首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidation of dihydroorotate under anaerobic conditions has been examined using various mutant strains of Escherichia coli K-12. This oxidation in cells grown anaerobically in a glucose minimal medium is linked via menaquinone to the fumarate reductase enzyme coded for by the frd gene and is independent of the cytochromes. The same dihydroorotate dehydrogenase protein functions in both the anaerobic and aerobic oxidation of dihydroorotate. Ferricyanide can act as an artificial electron acceptor for dihydroorotate dehydrogenase and the dihydroorotate-menaquinone-ferricyanide reductase activity can be solubilised by 2 M guanidine · HCl with little loss of activity.  相似文献   

2.
3.
4.
The assay for transaminase B (EC 2.6.1.6) activity, developed by D. E. Duggan and J. A. Wechsler (1973, Anal. Biochem.51, 67–79) has been modified to allow for the measurement of activity in Escherichia coli cells made permeable by cetyltrimethylammonium bromide (CETAB). A concentration of 10 mg% CETAB was found to be most effective in treating the cells without having a significant effect on transaminase B activity. Extraction of the dinitrophenylhydrazone of 2-oxoisovalerate by toluene was not affected by the CETAB treatment. We further report that the Na2CO3 extraction step is not required to measure color formed by the dinitrophenylhydrazone of 2-oxoisovalerate. This CETAB-treated cell assay is accurate to study transaminase B activity through most of the logarithmic phase of growth of Escherichia coli.  相似文献   

5.
6.
The dihydrofolate reductase structural gene, folA, has been cloned into the multicopy vector pBR322 following the gene's enrichment by bacteriophage Mu-mediated transposition. Strains carrying the resultant plasmid, pJFMS, produce 25 to 30 times more dihydrofolate reductase than control strains. Consequently they are resistant to trimethoprim, an inhibitor of this enzyme. This elevation in enzyme production is due to an increase in the number of folA gene copies per cell. The higher yield of dihydrofolate reductase obtained will be extremely useful for purifying and characterising this trimethoprim-sensitive chromosomally derived enzyme. The plasmid will also be invaluable for studying the structure, function and regulation of dihydrofolate reductase.  相似文献   

7.
We studied the properties of the two acetohydroxy acid synthase isoenzymes expressed in wild type Escherichia coli K-12 in two isogenic strains, PS1035 (containing only acetohydroxy acid synthase III) and PS1036 (containing only acetohydroxy acid synthase I). The pH dependence is different for the two enzymes: acetohydroxy acid synthase I shows optimum activity at neutral pH, while acetohydroxy acid synthase III is most active at alkaline pH. Both activities require Mg2+ and thiamine pyrophosphate, but acetohydroxy acid synthase I, as compared to acetohydroxy acid synthase III, has a specific requirement for flavin adenine dinucleotide. Acetohydroxy acid synthase I is also more resistant to valine inhibition but more sensitive to inactivating conditions such as dialysis and temperature. The catalytic role of acetohydroxy acid synthase I in the synthesis of α-acetolactate is characterized by a higher affinity for pyruvate and a lower sensitivity to inhibition by α-ketobutyrate.  相似文献   

8.
Niacin significantly reduced the bacteristatic effect of 1 mM paraquat for Escherichia coli. Without niacin (an intermediate in the salvage pathway for pyridine nucleotide coenzyme biosynthesis), the NAD concentration was decreased rapidly and significantly in E. coli during paraquat poisoning. Niacin prevented the decline in NAD in paraquat-poisoned cells; quinolinate (an intermediate in de novo NAD biosynthesis prior to the entry point of niacin) did not. These data suggest that paraquat poisons the de novo pathway of pyridine nucleotide coenzyme biosynthesis. Similar consequences have been reported to result from hyperbaric oxygen poisoning of E. coli; thus, there is growing evidence for a common mechanism of toxicity for hyperoxia and paraquat.  相似文献   

9.
10.
11.
12.
The d-gluconate transport system of Bacillus subtilis is optimally induced by exposure of cells for 2 h to 5 mM d-gluconate in the growth medium. d-gluconate transport is subject to catabolite repression, as distinct from inducer exclusion or catabolite inhibition, in a manner parallel to the repression of inducible histidase synthesis, suggesting that the repression is not specific to this transport system. Maximum repression with the repressing carbon source (10 mM) added to cells grown in either casein hydrolysate or amino acid medium is achieved within two doubling times. Urea, the only non-carbon source tested for a repressing effect, was found to act solely by inducer exclusion. The ability of a sugar carbon source to evoke catabolite repression appears to be unrelated to its suitability as a substrate for the sugar: phosphoenolpyruvate phosphotransferase system but nonetheless the conversion to a phosphorylated derivative of the sugar seems essential. Repressed cells fail to synthesize, or do so to a more limited extent, an as yet unidentified phosphorylated compound (probably a highly phosphorylated nucleotide) which is accumulated in the medium of non-repressed cells. Mutant studies imply that inosinic acid synthesis is necessary for catabolite repression whereas the adenosine highly phosphorylated nucleotides required for spurulation are not.  相似文献   

13.
14.
The induced synthesis of d-serine deaminase in Escherichia coli is subject to three catabolic effects: inhibition on inducer uptake, transient repression, and catabolite repression. Inhibition on d-serine uptake is not significant at the d-serine concentration normally used for induction. Transient repression and catabolite repression of d-serine deaminase synthesis are abolished by mutations in dsdCy, which appears to be an operator locus. The decline in the rate of constitutive synthesis observed in dsdCx mutants growing with glycerol as carbon source at temperatures above 37 C is due to catabolite repression. The low level of constitutivity at 37 C and the partial cis dominance of dsdCx mutants are not artifacts of catabolite repression. It is suggested that a product of one of the genes of the dsd operon may regulate the expression of the operon.  相似文献   

15.
The present study examines the extent to which the fatty acid composition of the membrane lipid can be altered by nutritional means in mutants of Escherichia coli defective in total fatty acid synthesis. These changes are compared to those observed in wild type cells subjected to the same conditions of fatty acid supplementation. Abnormalities in physiological behavior of whole cells and membranes are related to extremes in fatty acid composition that can be produced in the mutant but not the wild type cells. In particular, when the saturated fatty acid of the membrane lipid is reduced below approx. 15% the barrier properties of the membrane toward small molecules such as K+ and a lactose analog decreases abruptly. This change is also reflected in the diminished temperature dependence of passive permeability and of NADH oxidase activity associated with the cytoplasmic membrane. Detailed studies on the properties of specific membrane function in relation to the physical behavior of membrane lipids should be possible with this biological system possessing a relatively simple membrane lipid structure in which the mole percentage of specific lipid components can be systematically varied.  相似文献   

16.
Cytochromes b of anaerobically nitrate-grown Escherichia coli cells are analysed. Ascorbate phenazine methosulfate distinguishes low and high potential cytochromes b. Reduction kinetics performed at 559 nm presents a very complex pattern which can be analysed assuming that at least four b-type cytochromes are present. The electron transport chain from formate to oxygen would contain a low potential cytochrome b-556, a cytochrome b-558 associated to the oxidase, and a cytochrome d as the principal oxidase. Cytochrome o is also present, but seems to be functional only at low oxygen concentrations. A cytochrome b-556 associated to nitrate reductase is shown to belong to a branch of the formate-oxidase chain.2-N-Heptyl-4-hydroxyquinoline-N-oxide affects the reduction kinetics in a very complex way. One inhibition site is in evidence between cytochrome b-558 and cytochrome d; another between the cytochrome associated to nitrate reductase and the nitrate reductase. A third inhibition site is located in the common part of the formate-nitrate and the formate-oxidase systems.Ascorbate phenazine methosulfate is shown to donate electrons near cytochrome b-558.  相似文献   

17.
18.
Synthesis of a tetrasaccharide related to the repeating unit of the O-antigen from Escherichia coli K-12 is reported in the form of its octyl glycoside. Syntheses of the 1,2-cis glycosidic linkages have been accomplished by using NIS in conjunction with H2SO4-silica, and it was found to be stereoselective and productive. The synthesized tetrasaccharide will be utilized as the substrate for galactofuranosyltransferase, WbbI.  相似文献   

19.
The essential methanogen enzyme Sep-tRNA:Cys-tRNA synthase (SepCysS) converts O-phosphoseryl-tRNACys (Sep-tRNACys) into Cys-tRNACys in the presence of a sulfur donor. Likewise, Sep-tRNA:Sec-tRNA synthase converts O-phosphoseryl-tRNASec (Sep-tRNASec) to selenocysteinyl-tRNASec (Sec-tRNASec) using a selenium donor. While the Sep moiety of the aminoacyl-tRNA substrates is the same in both reactions, tRNACys and tRNASec differ greatly in sequence and structure. In an Escherichia coli genetic approach that tests for formate dehydrogenase activity in the absence of selenium donor we show that Sep-tRNASec is a substrate for SepCysS. Since Sec and Cys are the only active site amino acids known to sustain FDH activity, we conclude that SepCysS converts Sep-tRNASec to Cys-tRNASec, and that Sep is crucial for SepCysS recognition.  相似文献   

20.
The periplasmic murein (peptidoglycan) sacculus is a giant macromolecule made of glycan strands cross-linked by short peptides completely surrounding the cytoplasmic membrane to protect the cell from lysis due to its internal osmotic pressure. More than 50 different muropeptides are released from the sacculus by treatment with a muramidase. Escherichia coli has six murein synthases which enlarge the sacculus by transglycosylation and transpeptidation of lipid II precursor. A set of twelve periplasmic murein hydrolases (autolysins) release murein fragments during cell growth and division. Recent data on the in vitro murein synthesis activities of the murein synthases and on the interactions between murein synthases, hydrolases and cell cycle related proteins are being summarized. There are different models for the architecture of murein and for the incorporation of new precursor into the sacculus. We present a model in which morphogenesis of the rod-shaped E. coli is driven by cytoskeleton elements competing for the control over the murein synthesis multi-enzyme complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号