共查询到20条相似文献,搜索用时 15 毫秒
1.
Lucrezia GORINI John D. C. LINNELL Roel MAY Manuela PANZACCHI Luigi BOITANI Morten ODDEN Erlend. B. NILSEN 《Mammal Review》2012,42(1):55-77
- 1 In predator–prey theory, habitat heterogeneity can affect the relationship between kill rates and prey or predator density through its effect on the predator's ability to search for, encounter, kill and consume its prey. Many studies of predator–prey interactions include the effect of spatial heterogeneity, but these are mostly based on species with restricted mobility or conducted in experimental settings.
- 2 Here, we aim to identify the patterns through which spatial heterogeneity affects predator–prey dynamics and to review the literature on the effect of spatial heterogeneity on predator–prey interactions in terrestrial mammalian systems, i.e. in freely moving species with high mobility, in non‐experimental settings. We also review current methodologies that allow the study of the predation process within a spatial context.
- 3 When the functional response includes the effect of spatial heterogeneity, it usually takes the form of predator‐dependent or ratio‐dependent models and has wide applicability.
- 4 The analysis of the predation process through its different stages may further contribute towards identifying the spatial scale of interest and the specific spatial mechanism affecting predator–prey interactions.
- 5 Analyzing the predation process based on the functional response theory, but separating the stages of predation and applying a multiscale approach, is likely to increase our insight into how spatial heterogeneity affects predator–prey dynamics. This may increase our ability to forecast the consequences of landscape transformations on predator–prey dynamics.
2.
The directionality of asymmetric interactions between predators (definitive hosts) and prey (intermediate hosts) should impact trophic transmission in parasites. This study tests the prediction that trophically transmitted parasites are funneled towards asymmetric predator–prey interactions where intermediate hosts have few predators and definitive hosts feed upon many prey (‘downward asymmetry’). The distribution of trophically transmitted parasites was examined in four published food webs in relation to mismatch asymmetry of predator–prey interactions. We found that trophically transmitted parasites exploit downwardly asymmetric interactions in a nonrandom manner, and particular predator–prey pairs contain more trophically transmitted parasites than would be expected by random chance alone. These findings suggest that food web topology has great bearing on the ecology of trophically transmitted parasites, and that consideration of parasite life cycles in the context of food web organization can provide insights into the forces affecting the evolution of trophic transmission. 相似文献
3.
VOLKER H. W. RUDOLF 《Ecological Entomology》2011,36(6):744-750
1. A predator's ability to suppress its prey depends on the level of interference among predators. While interference typically decreases with increasing habitat complexity, it often increases with increasing size differences among individuals. However, little is known about how variation in intrinsic factors such as population size structure alters predator–prey interactions and how this intrinsic variation interacts with extrinsic variation. 2. By experimentally varying the level of vegetation cover and the size structure of the predatory damselfly Ischnura posita Hagen, we examined the individual and interactive effects of variation in habitat complexity and predator size structure on prey mortality. 3. Copepod prey survival linearly increased as the I. posita size ratio decreased and differed by up to 31% among different predator size structures. Size classes had an additive effect on prey survival, most likely because intraspecific aggression appeared size‐independent and size classes differed in microhabitat preference: large I. posita spent 14% more time foraging on the floor than small larvae and spent more time in the vegetation with increasing habitat complexity. Despite this difference in microhabitat use among size classes, habitat structure did not influence predation rates or interference among size classes. 4. In general, results suggest that seasonal and spatial variation in the size structure of populations could drive some of the discrepancies in predator‐mediated prey suppression observed in nature, and this variation could exceed the effects of variation in habitat structure. 相似文献
4.
M. V. Abrahams 《Journal of fish biology》2015,86(1):288-303
Localized hypoxic habitats were created in Delta Marsh, Manitoba, Canada to determine the potential of regions of moderate hypoxia to act as refuges for forage fishes from piscine predators. Minnow traps and giving‐up density (GUD) plates (plexiglas plates covered with trout crumble and fine gravel) were used to assess habitat use and perceived habitat quality for forage fishes, respectively, while passive integrated transponder tags provided data on habitat use by predator species to assess the level of predation risk. Data were collected both before and after a hypoxia manipulation (2–3 mg l?1 dissolved oxygen, DO) to create a before–after control–effect style experiment. Fathead minnows Pimephales promelas were more abundant and consumed more food from GUD plates in hypoxic bays after the DO manipulation, indicating hypoxic locations were perceived as higher quality, lower‐risk habitats. The frequency of predator visits was not consistently affected. The duration of visits, and therefore the total time spent in these habitats, however, was significantly shorter. These predator data, combined with the prey information, are consistent with the hypothesis that hypoxic regions function as predator refuges. The refuge effect is not the result of predator exclusion, however; instead predators are rendered less capable of foraging and pose less of a threat in hypoxic locations. 相似文献
5.
Increased autumn rainfall disrupts predator–prey interactions in fragmented boreal forests 下载免费PDF全文
Julien Terraube Alexandre Villers Léo Poudré Rauno Varjonen Erkki Korpimäki 《Global Change Biology》2017,23(4):1361-1373
There is a pressing need to understand how changing climate interacts with land‐use change to affect predator–prey interactions in fragmented landscapes. This is particularly true in boreal ecosystems facing fast climate change and intensification in forestry practices. Here, we investigated the relative influence of autumn climate and habitat quality on the food‐storing behaviour of a generalist predator, the pygmy owl, using a unique data set of 15 850 prey items recorded in western Finland over 12 years. Our results highlighted strong effects of autumn climate (number of days with rainfall and with temperature <0 °C) on food‐store composition. Increasing frequency of days with precipitation in autumn triggered a decrease in (i) total prey biomass stored, (ii) the number of bank voles (main prey) stored, and (iii) the scaled mass index of pygmy owls. Increasing proportions of old spruce forests strengthened the functional response of owls to variations in vole abundance and were more prone to switch from main prey to alternative prey (passerine birds) depending on local climate conditions. High‐quality habitat may allow pygmy owls to buffer negative effects of inclement weather and cyclic variation in vole abundance. Additionally, our results evidenced sex‐specific trends in body condition, as the scaled mass index of smaller males increased while the scaled mass index of larger females decreased over the study period, probably due to sex‐specific foraging strategies and energy requirements. Long‐term temporal stability in local vole abundance refutes the hypothesis of climate‐driven change in vole abundance and suggests that rainier autumns could reduce the vulnerability of small mammals to predation by pygmy owls. As small rodents are key prey species for many predators in northern ecosystems, our findings raise concern about the impact of global change on boreal food webs through changes in main prey vulnerability. 相似文献
6.
Effects of warming on predator–prey interactions – a resource‐based approach and a theoretical synthesis 下载免费PDF全文
Wojciech Uszko Sebastian Diehl Göran Englund Priyanga Amarasekare 《Ecology letters》2017,20(4):513-523
We theoretically explore consequences of warming for predator–prey dynamics, broadening previous approaches in three ways: we include beyond‐optimal temperatures, predators may have a type III functional response, and prey carrying capacity depends on explicitly modelled resources. Several robust patterns arise. The relationship between prey carrying capacity and temperature can range from near‐independence to monotonically declining/increasing to hump‐shaped. Predators persist in a U‐shaped region in resource supply (=enrichment)‐temperature space. Type II responses yield stable persistence in a U‐shaped band inside this region, giving way to limit cycles with enrichment at all temperatures. In contrast, type III responses convey stability at intermediate temperatures and confine cycles to low and high temperatures. Warming‐induced state shifts can be predicted from system trajectories crossing stability and persistence boundaries in enrichment‐temperature space. Results of earlier studies with more restricted assumptions map onto this graph as special cases. Our approach thus provides a unifying framework for understanding warming effects on trophic dynamics. 相似文献
7.
Predator–prey interaction is inherently spatial because animals move through landscapes to search for and consume food resources and to avoid being consumed by other species. The spatial nature of species interactions necessitates integrating spatial processes into food web theory and evaluating how predators combine to impact their prey. Here, we present a spatial modeling approach that examines emergent multiple predator effects on prey within landscapes. The modeling is inspired by the habitat domain concept derived from empirical synthesis of spatial movement and interactions studies. Because these principles are motivated by synthesis of short‐term experiments, it remains uncertain whether spatial contingency principles hold in dynamical systems. We address this uncertainty by formulating dynamical systems models, guided by core habitat domain principles, to examine long‐term multiple predator–prey spatial dynamics. To describe habitat domains, we use classical niche concepts describing resource utilization distributions, and assume species interactions emerge from the degree of overlap between species. The analytical results generally align with those from empirical synthesis and present a theoretical framework capable of demonstrating multiple predator effects that does not depend on the small spatial or temporal scales typical of mesocosm experiments, and help bridge between empirical experiments and long‐term dynamics in natural systems. 相似文献
8.
Parasite transmission is determined by the rate of contact between a susceptible host and an infective stage and susceptibility to infection given an exposure event. Attempts to measure levels of variation in exposure in natural populations can be especially challenging. The level of exposure to a major class of parasites, trophically transmitted parasites, can be estimated by investigating the host's feeding behaviour. Since the parasites rely on the ingestion of infective intermediate hosts for transmission, the potential for exposure to infection is inherently linked to the definitive host's feeding ecology. Here, we combined epidemiological data and molecular analyses (polymerase chain reaction) of the diet of the definitive host, the white‐footed mouse (Peromyscus leucopus), to investigate temporal and individual heterogeneities in exposure to infection. Our results show that the consumption of cricket intermediate hosts accounted for much of the variation in infection; mice that had consumed crickets were four times more likely to become infected than animals that tested negative for cricket DNA. In particular, pregnant female hosts were three times more likely to consume crickets, which corresponded to a threefold increase in infection compared with nonpregnant females. Interestingly, males in breeding condition had a higher rate of infection even though breeding males were just as likely to test positive for cricket consumption as nonbreeding males. These results suggest that while heterogeneity in host diet served as a strong predictor of exposure risk, differential susceptibility to infection may also play a key role, particularly among male hosts. By combining PCR analyses with epidemiological data, we revealed temporal variation in exposure through prey consumption and identified potentially important individual heterogeneities in parasite transmission. 相似文献
9.
Hao Song Matthew Barnet Frances H Arnold Stephen R Quake Lingchong You 《Molecular systems biology》2008,4(1)
We have constructed a synthetic ecosystem consisting of two Escherichia coli populations, which communicate bi‐directionally through quorum sensing and regulate each other's gene expression and survival via engineered gene circuits. Our synthetic ecosystem resembles canonical predator–prey systems in terms of logic and dynamics. The predator cells kill the prey by inducing expression of a killer protein in the prey, while the prey rescue the predators by eliciting expression of an antidote protein in the predator. Extinction, coexistence and oscillatory dynamics of the predator and prey populations are possible depending on the operating conditions as experimentally validated by long‐term culturing of the system in microchemostats. A simple mathematical model is developed to capture these system dynamics. Coherent interplay between experiments and mathematical analysis enables exploration of the dynamics of interacting populations in a predictable manner. 相似文献
10.
Understanding the strength and diversity of predator‐prey interactions among species is essential to understand ecosystem consequences of population‐level variation. Directly quantifying the predatory behaviour of wild fishes at large spatial scales (>100 m) in the open sea is fraught with difficulties. To date the only empirical approach has been to search for correlations in the abundance of predators and their putative prey. As an example we use this approach to search for predators of the keystone crown‐of‐thorns starfish. We show that this approach is unlikely to detect predator–prey linkages because the theoretical relationship is non‐linear, resulting in multiple possible prey responses for single given predator abundance. Instead we suggest some indication of the strength and ecosystem importance of a predator–prey relationship can be gained by using the abundance of both predators and their putative prey to parameterize functional response models. 相似文献
11.
Spatial extinction or persistence: landscape‐temperature interactions perturb predator–prey dynamics 下载免费PDF全文
Jason L. Salt Celia Bulit Wei Zhang Hongli Qi David J. S. Montagnes 《Ecography》2017,40(10):1177-1186
Recognising that species interact across a range of spatial scales, we explore how landscape structure interacts with temperature to influence persistence. Specifically, we recognise that few studies indicate thermal shifts as the proximal cause of species extinctions; rather, species interactions exacerbated by temperature result in extinctions. Using microcosm‐based experiments, as models of larger landscape processes, we test hypotheses that would be problematic to address through field work. A text‐book predator–prey system (the ciliates Didinium and Paramecium) was used to compare three landscapes: an unfragmented landscape subjected to uniform temperatures (10, 20, 30°C); a fragmented landscape (potentially hosting metapopulations) subjected to these three temperatures; and a fragmented landscape subjected to a spatial temperature gradient (~ 10 to 30°C) – despite the prevalence of natural temperature ecoclines this is the first time such an analysis has been conducted. Initial thermal response‐analysis (growth, mortality, and movement measured between 10 and 30°C) suggested that as temperature increased, the predator might drive the prey to extinction. Thermal preferences (measured at 5 temperatures between 10 and 30°C), indicated that both predator and prey preferred warmer temperatures, with the predator exhibiting the stronger preference, suggesting that cooler regions might act as a prey‐refuge. The landscape level observations, however, did not entirely support the predictions. First, in the unfragmented landscape, increased temperature led to extinctions, but at the highest temperature (where the predator growth can be reduced) the prey survived. Second, at high temperatures the fragmented landscape failed to host metapopulations that would allow predator–prey persistence. Third, the thermal ecocline did not provide heterogeneity that improved stability; rather it forced both species to occupy a smaller realized space, leading toward extinctions. These findings reveal that temperature‐impacted rates and temperature preferences combine to drive predator–prey dynamics and persistence across landscapes. 相似文献
12.
Marjan De Block Kevin Pauwels Maarten Van Den Broeck Luc De Meester Robby Stoks 《Global Change Biology》2013,19(3):689-696
Temperature effects on predator–prey interactions are fundamental to better understand the effects of global warming. Previous studies never considered local adaptation of both predators and prey at different latitudes, and ignored the novel population combinations of the same predator–prey species system that may arise because of northward dispersal. We set up a common garden warming experiment to study predator–prey interactions between Ischnura elegans damselfly predators and Daphnia magna zooplankton prey from three source latitudes spanning >1500 km. Damselfly foraging rates showed thermal plasticity and strong latitudinal differences consistent with adaptation to local time constraints. Relative survival was higher at 24 °C than at 20 °C in southern Daphnia and higher at 20 °C than at 24 °C, in northern Daphnia indicating local thermal adaptation of the Daphnia prey. Yet, this thermal advantage disappeared when they were confronted with the damselfly predators of the same latitude, reflecting also a signal of local thermal adaptation in the damselfly predators. Our results further suggest the invasion success of northward moving predators as well as prey to be latitude‐specific. We advocate the novel common garden experimental approach using predators and prey obtained from natural temperature gradients spanning the predicted temperature increase in the northern populations as a powerful approach to gain mechanistic insights into how community modules will be affected by global warming. It can be used as a space‐for‐time substitution to inform how predator–prey interaction may gradually evolve to long‐term warming. 相似文献
13.
Plant structural complexity and mechanical defenses mediate predator–prey interactions in an odonate–bird system 下载免费PDF全文
Patrick Grof‐Tisza Eric LoPresti Sacha K. Heath Richard Karban 《Ecology and evolution》2017,7(5):1650-1659
Habitat‐forming species provide refuges for a variety of associating species; these refuges may mediate interactions between species differently depending on the functional traits of the habitat‐forming species. We investigated refuge provisioning by plants with different functional traits for dragonfly and damselfly (Odonata: Anisoptera and Zygoptera) nymphs emerging from water bodies to molt into their adult stage. During this period, nymphs experience high levels of predation by birds. On the shores of a small pond, plants with mechanical defenses (e.g., thorns and prickles) and high structural complexity had higher abundances of odonate exuviae than nearby plants which lacked mechanical defenses and exhibited low structural complexity. To disentangle the relative effects of these two potentially important functional traits on nymph emergence‐site preference and survival, we conducted two fully crossed factorial field experiments using artificial plants. Nymphs showed a strong preference for artificial plants with high structural complexity and to a lesser extent, mechanical defenses. Both functional traits increased nymph survival but through different mechanisms. We suggest that future investigations attempt to experimentally separate the elements contributing to structural complexity to elucidate the mechanistic underpinnings of refuge provisioning. 相似文献
14.
Although microevolution has been shown to play an important role in pairwise antagonistic species interactions, its importance in more complex communities has received little attention. Here, we used two Pseudomonas fluorescens prey bacterial strains (SBW25 and F113) and Tetrahymena thermophila protist predator to study how rapid evolution affects the structuring of predator–prey communities. Both bacterial strains coexisted in the absence of predation, and F113 was competitively excluded in the presence of both SBW25 and predator during the 24‐day experiment, an initially surprising result given that F113 was originally poorer at growing, but more resistant to predation. However, this can be explained by SBW25 evolving greater antipredatory defence with a lower growth cost than F113. These results show that rapid prey evolution can alter the structure of predator–prey communities, having different effects depending on the initial composition of the evolving community. From a more applied perspective, our results suggest that the effectiveness of biocontrol bacteria, such as F113, could be weaker in communities characterized by intense bacterial competition and protist predation. 相似文献
15.
J.A. Sherratt 《Ecology letters》2001,4(1):30-37
Predation is an established cause of cycling in prey species. Here, the ability of predation to explain periodic travelling waves in prey populations, which have recently been found in a number of spatiotemporal field studies, is examined. The nature of periodic waves in these systems, and the way in which they can be generated by the invasion of predators into a prey population is discussed. A theoretical calculation that predicts, as a function of two parameter ratios, whether such an invasion will lead to a stable periodic travelling wave that would be observed in practice is presented ‐ the alternative outcome is spatiotemporal chaos. The calculation also predicts quantitative details of the periodic waves, such as speed and amplitude. The results give new insights into the types of predator‐prey systems in which one would expect to see periodic travelling waves following an invasion by predators. 相似文献
16.
Our understanding of the dynamics of predator–prey systems has relied heavily on the use of models based on the standard Lotka–Volterra (LV) framework, dating back over 80 years. Although these models have been repeatedly analysed and refined since their initial inception, the way they describe the predator's growth rate has received surprisingly little attention; typically it is simply assumed that the predator's growth rate is linearly related to its ingestion rate according to a constant assimilation efficiency, e. However, for many consumers e is known to decrease at high prey densities. Models that ignore variable assimilation efficiencies overlook potentially important non‐linearities, affecting the validity of predictions relating to conservation, invasion biology and pest control. Directly quantifying the relationship between e and prey abundance is, however, difficult. An alternative approach (the independent‐response, IR, approach) is to not assume any direct link between the predator's functional response (the relationship between ingestion rate and prey abundance) and its growth response. This flexibility is invaluable when parameterising models from data; providing the model‐fitting process is constrained to ensure that e never exceeds 1, this approach allows considerable insight into whether, and how, e varies with prey density. Here we examine the synergistic value of combining the IR and LV approaches. We illustrate these concepts through analysis of published functional and growth response data and show that, in many cases, e does vary with prey abundance. This paper is the first recognition that these two complementary approaches can be combined into a single framework that allows the relationship between a predator's functional and growth responses to emerge during the parameterisation process, thereby acting as a compromise between restrictive models that require this relationship to be defined a priori, and completely unrestrained models that allow assimilation efficiencies to exceed 1. 相似文献
17.
Benthic ctenophores (Platyctenida: Coeloplanidae) in South Florida: predator–prey interactions 下载免费PDF全文
Peter W. Glynn Brian Coffman Karim D. Primov Shannon G. Moorhead Jeongran Vanderwoude Rachel N. Barrales Megan K. Williams Robert P. Roemer 《Invertebrate Biology》2018,137(2):133-150
The primary goal of this study was to demonstrate, from field observations and laboratory experiments, some key trophic roles of benthic ctenophores as predators and prey in subtropical communities. We examined individuals of two benthic platyctenid species: Coeloplana waltoni, a minute epibiont on octocorals in exposed, open‐water settings; and Vallicula multiformis, an associate of calm‐water biofouling communities and floating Sargassum spp. Laboratory observations of individuals of both ctenophore species revealed frequent capture and ingestion of diverse zooplankton taxa, especially crustaceans. Laboratory predation trials demonstrated the capture of dolphinfish (Coryphaena hippurus) eggs and larvae by both ctenophore species. Dolphinfish eggs and larvae larger than individuals of C. waltoni were captured but not ingested during 2‐h trial periods. These prey items were sometimes purloined and ingested by polyps of the ctenophore's octocoral host. Ingestion of dolphinfish eggs and larvae by individuals of C. waltoni was observed, however, after longer periods of exposure to prey. In predation trials, dolphinfish eggs and larvae were both captured and ingested by larger individuals of the ctenophore species V. multiformis. Field and laboratory observations revealed diverse invertebrate and fish taxa that prey on both ctenophore species. In the laboratory, the mean daily per capita consumption of individuals of C. waltoni by a pomacanthid fish ranged 0.5–2.8 individuals, and ranged 2.6–3.6 individuals for predation by an ovulid mollusc. Field population densities of these predators ranged 0.1–0.7 individuals per m2 for the pomacanthid, and 0.2–1.1 individuals per m2 for the mollusc. Laboratory feeding observations demonstrated frequent consumption of individuals of V. multiformis by a sea anemone, and by three species of brachyuran crabs. Field observations revealed eight fishes that probably feed incidentally on individuals of V. multiformis. These findings add to the limited knowledge base of predator–prey dynamics in both C. waltoni and V. multiformis. 相似文献
18.
James T. Cronin John D. Reeve Dashun Xu Mingqing Xiao Heidi N. Stevens 《Ecology letters》2016,19(3):318-327
Although theoretical models have demonstrated that predator–prey population dynamics can depend critically on age (stage) structure and the duration and variability in development times of different life stages, experimental support for this theory is non‐existent. We conducted an experiment with a host–parasitoid system to test the prediction that increased variability in the development time of the vulnerable host stage can promote interaction stability. Host–parasitoid microcosms were subjected to two treatments: Normal and High variance in the duration of the vulnerable host stage. In control and Normal‐variance microcosms, hosts and parasitoids exhibited distinct population cycles. In contrast, insect abundances were 18–24% less variable in High‐ than Normal‐variance microcosms. More significantly, periodicity in host–parasitoid population dynamics disappeared in the High‐variance microcosms. Simulation models confirmed that stability in High‐variance microcosms was sufficient to prevent extinction. We conclude that developmental variability is critical to predator–prey population dynamics and could be exploited in pest‐management programs. 相似文献
19.
Ecoevolutionary feedbacks in predator–prey systems have been shown to qualitatively alter predator–prey dynamics. As a striking example, defense–offense coevolution can reverse predator–prey cycles, so predator peaks precede prey peaks rather than vice versa. However, this has only rarely been shown in either model studies or empirical systems. Here, we investigate whether this rarity is a fundamental feature of reversed cycles by exploring under which conditions they should be found. For this, we first identify potential conditions and parameter ranges most likely to result in reversed cycles by developing a new measure, the effective prey biomass, which combines prey biomass with prey and predator traits, and represents the prey biomass as perceived by the predator. We show that predator dynamics always follow the dynamics of the effective prey biomass with a classic ¼‐phase lag. From this key insight, it follows that in reversed cycles (i.e., ¾‐lag), the dynamics of the actual and the effective prey biomass must be in antiphase with each other, that is, the effective prey biomass must be highest when actual prey biomass is lowest, and vice versa. Based on this, we predict that reversed cycles should be found mainly when oscillations in actual prey biomass are small and thus have limited impact on the dynamics of the effective prey biomass, which are mainly driven by trait changes. We then confirm this prediction using numerical simulations of a coevolutionary predator–prey system, varying the amplitude of the oscillations in prey biomass: Reversed cycles are consistently associated with regions of parameter space leading to small‐amplitude prey oscillations, offering a specific and highly testable prediction for conditions under which reversed cycles should occur in natural systems. 相似文献