首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We use stable isotope data to investigate the role of winter habitat use in altering the breeding phenology of yellow warblers Setophaga petechia. We first confirm that δ13C and δ15N isotopic signatures vary with winter habitat use in this species. We then examine the relationship between winter habitat use, breeding phenology and productivity within four age‐sex‐classes, since life history theory would predict that carry‐over effects should vary with age and gender. The δ13C signatures of yellow warblers using riparian habitats over winter were more depleted than the signatures of those using agricultural or scrub habitat. Individuals on the Pacific coast of Mexico were also more δ15N enriched than those on the southern Gulf of Mexico. δ13C and δ15N signatures were only correlated with earlier clutch initiation and subsequent higher productivity in first‐breeding‐season females. We estimate that shifts in δ13C equivalent to a shift from scrub to riparian winter habitat would be associated with the production of 0.8 more fledglings by yearling females. Pre‐breeding events that influence the timing of breeding could also influence the reproductive performance of older males and females, but we found little evidence that winter habitat use influenced breeding season phenology in these birds.  相似文献   

2.
The C and N isotopes of feathers from two subspecies of willow warblers Phylloscopus trochilus trochilus and Phylloscopus trochilus acredula) are isotopically distinct. Our analysis of 138 adult males from 14 sites distributed across Sweden shows that the mean delta15N and delta13C values of subspecies acredula (from latitudes above 63 degrees N) were significantly higher than the mean delta15N and delta13C values of subspecies trochilus (from latitudes below 61 degrees N). The analysed willow warbler feathers had been moulted in the winter quarters and the observed isotopic signatures should thus reflect the isotopic pattern of food assimilated in Africa. The isotopic data observed in Sweden match the cline in morphology, both showing abrupt changes around 62 degrees N. This result agrees with data from ringing recoveries indicating that the two subspecies occupy geographically and isotopically distinct wintering grounds in Africa. Our isotopic data suggest that analysis of stable isotopes of C and N is a promising method to track wintering quarters of European birds that migrate to Africa.  相似文献   

3.
Some carnivores are known to survive well in urban habitats, yet the underlying behavioral tactics are poorly understood. One likely explanation for the success in urban habitats might be that carnivores are generalist consumers. However, urban populations of carnivores could as well consist of specialist feeders. Here, we compared the isotopic specialization of red foxes in urban and rural environments, using both a population and an individual level perspective. We measured stable isotope ratios in increments of red fox whiskers and potential food sources. Our results reveal that red foxes have a broad isotopic dietary niche and a large variation in resource use. Despite this large variation, we found significant differences between the variance of the urban and rural population for δ13C as well as δ15N values, suggesting a habitat‐specific foraging behavior. Although urban regions are more heterogeneous regarding land cover (based on the Shannon index) than rural regions, the dietary range of urban foxes was smaller compared with that of rural conspecifics. Moreover, the higher δ13C values and lower δ15N values of urban foxes suggest a relatively high input of anthropogenic food sources. The diet of most individuals remained largely constant over a longer period. The low intraindividual variability of urban and rural red foxes suggests a relatively constant proportion of food items consumed by individuals. Urban and rural foxes utilized a small proportion of the potentially available isotopic dietary niche as indicated by the low within‐individual variation compared to the between‐individual variation. We conclude that generalist fox populations consist of individual food specialists in urban and rural populations at least over those periods covered by our study.  相似文献   

4.
The potential use of stable nitrogen (δ15N), carbon (δ13C) and hydrogen (δD) isotope ratios in feathers of marsh warblers Acrocephalus palustris , river warblers Locustella fluviatilis and whitethroats Sylvia communis was evaluated as a means to help identify the location and isotopic composition of autumn stopover sites in northeast Africa. Feather δD values were compared with regional precipitation δD maps averaged over autumn months. Compared with whitethroats, feather δ15N, δ13C, and δD values of marsh warblers and river warblers suggest the two warblers occupy and grow their feathers in geographic locations with relatively mesic environments, and with higher proportions of C3 (vs. C4) plants. However, δ13C values of marsh and river warblers were distinct enough to indicate use of different foodwebs. From previous studies, it is evident that during autumn stopover, river warblers moult their primaries in Ethiopia. It is likely that marsh warblers, like river warblers, stay in Ethiopia and/or in neighbouring regions. Based on feather δD values and regional δD precipitation maps, this region should lie between southeast Sudan and southwest Ethiopia. However, without additional regional isotopic maps in Africa, more precise locations of the stopover sites remain unclear. The relatively enriched δ15N and δ13C values of whitethroat feathers compared with the two other species, reflect the fact that whitethroats moult in relatively drier environments and/or with a lower proportion of C3 vs. C4 plants.  相似文献   

5.
The snowy owl is an elusive arctic predator known for its nomadic behaviour. Satellite tracking has revealed that some adult snowy owls could make an extensive use of the marine environment during the non‐breeding season. However, the relative contribution of marine resources to their diet is unknown. Stable isotope analyses can be useful to document the diet of mobile animals during periods of the year when individuals are less accessible. This study aimed to assess variation in isotopic values (δ13C and δ15N) of various feather types, and the usefulness of feathers to determine the contribution of the marine environment to the winter diet of snowy owls captured in summer. We sampled feathers coming from 6 body regions of 18 breeding females at two sites in the eastern Canadian Arctic in 2013 and 2014. Prior to analyses, diet‐tissue discrimination factors of snowy owl feathers were established in captivity. Variability in isotopic values among feather types was relatively low and pairwise correlations in isotopic values between feathers on the same individual were variable and often low, which suggests differences in the diet at the time when various feathers were synthesized. Diet reconstruction models detected a contribution of marine sources to snowy owl feathers ranging from 4 to 19% among feather types. However, the marine contribution was highly variable when single feathers were examined within individuals, ranging from 3 to 71%. This indicated that no single feather type could be used alone to reliably infer the contribution of marine resources to the winter diet of owls, possibly due to a high variability in the timing and sequence of molt. For asynchronous molters like snowy owls, we recommend sampling multiple feathers from various body regions, excluding wing feathers, to investigate winter diet or habitat use.  相似文献   

6.
Moult is a costly but necessary process in avian life, which displays two main temporal patterns within the annual cycle of birds (summer and winter moult). Timing of moult can affect its duration and consequently the amount of material invested in feathers, which could have a considerable influence on feather structure and functionality. In this study, we used two complementary approaches to test whether moult duration and feather mass vary in relation to the timing of moult. Firstly, we conducted a comparative study between a sample of long‐distance migratory passerine species which differ in moult pattern. Secondly, we took advantage of the willow warbler's Phylloscopus trochilus biannual moult, for which it is well‐known that winter moult takes longer than summer moult, to assess between‐moult variation in feather mass. Our comparative analysis showed that summer moulting species performed significantly shorter moults than winter moulters. We also detected that feathers produced in winter were comparatively heavier than those produced in summer, both in between‐species comparison and between moults of the willow warbler. These results suggest the existence of a trade‐off between moult speed and feather mass mediated by timing of moult, which could contribute to explain the diversity of moult patterns in passerines.  相似文献   

7.
Aim Conservation programmes for endangered migratory species or populations require locating and evaluating breeding, stopover and wintering areas. We used multiple stable isotopes in two endangered European populations of wrynecks, Jynx torquilla L., to locate wintering regions and assess the degree of migratory connectivity between breeding and wintering populations. Location Switzerland and Germany. Methods We analysed stable nitrogen (δ15N), carbon (δ13C) and hydrogen (δD) isotopes from wing feathers from two populations of wrynecks to infer their wintering origins and to assess the strength of migratory connectivity. We tested whether variation in feather isotopic values within the Swiss population was affected by bird age and collection year and then considered differences in isotopic values between the two breeding populations. We used isotopic values of summer‐ and winter‐grown feathers to estimate seasonal distributions. Finally, we calculated a species‐specific δD discrimination factor between feathers and mean annual δD values to assign winter‐grown feathers to origin. Results Bird age and collection year caused substantial isotopic variation in winter‐grown feathers, which may be because of annually variable weather conditions, movements of birds among wintering sites and/or reflect asynchronous moulting or selection pressure. The large isotopic variance in winter‐grown feathers nevertheless suggested low migratory connectivity for each breeding population, with partially overlapping wintering regions for the two populations. Main conclusions Isotopic variance in winter‐grown feathers of two breeding populations of wrynecks and their geographical assignment point to defined, albeit overlapping, wintering areas, suggesting both leapfrog migration and low migratory connectivity. On this basis, integrative demographic models can be built looking at seasonal survival patterns with links to local environmental conditions on both breeding and wintering grounds, which may elucidate causes of declines in migratory bird species.  相似文献   

8.
The majority of landbird species feed their nestlings arthropods and variation in arthropod populations can impact reproductive outcomes in these species. Arthropod populations in turn are influenced by climate because temperature affects survival and reproduction, and larval development. Thus, climate factors have the potential to influence many bird species during their reproductive phases. In this study, we assessed climate factors that impact the diet of nestling White‐headed Woodpecker (Dryobates albolarvatus), an at‐risk keystone species in much of its range in western North America. To do this, we measured stable isotope signatures (δ13C and δ15N) in 152 nestlings across six years and linked variation in isotopic values to winter (December–February) and spring (June) precipitation and temperature using mixed effects models. We also explored habitat factors that may impact δ13C and δ15N and the relationship between δ15N and nest productivity. Last, we estimated isotopic niche width for nestlings in different watersheds and years using Bayesian standard ellipses, which allowed us to compare dietary niche width and overlap. We found that colder winter temperatures were associated with an increase in δ15N and δ15N levels had a weak positive relationship with nest productivity. We also found that sites with a more diverse tree community were associated with a broader isotopic niche width in nestlings. Our findings suggest that nestling diet is affected by climate, and under future warming climate scenarios, White‐headed Woodpecker nestling diet may shift in favor of lower trophic level prey (prey with lower δ15N levels). The impact of such changes on woodpecker populations merits further study.  相似文献   

9.
Understanding connections between breeding, stopover and wintering grounds for long‐distance migratory birds can provide important insight into factors influencing demography and the strength of carry‐over effects among various periods of the annual cycle. Using previously described, multi‐isotope (δ13C, δ15N, δ2H) feather isoscapes for Africa, we identified the most probable wintering areas for house martins Delichon urbica breeding at Badajoz in southwestern Spain. We identified two most‐probable wintering areas differing in isotopic signature in west Africa. We found that the probability to winter in the isotopic cluster two was related to age and sex of individuals. Specifically, experienced males (i.e. two years or older) winter in the isotopic cluster two with a greater probability than experienced females, whereas first‐year females winter in the isotopic cluster two with a greater probability than first‐year males. In addition, wintering area was correlated with breeding phenology, with individuals wintering in the isotopic cluster two initiating their clutches earlier than those wintering in the isotopic cluster one. For birds wintering in the isotopic cluster two, there was no relationship between age and clutch initiation date. In contrast, young birds wintering in the isotopic cluster one initiated their clutches earlier than experienced birds wintering in this area. There was no significant correlation between wintering area and clutch size or the number of fledglings produced. We hypothesize that the relationship among social status, population density and winter habitat quality should be the most important driver of the carry‐over effect we found for this population.  相似文献   

10.
The poorly known winter foraging ecology of the king penguin, a major Southern Ocean consumer, was investigated at the subantarctic Crozet Islands where the largest global population breeds. Blood δ13C and δ15N values were used as proxies of the birds’ foraging habitat and diet, respectively, and circulating prolactin levels helped in determining the birds’ reproductive status. Plasma prolactin concentrations showed that king penguin adults of unknown breeding status (n = 52) that were present at the colony in winter were in fact breeders and failed breeders, but were not non ‐breeders. Circulating prolactin was neither related to δ13C nor δ15N values, thus suggesting that both breeders and failed breeders used the same foraging habitats and fed on the same prey. Plasma and blood cell isotopic values depicted four new relevant biological features on the feeding strategies of king penguins during the critical winter period: (1) 42% of the birds foraged in the distant Antarctic Zone, but 58% fed primarily in subantarctic waters (δ13C), (2) they preyed upon myctophids in both zones (δ15N), (3) individuals were consistent in their foraging strategies over the winter months (δ13C and δ15N), and (4) a higher proportion of females (77%–80%) than males (27%–31%) favored feeding in distant Antarctic waters (δ13C). This study highlights trophic connectivity between subantarctic and Antarctic ecosystems and hence the key role of energy export from Antarctic waters to sustain breeding populations of subantarctic predators, including during the Austral winter.  相似文献   

11.
We evaluated whether existing assumptions regarding the trophic ecology of a poorly‐studied predator guild, northwest (NW) Atlantic skates (family: Rajidae), were supported across broad geographic scales. Four hypotheses were tested using carbon (δ13C) and nitrogen (δ15N) stable isotope values as a proxy for foraging behavior: 1) species exhibit ontogenetic shifts in habitat and thus display a shift in 13C with differential use of the continental shelf; 2) species exhibit ontogenetic prey shifts (i.e. from smaller to larger prey items) and become enriched in 15N; 3) individuals acquire energy from spatially confined local resource pools and exhibit limited displacement; and 4) species exhibit similarly sized and highly overlapping trophic niches. We found some evidence for ontogenetic shifts in habitat‐use (δ13C) for thorny and little skate and diet (δ15N) of thorny and winter skate and hypothesize that individuals exhibit gradual trophic niche transition, especially in δ15N space, rather than a clear and distinct shift in diet throughout ontogeny. Spatial isoscapes generated for little, thorny, and winter skate highlighted distinct spatial patterns in isotopic composition across the coastal shelf. For little and thorny skate, patterns mimicked expected spatial variability in the isotopic composition of phytoplankton/POM, suggesting limited displacement and utilization of spatially confined resource pools. Winter skate, however, exhibited a much narrower range of δ13C and δ15N values, suggesting individuals may use resources from a more confined latitudinal range. Although high total trophic niche overlap was observed between some species (e.g. little and thorny skate), sympatric species (e.g. little and winter skate) exhibited a degree of trophic niche separation. These findings offer new insight into the trophic dynamics of a poorly‐studied, vulnerable group of predators, and highlight a need to re‐examine assumptions pertaining to aspects of their ecology.  相似文献   

12.
Summary 1. To examine spatial heterogeneity of trophic pathways on a small scale (<5 m diameter), we conducted dual stable isotope (δ13C and δ15N) analyses of invertebrate communities and their potential food sources in three patchy habitats [sphagnum lawn (SL), vascular‐plant carpet (VC) and sphagnum carpet] within a temperate bog (Mizorogaike Pond, Kyoto, Japan). 2. In total, 19 invertebrate taxa were collected from the three habitats, most of which were stenotopic, i.e. collected from a single habitat. Amongst the habitats, significant variation was observed in the isotopic signatures of dominant plant tissues and their detrital matter [benthic particulate organic matter (BPOM)], both of which were potential organic food sources for invertebrates. Site‐specific isotopic variation amongst detritivores was found in δ13C but not in δ15N, reflecting site‐specificity in the isotopic signatures of basal foods. The eurytopic hydrophilid beetle Helochares striatus was found in all habitats, but showed clear site variation in its isotopic signatures, suggesting that it strongly relies on foods within its own habitat. 3. The most promising potential foods for detritivores were the dead leaf stalks of a dominant plant in the VC and BPOM in the SL and carpet. An isotopic mixing model (IsoSource version 1.3.1) estimated that aquatic predators rely on unknown trophic sources with higher δ13C than detritus, whereas terrestrial predators forage on allochthonous as well as autochthonous prey, suggesting that the latter predators might play key roles in coupling between habitats. 4. Our stable isotope approach revealed that immobile detritivores are confined to their small patchy habitats but that heterogeneous trophic pathways can be coupled by mobile predators, stressing the importance of habitat heterogeneity and predator coupling in characterising food webs in bog ecosystems.  相似文献   

13.
Energy or nutritional constraints associated to female dietary shifts during the clutch production period may play a role in generating intra‐clutch egg size variation in yellow‐legged gulls Larus michahellis. To explore this possibility, we determined albumen δ13C and δ15N values in three‐egg clutches (modal clutch size) from three different breeding episodes: Ebro Delta 2004 and 2006, and Columbretes Islands 2004. Rather than a shift in females’ diet, consistent intra‐clutch patterns of variation in egg size and albumen isotopic values (particularly in the case of albumen δ13C, which values held constant throughout the laying sequence) pointed to an intrinsic mechanism as the most feasible cause for the relatively smaller size of third/last‐laid eggs. However, diet “quality” for breeding females seemed to affect intra‐clutch egg size variation. In particular, a deficit of specific nutrients for egg formation associated to refuse scraps exploitation (as suggested by depleted albumen isotopic values) likely resulted in the more apparent intra‐clutch egg size profile for the Ebro Delta 2004. In the absence of dietary shifts, the observation of consistently higher δ15N values for third‐albumens suggested a greater contribution of endogenous resources to their synthesis, as conversion of stored reserves into egg proteins results in greater isotopic fractionation, thereby yielding enriched isotopic signatures (particularly for δ15N that shows greater isotopic fractionation with respect to that commonly assumed for δ13C). We point to reabsorbed material derived from the hormonally‐mediated regression of the female reproductive system (which is likely the intrinsic mechanisms resulting in the intra‐clutch pattern of egg size variation: the hormonal hypothesis) as the most feasible endogenous source of nutrients for the synthesis of last‐laid eggs, as optimize reproductive investment and maximize female fitness.  相似文献   

14.
Understanding the ecological patterns of invasive species and their habitats require an understanding of the species’ foraging ecology. Stable carbon (δ13C) and nitrogen (δ15N) isotope values provide useful information into the study of animal ecology and evolution, since the isotope ratios of consumers reflect consumer's dietary patterns. Nevertheless, the lack of species‐ and element‐specific laboratory‐derived turnover rates could limit their application. Using a laboratory‐based dual stable isotope tracer approach (Na15NO3 and NaH13CO3), we evaluated the δ15N and δ13C isotope turnover rates in full‐grown adult invasive Limnomysis benedeni from Lake Constance. We provide δ15N and δ13C turnover rates based on nonlinear least‐squares regression and posterior linear regression models. Model precisions and fit were evaluated using Akaike's information criterion. Within a couple of days, the δ15N and δ13C of mysids began to change. Nevertheless, after about 14 days, L. benedeni did not reach equilibrium with their new isotope values. Since the experiment was conducted on adult subjects, it is evident that turnover was mainly influenced by metabolism (in contrast to growth). Unlike traditional dietary shifts, our laboratory‐based dual stable isotope tracer approach does not shift the experimental organisms into a new diet and avoids dietary effects on isotope values. Results confirm the application of isotopic tracers to label mysid subpopulations and could be used to reflect assimilation and turnover from the labeled dietary sources. Field‐based stable isotope studies often use isotopic mixing models commonly assuming diet‐tissue steady state. Unfortunately, in cases where the isotopic composition of the animal is not in equilibrium with its diet, this can lead to highly misleading conclusions. Thus, our laboratory‐based isotopic incorporation rates assist interpretation of the isotopic values from the field and provide a foundation for future research into using isotopic tracers to investigate invasion ecology.  相似文献   

15.
Stable carbon- (δ13C), nitrogen- (δ15N) and hydrogen (δD) isotope profiles in feathers of migratory Great Reed Warblers Acrocephalus arundinaceus recaptured for 2 or more years in 6 successive years were examined to test whether the isotope profiles of individual warblers appeared to be consistent between years. Similar isotopic signatures in successive years suggested that individual birds tended to return and grow their feathers in Afro-tropical wintering habitats that generate similar δ13C, δ15N and δD signatures. Previous studies have shown that Great Reed Warblers exhibit strong natal and breeding philopatry, with most of the surviving birds returning to the breeding site. The present study of feather δ13C, δ15N and δD isotopic values demonstrate the year-to-year fidelity might also include the African moulting sites in this migratory species.  相似文献   

16.
Patterns of feather wear in birds captured in spring have traditionally been analysed to describe the extent of winter moult in long‐distance migrants. However, the interpretation of feather wear may be rendered extremely difficult due to long moult periods, by the progress of the season, and by the existence of complex moult patterns. Here, stable isotope analysis is used to determine the origin of the wing feather generations present in Savi's warblers Locustella luscinioides captured in Portugal. Carbon, nitrogen and hydrogen isotope ratios of feathers of known European origin differed significantly from those known to have grown in Africa. A discriminant analysis, in which 91.1% of the cross validated samples were correctly classified, was used to determine the origin of tail and wing feathers collected from birds caught when they returned to the breeding quarters. The interpretation of feather‐wear generally agreed with the stable isotope analysis, but some inconsistencies were identified. The extent of winter moult in Savi's warblers is described and its moult strategy discussed.  相似文献   

17.
Mandrills are large-bodied terrestrial forest primates living in particularly large social groups of several hundred individuals. Following these groups in the wild to assess differences in diet over time as well as among individuals is demanding. We here use isotope analyses in blood and hair obtained during repeated captures of 43 identified free-ranging mandrills (Mandrillus sphinx) from Southern Gabon, to test how dietary variation relates to the season as well as an individual's age and sex. We measured the stable carbon (δ13C‰) and nitrogen (δ15N‰) isotope ratios in 46 blood and 214 hair section samples as well as from a small selection of mandrill foods (n = 24). We found some seasonal isotopic effects, with lower δ13C values but higher δ15N values observed during the highly competitive long dry season compared to the fruit-rich long rainy season. Variation in δ13C was further predicted by individual age, with higher δ13C values generally found in younger individuals suggesting that they may consume more high canopy fruit than older individuals, or that older individuals consume more low canopy foliage. The best predictor for δ15N values was the interaction between age and sex, with mature and reproductively active males revealing the highest δ15N values, despite the observation that males consume substantially less animal food items than females. We interpret high δ15N values in these mature male mandrill blood and hair sections to be the result of nutritional stress associated with intense male–male competition, particularly during mating season. This is the first study showing isotopic evidence for nutritional stress in a free-ranging primate species and may spark further investigations into male mandrill diet and energy balance.  相似文献   

18.
The Iberian and North African populations of reed warblers have been described recently as a separate taxon, ambiguus, forming a sister clade to the Sahelian subspecies minor of African Reed Warbler Acrocephalus baeticatus. Although the breeding range of ambiguus has been identified, the migration strategy of its populations remained unknown. We deployed geolocators and sampled the innermost primary from breeding adults in Spain for stable hydrogen (δ2H) analyses and also analysed stable carbon (δ13C) and nitrogen (δ15N) isotopes in feathers collected in two reed warbler taxa (Acrocephalus scirpaceus and Acrocephalus baeticatus ambiguus) in Morocco, to identify the moulting and wintering sites of these populations. Ring recoveries, geolocator tracks and probabilistic assignments to origin from δ2H values indicate that Spanish ambiguus are likely to moult south of the Sahara and winter in West Africa, probably from Mauretania to southern Mali and Ivory Coast. Moroccan ambiguus, however, undergo post-breeding moult north of the Sahara, and possibly then migrate to West Africa. With other populations of ambiguus breeding from Algeria to Libya and probably wintering further east in the Sahelian belt, the Barbary Reed Warbler can therefore be considered a trans-Saharan migrant, with a post-breeding moult strategy that varies between populations, and probably structured according to breeding latitude.  相似文献   

19.
It is widely accepted that animal distribution and migration strategy might have co-evolved in relation to selection pressures exerted by parasites. Here, we first determined the prevalence and types of malaria blood parasites in a breeding population of great reed warblers Acrocephalus arundinaceus using PCR. Secondly, we tested for differences in individual feather stable isotope signatures (delta (13)C, delta (15)N, deltaD and delta (34)S) to investigate whether malaria infected and non-infected birds had occupied different areas in winter. We show that birds moulting in Afro-tropical habitats with significantly higher delta (13)C and delta (15)N but lower deltaD and delta(34)S values were more frequently infected with malaria parasites. Based on established patterns of isotopic distributions, our results indicate that moulting sites with higher incidence of malaria are generally drier and situated further to the north in West Africa than sites with lower incidence of malaria. Our findings are pertinent to the general hypothesis that animal distribution and particularly avian migration strategy might evolve in response to selection pressures exerted by parasites at different geographic scales. Tradeoffs between investment in energy demanding life history traits (e.g. migration and winter moult) and immune function are suggested to contribute to the particular choice of habitat during migration and at wintering sites.  相似文献   

20.
Stable carbon, nitrogen, hydrogen and oxygen isotopes have been used to infer aspects of species ecology and environment in both modern ecosystems and the fossil record. Compared to large mammals, stable isotopic studies of small‐mammal ecology are limited; however, high species and ecological diversity within small mammals presents several advantages for quantifying resource use and organism–environment interactions using stable isotopes over various spatial and temporal scales. We analyzed the isotopic composition of hair from two heteromyid rodent species, Dipodomys ordii and Perognathus parvus, from localities across western North America in order to characterize dietary variation in relation to vegetation and climatic gradients. Significant correlations between the carbon isotopic composition (δ13C) of these species and several climatic variables imply that seasonal temperature and precipitation control the composition and distribution of dietary resources (grass seeds). Our results also suggest a moisture influence on the nitrogen isotopic composition (δ15N) of heteromyid diets. Population‐ and species‐level variation in δ13C and δ15N values record fine‐scale habitat heterogeneity and significant differences in resource use between species. Using classification and regression‐tree techniques, we modeled the geographic variation in heteromyid δ13Cdiet values based on 10 climatic variables and generated an isotope landscape model (‘isoscape’). The isoscape predictions for δ13Cdiet differ from expectations based on observed C4 distributions and instead indicate that D. ordii and P. parvus record seasonally abundant grass resources, with additional model deviations potentially attributed to geographic variation in dietary selection. The oxygen and hydrogen isotopic composition of D. ordii is enriched relative to local meteoric water and suggests that individuals rely on highly evaporated water sources, such as seed moisture. Based on the climatic influences on vegetation and diet documented in this study, the isotopic composition of small mammals has high potential for recording ecological responses to environmental changes over short and long time scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号