yard manure, pesticides; aerosols—pyrometallurgical and automobile exhausts; biosolids—sewage sludge, domestic waste; fly ash—coal combustion products) are the primary sources of heavy metal contamination and pollution in the environment in addition to geogenic sources. During the last two decades, bioremediation has emerged as a potential tool to clean up the metal-contaminated/polluted environment. Exclusively derived processes by plants alone (phytoremediation) are time-consuming. Further, high levels of pollutants pose toxicity to the remediating plants. This situation could be ameliorated and accelerated by exploring the partnership of plant-microbe, which would improve the plant growth by facilitating the sequestration of toxic heavy metals. Plants can bioconcentrate (phytoextraction) as well as bioimmobilize or inactivate (phytostabilization) toxic heavy metals through in situ rhizospheric processes. The mobility and bioavailability of heavy metal in the soil, particularly at the rhizosphere where root uptake or exclusion takes place, are critical factors that affect phytoextraction and phytostabilization. Developing new methods for either enhancing (phytoextraction) or reducing the bioavailability of metal contaminants in the rhizosphere (phytostabilization) as well as improving plant establishment, growth, and health could significantly speed up the process of bioremediation techniques. In this review, we have highlighted the role of plant growth promoting rhizo- and/or endophytic bacteria in accelerating phytoremediation derived benefits in extensive tables and elaborate schematic sketches.  相似文献   

12.
Fifteen bacterial strains containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase were isolated from the rhizoplane of pea (Pisum sativum L.) and Indian mustard (Brassica juncea L.) grown in different soils and a long-standing sewage sludge contaminated with heavy metals. The isolated strains were characterized and assigned to various genera and species, such as Pseudomonas brassicacearum, Pseudomonas marginalis, Pseudomonas oryzihabitans, Pseudomonas putida, Pseudomonas sp., Alcaligenes xylosoxidans, Alcaligenes sp., Variovorax paradoxus, Bacillus pumilus, and Rhodococcus sp. by determination of 16S rRNA gene sequences. The root elongation of Indian mustard and rape (Brassica napus var. oleifera L.) germinating seedlings was stimulated by inoculation with 8 and 13 isolated strains, respectively. The bacteria were tolerant to cadmium toxicity and stimulated root elongation of rape seedlings in the presence of 300 microM CdCl2 in the nutrient solution. The effect of ACC-utilising bacteria on root elongation correlated with the impact of aminoethoxyvinylglycine and silver ions, chemical inhibitors of ethylene biosynthesis. A significant improvement in the growth of rape caused by inoculation with certain selected strains was also observed in pot experiments, when the plants were cultivated in cadmium-supplemented soil. The biomass of pea cv. Sparkle and its ethylene sensitive mutant E2 (sym5), in particular, was increased through inoculation with certain strains of ACC-utilising bacteria in pot experiments in quartz sand culture. The beneficial effect of the bacteria on plant growth varied significantly depending on individual bacterial strains, plant genotype, and growth conditions. The results suggest that plant growth promoting rhizobacteria containing ACC deaminase are present in various soils and offer promise as a bacterial inoculum for improvement of plant growth, particularly under unfavourable environmental conditions.  相似文献   

13.
Three Arbuscular mycorrhizal fungi (AMF) from Glomus, Acaulospora and Scutellospora, and four plant growth promoting rhizobacteria (PGPR) isolates related to genera Streptomyces, Azotobacter, Pseudomonas and Paenibacillus were found to be effective in phytoremediation of Fe3+ contaminated soil where Pennisetum glaucum and Sorghum bicolor were growing as host plants. Co-inoculation of AMF and PGPR showed better results in comparison to either, AMF and PGPR under pot conditions. Both AMF and PGPR were able to produce siderophores. AMF and PGPR associated to P. glaucum and S. bicolor plants increased the extent of iron absorption. AMF and PGPR combination exhibited superior (p < 0.01) phytoremediation efficiency with P. glaucum compared to S. bicolor. These findings warrant further investigations of these synergistic interactions and large-scale in situ studies for bioremediation of iron-contaminated soils.  相似文献   

14.
15.
The aim of the study was to determine tolerance of plant growth promoting rhizobacteria (PGPR) in different concentrations of Cu, Cr, Co, Cd, Ni, Mn, and Pb and to evaluate the PGPR-modulated bioavailability of different heavy metals in the rhizosphere soil and wheat tissues, grown in saline sodic soil. Bacillus cereus and Pseudomonas moraviensis were isolated from Cenchrus ciliaris L. growing in the Khewra salt range. Seven-day-old cultures of PGPR were applied on wheat as single inoculum, co-inoculation and carrier-based biofertilizer (using maize straw and sugarcane husk as carrier). At 100 ppm of Cr and Cu, the survival rates of rhizobacteria were decreased by 40%. Single inoculation of PGPR decreased 50% of Co, Ni, Cr and Mn concentrations in the rhizosphere soil. Co-inoculation of PGPR and biofertilizer treatment further augmented the decreases by 15% in Co, Ni, Cr and Mn over single inoculation except Pb and Co where decreases were 40% and 77%, respectively. The maximum decrease in biological concentration factor (BCF) was observed for Cd, Co, Cr, and Mn. P. moraviensis inoculation decreases the biological accumulation coefficient (BAC) as well as translocation factor (TF) for Cd, Cr, Cu Mn, and Ni. The PGPR inoculation minimized the deleterious effects of heavy metals, and the addition of carriers further assisted the PGPR.  相似文献   

16.
Experiments were conducted to evaluate the efficacy of calliterpenone, a natural plant growth promoter from a shrub Callicarpa macrophylla Vahl., in enhancing the growth and yield promoting effects of plant growth promoting rhizobacteria (PGPRs), in menthol mint (Mentha arvensis L).This study is based on our previous results indicating the microbial growth promotion by calliterpenone and assumption that application of calliterpenone along with PGPRs will improve the population of PGPRs resulting in higher impacts on plant growth and yield. Of the 15 PGPRs (identified as potent ones in our laboratory), 25 μl of 0.01 mM calliterpenone (8.0 μg/100 ml) was found to be useful in improving the population of nine PGPRs in culture media. The five selected strains of PGPRs exhibiting synergy with calliterpenone in enhancing growth of maize compared to PGPR or calliterpenone alone were selected and tested on two cultivars (cvs. Kosi and Kushal) of M. arvensis. Of the five strains, Bacillus subtilis P-20 (16S rDNA sequence homologous to Accession No NR027552) and B. subtilis Daz-26 (16SrDNA sequence homologuos to Accession No GU998816) were found to be highly effective in improving the herb and essential oil yield in the cultivars Kushal and Kosi respectively when co-treated with calliterpenone. The results open up the possibilities of using a natural growth promoter along with PGPRs as a bio-agri input for sustainable and organic agriculture.  相似文献   

17.
18.
AIMS: Plant growth promoting rhizobacteria (PGPR) are commonly used as inoculants for improving the growth and yield of agricultural crops, however screening for the selection of effective PGPR strains is very critical. This study focuses on the screening of effective PGPR strains on the basis of their potential for in vitro auxin production and plant growth promoting activity under gnotobiotic conditions. METHODS AND RESULTS: A large number of bacteria were isolated from the rhizosphere soil of wheat plants grown at different sites. Thirty isolates showing prolific growth on agar medium were selected and evaluated for their potential to produce auxins in vitro. Colorimetric analysis showed variable amount of auxins (ranging from 1.1 to 12.1 mg l-1) produced by the rhizobacteria in vitro and amendment of the culture media with l-tryptophan (l-TRP), further stimulated auxin biosynthesis (ranging from 1.8 to 24.8 mg l-1). HPLC analysis confirmed the presence of indole acetic acid (IAA) and indole acetamide (IAM) as the major auxins in the culture filtrates of these rhizobacteria. A series of laboratory experiments conducted on two cv. of wheat under gnotobiotic (axenic) conditions demonstrated increases in root elongation (up to 17.3%), root dry weight (up to 13.5%), shoot elongation (up to 37.7%) and shoot dry weight (up to 36.3%) of inoculated wheat seedlings. Linear positive correlation (r = 0.99) between in vitro auxin production and increase in growth parameters of inoculated seeds was found. Based upon auxin biosynthesis and growth-promoting activity, four isolates were selected and designated as plant growth-promoting rhizobacteria (PGPR). Auxin biosynthesis in sterilized vs nonsterilized soil inoculated with selected PGPR was also monitored that revealed superiority of the selected PGPR over indigenous microflora. Peat-based seed inoculation with selected PGPR isolates exhibited stimulatory effects on grain yields of tested wheat cv. in pot (up to 14.7% increase over control) and field experiments (up to 27.5% increase over control); however, the response varied with cv. and PGPR strains. CONCLUSIONS: It was concluded that the strain, which produced the highest amount of auxins in nonsterilized soil, also caused maximum increase in growth and yield of both the wheat cv. SIGNIFICANCE AND IMPACT OF STUDY: This study suggested that potential for auxin biosynthesis by rhizobacteria could be used as a tool for the screening of effective PGPR strains.  相似文献   

19.
Pishchik  V.N.  Vorobyev  N.I.  Chernyaeva  I.I.  Timofeeva  S.V.  Kozhemyakov  A.P  Alexeev  Y.V.  Lukin  S.M. 《Plant and Soil》2002,243(2):173-186
Bacterial inoculants of the commercially available plant growth promoting rhizobacteria (PGPR) Arthrobacter mysorens 7, Flavobacterium sp. L30, and Klebsiella mobilis CIAM 880 were selected to obtain ecologically safe barley crop production on cadmium (Cd) polluted soils. All the PGPR immobilized 24–68% soluble cadmium from soil suspension. A. mysorens 7 and K. mobilis CIAM 880 were highly resistant to Cd and grew in up to 1 and 3 mmol CdCl2 on DAS medium respectively. All PGPR were able to fix nitrogen (276–1014 nmol mg–1 bacterial DW) and to produce indole acetic acid (IAA) (126–330 nmol mg–1 bacterial DW) or ethylene (4.6–13.5 nmol bacterial DW). All the PGPR actively colonized barley root system and rhizosphere and significantly stimulated root elongation of barley seedlings (up to 25%), growing on soil containing 5 or 15 mg Cd kg–1 of soil. Created in the simulation mathematical model confirms our hypothesis that PGPR beneficial effect on barley growing under Cd-stress is a complex process. One of mechanisms underlying this effect might be increase of bacterial migration from rhizoplane to rhizosphere, where PGPR bind soluble free Cd ions in biologically unavailable complex forms. Among the studied PGPR K. mobilis CIAM 880 was the most effective inoculant. Inoculation with K. mobilis CIAM 880 of barley plants growing on Cd contaminated soil (5 mg Cd kg–1 of soil) under field conditions increased by 120% grain yield and 2-fold decreased Cd content in barley grain. The results suggest that the using K. mobilis CIAM 880 is an effective way to increase the plant yield on poor and polluted areas.  相似文献   

20.
A plant growth-promoting isolate of a fluorescent Pseudomonas sp. EM85 and two bacilli isolates MR-11(2) and MRF, isolated from maize rhizosphere, were found strongly antagonistic to Fusarium moniliforme, Fusarium graminearum and Macrophomina phaseolina, causal agents of foot rots and wilting, collar rots/stalk rots and root rots and wilting, and charcoal rots of maize, respectively. Pseudomonas sp. EM85 produced antifungal antibiotics (Afa+), siderophore (Sid+), HCN (HCN+) and fluorescent pigments (Flu+) besides exhibiting plant growth promoting traits like nitrogen fixation, phosphate solubilization, and production of organic acids and IAA. While MR-11(2) produced siderophore (Sid+), antibiotics (Afa+) and antifungal volatiles (Afv+), MRF exhibited the production of antifungal antibiotics (Afa+) and siderophores (Sid+). Bacillus spp. MRF was also found to produce organic acids and IAA, solubilized tri-calcium phosphate and fixed nitrogen from the atmosphere. All three isolates suppressed the diseases caused by Fusarium moniliforme, Fusarium graminearum and Macrophomina phaseolina in vitro. A Tn5:: lac Z induced isogenic mutant of the fluorescent Pseudomonas EM85, M23, along with the two bacilli were evaluated for in situ disease suppression of maize. Results indicated that combined application of the two bacilli significantly (P = 0.05) reduced the Macrophomina-induced charcoal rots of maize by 56.04%. Treatments with the MRF isolate of Bacillus spp. and Tn5:: lac Z mutant (M23) of fluorescent Pseudomonas sp. EM85 significantly reduced collar rots, root and foot rots, and wilting of maize caused by Fusarium moniliforme and F. graminearum (P = 0.05) compared to all other treatments. All these isolates were found very efficient in colonizing the rhizotic zones of maize after inoculation. Evaluation of the population dynamics of the fluorescent Pseudomonas sp. EM85 using the Tn5:: lac Z marker and of the Bacillus spp. MRF and MR-11(2) using an antibiotic resistance marker revealed that all the three isolates could proliferate successfully in the rhizosphere, rhizoplane and endorhizosphere of maize, both at 30 and 60 days after seeding. Four antifungal compounds from fluorescent Pseudomonas sp. EM85, one from Bacillus sp. MR-11(2) and three from Bacillus sp. MRF were isolated, purified and tested in vitro and in thin layer chromatography bioassays. All these compounds inhibited R. solani, M. phaseolina, F. moniliforme, F. graminearum and F. solani strongly. Results indicated that antifungal antibiotics and/or fluorescent pigment of fluorescent Pseudomonas sp. EM85, and antifungal antibiotics of the bacilli along with the successful colonization of all the isolates might be involved in the biological suppression of the maize root diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号