首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the first microsatellite loci for the gynogenetic Amazon molly, Poecilia formosa, an all‐female species arisen through hybridization of the bisexual species Poecilia mexicana and Poecilia latipinna. The loci showed one to six alleles and an expected heterozygosity between zero and 0.75. As expected with parthenogenetic inheritance, most loci were either constantly homozygous (five loci) or constantly heterozygous (eight loci). For six loci, both heterozygotes and homozygotes occurred. This and the fact that some loci only showed alleles of one of the ancestral species could indicate genome homogenization through mitotic gene conversion. Our new loci conformed to the hybrid origin of Amazon molly and are also applicable to both ancestral bisexual species.  相似文献   

2.
The appearance of vertebrate species that reproduce without genetic recombination has been explained by their origin from a rare hybridization event between members of two distantly related species. For the first recognized vertebrate unisexual, the Amazon molly Poecilia formosa, mostly morphological and biochemical genetic information has been available so far with respect to its evolutionary origin. DNA sequence analyses of transcribed portions of the genome (tyrosine kinase proto-oncogenes) demonstrated its hybrid state unequivocally. Both alleles can be traced in a DNA sequence-based phylogenetic tree to extant species that represent the parental species or that are closely related to the corresponding extinct forms, namely P. mexicana limantouri and a so far taxonomically ill-defined north Mexican subspecies of the P. latipinna/P. velifera complex. A rough estimate from the mutation rates dates the hybridization event further back than would have been predicted on the basis of “Muller's ratchet” for an ecologically successful species.  相似文献   

3.
Aim To understand the relative contributions of environmental factors, dispersal limitations and the presence of sperm donors in determining the distribution of the Amazon molly (Poecilia formosa), a sperm‐dependent unisexual fish species of hybrid origin. To explore niche similarities and/or differences between the hybrid and parental species. To evaluate whether large‐scale abiotic factors can explain a successful introduction of both P. formosa and Poecilia latipinna. Location South‐east United States, Mexico and Central America. Methods We used abiotic variables in ecological niche modelling (ENM) to identify regions with suitable conditions for the presence of the Amazon molly and its two parental species (P. latipinna and Poecilia mexicana). We also used a recently developed metric to calculate the degree of niche overlap between the hybrid and its parental species. Results ENM produced highly significant models [all area under the curve (AUC) > 0.99 for the three species]. Annual mean temperature and minimum temperature of the coldest month were the variables that best explained the distribution of the Amazon molly. With the exception of south Florida, few areas beyond the known distribution of the species were predicted to have suitable environmental conditions. The hybrid species niche overlaps partially with the parental species. However, given the available data, it is neither more similar nor more different than expected by chance. Main conclusions Two different processes are acting to limit the distribution of P. formosa. At the northern limit, although a sperm donor species is present further north, suitable environmental conditions are absent from nearby locations. At the southern limit, a sperm donor species is present and areas with good environmental conditions are present at nearby locations, suggesting that dispersal ability is the limiting factor. We found that the hybrid species overlaps in a similar way with both parental species while still having its own niche identity. This result may be explained by the fact that hybrid species inherit characteristics of two ecologically divergent species, which can result in intermediate or even transgressive phenotypes. These results support recent work on the role of hybridization in diversification.  相似文献   

4.
The Tamesí molly, Poecilia latipunctata, has a very limited biogeographical range in northeast Mexico. This area is nested within the ranges of the Atlantic molly, Poecilia mexicana, and the unisexual Amazon molly, Poecilia formosa. Based on morphology, especially fin shape, the Tamesí molly has been considered to be a "short-fin" molly. We describe the courtship sequence of P. latipunctata. The courtship clearly places the species into the clade of "long-fin" mollies, a finding that corroborates earlier studies based on nuclear DNA and mitochondrial DNA. All three species live together in certain habitats. This renders P. latipunctata a potential host species for the sperm-dependent, unisexual Amazon molly. Using behavioural tests, we demonstrate that P. latipunctata males actually copulate with Amazon mollies, despite a pronounced preference for conspecific females. In laboratory experiments P. latipunctata males are capable of triggering embryogenesis in P. formosa females. Field observations support the hypothesis that P. latipunctata is a third host species for P. formosa, indicating that the Amazon molly effectively exploits all available host species for its gynogenetic mode of reproduction. Electronic Publication  相似文献   

5.
All known vertebrate clones have originated from hybridization events and some have produced distinct evolutionary lineages via hybrid speciation. Amazon mollies (Poecilia formosa) present an excellent study system to investigate how clonal species have adapted to heterogeneous environments because they are the product of a single hybridization event between male sailfin mollies (Poecilia latipinna) and female Atlantic mollies (Poecilia mexicana). Here, we ask whether the hybrid species differs from the combination of its parental species’ genes in its plastic response to different environments. Using a three-way factorial design, we exposed neonates produced by Amazon mollies and reciprocal F1 hybrid crosses to different thermal (24°C and 29°C) and salinity (0/2, 12, and 20 ppt) regimes. We measured various ontogenetic and life history characteristics across the life span of females. Our major results were as follows: (1) Reaction norms of growth and maturation to temperature and salinity are quite similar between the two hybrid crosses; (2) Amazon molly reaction norms were qualitatively different than the P. latipinna male and P. mexicana female (L×M) hybrids for the ontogenetic variables; (3) Amazon molly reaction norms in reproductive traits were also quite different from L×M hybrids; and (4) The reaction norms of net fertility were very different between Amazon mollies and L×M hybrids. We conclude that best locale for Amazon mollies is not the best locale for hybrids, which suggests that Amazon mollies are not just an unmodified mix of parental genes but instead have adapted to the variable environments in which they are found. Hybridization resulting in asexuality may represent an underappreciated mechanism of speciation because the unlikely events required to produce such hybrids rarely occur and is dependent upon the genetic distance between parental species.  相似文献   

6.
Feeding rates of the gynogenetic Amazon molly Poecilia formosa and one of its sexual hosts, the sailfin molly Poecilia latipinna, were measured under winter and summer temperature conditions. Food consumption of the unisexual P. formosa in winter conditions was significantly higher than that of P. latipinna, and it is hypothesized that the resulting food stress might have an important influence on the population composition of these closely related fishes via higher winter mortality in P. formosa.  相似文献   

7.
In asexual all-female species, such as the Amazon molly, Poecilia formosa, that depend on sperm from “host males” only to trigger embryogenesis, mate choice does not provide any indirect, genetic benefits to the choosing female, although direct benefits are possible. Asexual species are thought to have a low evolutionary potential or evolvability due to the absence of meiotic recombination. Hence, theory predicts that mating preferences in P. formosa for male ornaments—if existent—should resemble those of females of the two parental species (Poecilia latipinna and Poecilia mexicana) involved in the natural hybridization that gave rise to the asexual P. formosa. When examining the female preference for dummy males with or without black vertical bars in the two parental species and in two lineages of P. formosa, a preference was detected in P. latipinna, but not in P. mexicana females. Interestingly, P. formosa living syntopic with P. latipinna also preferred striped males, while others living syntopic with P. mexicana preferred non-striped males. The evolutionary significance of this phenomenon remains largely unexplained, but it might indicate the evolution of mating preferences in a species with low evolutionary potential. Possible mechanisms include introgression and mitotic gene conversion. Females might use male coloration as indicator mechanisms for male traits that matter in terms of direct benefits.  相似文献   

8.
Unisexual species like the gynogenetic Amazon molly, Poecilia formosa, enjoy a twofold advantage over sexual species, because they do not produce males. Therefore, unisexuals should be able to outcompete and consequently, replace sexual species. For sperm-dependent (gynogenetic) unisexuals this creates a paradox: they cannot replace their sexual hosts without eradicating themselves. Thus, mechanisms must be in place to stabilize such mating systems. We assessed juvenile survivorship between asexual P. formosa and sexual Poecilia latipinna as a possible factor allowing for persistence and coexistence between the two sympatric species. Offspring of gynogenetic Amazon mollies did not differ significantly in survivorship compared to their sexual host, the Sailfin molly, P. latipinna. The presence of an adult female significantly reduced survival in both species, suggesting that filial cannibalisms operates in this system, but does not appear to play a role in stabilizing mixed sexual/asexual populations. Clark Hubbs, who spent 59 years at the University of Texas and was widely regarded as one of the state’s foremost researchers in the field of ichthyology, the study of fish, passed away February 3rd of 2008 after a long battle with colorectal cancer. He was 86.  相似文献   

9.
We developed 16 microsatellite loci from an F2 hybrid between Aquilegia formosa and Aquilegia pubescens. In samples of 28 individuals, we found an average of 14 alleles per locus from each parental species. We tested these loci for cross‐amplification in 10 additional species of Aquilegia and found that all 16 loci amplified in other North American species and 12 consistently amplified in European or Asian species. Nine loci amplified in the sister species to Aquilegia, Semiaquilegia adoxoides. The success of cross‐species amplification suggests that these microsatellites should prove useful for studies in a broad range of Aquilegia species.  相似文献   

10.
Linking molecular evolution to biological function is a long‐standing challenge in evolutionary biology. Some of the best examples of this involve opsins, the genes that encode the molecular basis of light reception. In this issue of Molecular Ecology, three studies examine opsin gene sequence, expression and repertoire to determine how natural selection has shaped the visual system. First, Escobar‐Camacho et al. ( 2017 ) use opsin repertoire and expression in three Amazonian cichlid species to show that a shift in sensitivity towards longer wavelengths is coincident with the long‐wavelength‐dominated Amazon basin. Second, Stieb et al. ( 2017 ) explore opsin sequence and expression in reef‐dwelling damselfish and find that UV‐ and long‐wavelength vision are both important, but likely for different ecological functions. Lastly, Suvorov et al. ( 2017 ) study an expansive opsin repertoire in the insect order Odonata and find evidence that copy number expansion is consistent with the permanent heterozygote model of gene duplication. Together these studies emphasize the utility of opsin genes for studying both the local adaptation of sensory systems and, more generally, gene family evolution.  相似文献   

11.
Synopsis We analyzed variation in allozymes and mating preferences in 12 populations across much of the range of the sailfin molly, Poecilia latipinna. Sailfin mollies can be sympatric with its sexual parasite Amazon mollies, P. formosa. Amazon mollies must co-exist and mate with bisexual males of closely related species (including sailfin mollies) to induce embryogenesis but inheritance is strictly maternal. Where sailfin and Amazon mollies are sympatric there is evidence of reproductive character displacement as males show a significantly stronger mating preference for sailfin molly females over Amazon mollies compared to preferences of males from allopatric populations. From the allozyme data we found a moderate amount of genetic variation across all populations but this variation did not reveal significant partitioning between sympatric and allopatric populations. Additionally, we found no evidence for isolation by distance as genetic distance was not significantly correlated with geographic distance. While allozyme variation also did not significantly correlate with male mating preferences, there was a significant correlation between male mating preferences and geographic distance. This correlation between mating preferences and geographic distance may have arisen from coevolution with Amazon mollies resulting in reproductive character displacement. Taken together, the distribution of genetic and behavioral variation among sympatric and allopatric populations suggests that behavioral evolution has outpaced evolution at the allozyme loci we examined in P. latipinna.  相似文献   

12.
Genes of the major histocompatibility complex (MHC) encode molecules that control immune recognition and are highly polymorphic in most vertebrates. The remarkable polymorphisms at MHC loci may be maintained by selection from parasites, sexual selection, or both. If asexual species show equal (or higher) levels of polymorphisms at MHC loci as sexual ones, this would mean that sexual selection is not necessary to explain the high levels of diversity at MHC loci. In this study, we surveyed the MHC diversity of the asexual amazon molly (Poecilia formosa) and one of its sexual ancestors, the sailfin molly (P. latipinna), which lives in the same habitat. We found that the asexual molly has polymorphic MHC loci despite its clonal reproduction, yet not as polymorphic as the sexual species. Although the nucleotide diversity was similar between the asexual and sexual species, the sexual species exhibited a greater genotypic diversity compared to the asexual one from the same habitats. Within‐genome diversity was similar for MHC class I loci, but for class IIB, the sexual species had higher diversity compared to the asexual — despite the hybrid origins and higher levels of heterozygosity at microsatellite loci in the asexual species. The level of positive selection appears to be similar between the two species, which suggests that these polymorphisms are maintained by selection. Thus, our findings do not allow us to rule out the sexual selection hypothesis for the evolution of MHC diversity, and although the sexual fish has higher levels of MHC‐diversity compared to the asexual species, this may be due to differences in demography, parasites, or other factors, rather than sexual selection.  相似文献   

13.
Ptacek MB 《Genetica》2002,116(2-3):329-342
Differences in male morphology and mating behaviors are thought to confer species sexual isolation between sailfin and shortfin species of mollies. This study used interspecific crosses between the sailfin molly, P. latipinna, and the shortfin molly, P. mexicana, to investigate patterns of inheritance of morphological traits and behavioral rates of three mating behaviors in F1 hybrid males. The two parental species showed clear species differences with respect to the length of the dorsal fin and dorsal fin ray number. First generation hybrid males were intermediate between the two parental species for dorsal fin length and fin ray number, suggesting autosomal control of this trait with little effect of dominance by genes from either parental species. Parental species showed clear species differences in their rates of courtship displays. Unlike the pattern for dorsal fin morphology, F1 hybrid males showed a clear distinction in display rates with respect to the direction of the interspecific cross. Male hybrids whose sires were P. latipinna had courtship display rates that were up to three times higher than the rates of displays performed by hybrid males whose fathers were P. mexicana. The distribution of phenotypes between the parental species and that of hybrid males sired by that parental species was nearly identical. Such a pattern suggests the influence of Y-linked genes on the inheritance of courtship display rates in mollies.  相似文献   

14.
When making mating decisions, individuals may rely on multiple cues from either the same or multiple sensory modalities. Although the use of visual cues in sexual selection is well studied, fewer studies have examined the role of chemical cues in mate choice. In addition, few studies have examined how visual and/or chemical cues affect male mating decisions. Male mate choice is important in systems where males must avoid mating with heterospecific females, as is found in a mating complex of Poecilia. Male sailfin mollies, Poecilia latipinna, are sexually parasitized by gynogenetic Amazon mollies, P. formosa. Little is known about the mechanism by which male sailfin mollies base their mating decisions. Here we tested the hypothesis that male sailfin mollies from an allopatric and a sympatric population with Amazon mollies use multiple cues to distinguish between conspecific and heterospecific females. We found that male sailfin mollies recognized the chemical cues of conspecific females, but we found no support for the hypothesis that chemical cues are by themselves sufficient for species discrimination. Lack of discrimination based on chemical cues alone may be due to the close evolutionary history between P. latipinna and P. formosa. Males from populations sympatric with Amazon mollies did not differentially associate with females of either of the two species when given access to both visual and chemical cues of the females, yet males from the allopatric population did associate more with conspecific females than with heterospecific females in the presence of both chemical and visual cues. The lack of discrimination by males from the sympatric population between conspecific and heterospecific females based on both chemical and visual cues suggests that these males require more complex combinations of cues to distinguish species, possibly due to the close relatedness of these species.  相似文献   

15.
The variation pattern of a large population ofTocoyena formosa in Botucatu, state of São Paulo, Brazil, and of other samples throughout the species area was analysed by morphometrical, statistical, ecological, and phytogeographical methods. Excessive variation and the remarkable coherence of two different character syndromes within this species strongly suggest that it has originated as a homogamic (diploid) hybrid complex. Possible parental species areT. brasiliensis, mainly from the Amazon region, andT. viscidula from the dry caatinga region of NE. Brazil.T. formosa has a much more extensive geographical range and greater ecological plasticity, ranging from the Amazon basin and the Guyanas throughout the Central Brazilian Plateau and from NE. to S. Brazil and Paraguay. Three (partly sympatric) varieties are distinguished withinT. formosa, i.e. var.formosa, var.pseudobrasiliensis (var. nov.), and var.microdon (comb. et stat. nov.). A provisional taxonomic revision, key, and conspectus covers the 12 accepted species ofTocoyena with blunt flower buds and ovate obtuse corolla lobes (group A, includingT. formosa); their distribution is shown in a map.  相似文献   

16.
A plant collected in South Africa in the early 1960's has been considered an intergeneric hybrid with the parental taxa beingRuspolia hypocrateriformis (Vahl)Milne-Redhead var.australis Milne-Redhead andRuttya ovata Harv. The intermediate morphology of the plant provided the strongest evidence of its hybrid origin. The natural hybrid, named formally as ×Ruttyruspolia A. Meeuse & de Wet, is highly sterile. Crosses between the two presumed parental taxa produced two plants that are very similar to the putative natural hybrid. We had examined the presumed parental species and the natural and artificial hybrids using enzyme electrophoresis. The two parental species are highly differentiated at genes specifying soluble enzymes; they have a genetic identity of 0.51. They have no common alleles at two genes, and contain alternative alleles in very different frequencies at two loci.Ruttya andRuspolia exhibit both unique and common alleles at two additional genes. The natural and artificially produced plants of ×Ruttyruspolia are identical electrophoretically and contain alleles unique to each of the parental species at two genes. In addition, individuals of ×Ruttyruspolia combine alternative high frequency alleles from each parent at two loci. Allozymes provide strong confirming evidence for the hybrid origin of naturally occurring ×Ruttyruspolia because the products of specific alleles either unique to or highly characteristic of the two putative parental taxa are found combined in ×Ruttyruspolia.  相似文献   

17.
Gynogenetic species rely on sperm from heterospecifics for reproduction but do not receive genetic benefits from mating because none of the paternal genome is incorporated into offspring. The gynogenetic Amazon molly (Poecilia formosa) is a species of hybrid origins that are sympatric with one of the two parent species that provide sperm for reproduction, P. latipinna or P. mexicana. Amazons should not prefer to mate with one species over the other because sperm from both species will trigger embryogenesis, but mating preferences may be present in Amazons through other mechanisms. Amazons may prefer the more familiar species (males found in sympatry), or Amazons may prefer males with the greatest lateral projection area (LPA), a preference that is present in the parent species and may be retained within the Amazon hybrid genome. We tested association preferences of two populations of Amazons sympatric with either P. mexicana or P. latipinna. We first performed live trials to test whether Amazons preferred one host species over the other and found that neither population of Amazons showed a preference. We then tested whether Amazons preferred sympatric male (familiar) host or the male with the greatest lateral projection area (LPA) using four animated male models that varied in host species and manipulation of LPA. We found Amazons from a population sympatric with P. latipinna showed no variation in their association preference across the different models. In contrast, Amazons from a population sympatric with P. mexicana (naturally small LPA) spent more time associating with the male models that had smaller LPA, which is more familiar to this population of Amazons. We suggest that Amazons may have population differences in mating preferences, where Amazons sympatric with P. latipinna may not show mating preference for host species, but Amazons sympatric with P. mexicana may show preferences for more familiar‐shaped males.  相似文献   

18.
Considering its immediate costs of producing dispensable males, the maintenance of sexual reproduction is a major paradox in evolutionary biology. Asexual lineages that do not face such costs theoretically should replace sexuals over time. Nonetheless, several systems are known in which closely related sexual and asexual lineages stably coexist. In the present study, we studied a sexual/asexual mating complex of a sperm-dependent parthenogenetic fish (amazon molly, Poecilia formosa) and its sexual congeners, the sailfin molly P. latipinna and the Atlantic molly P. mexicana. We asked whether differences in feeding behavior could contribute to their stable coexistence. We conducted a laboratory experiment to compare feeding efficiencies and also measured the competitive abilities between the two reproductive forms. Additionally, we measured gut fullness of fishes caught in natural habitats. Contrary to our predictions, we could not find P. formosa to be less efficient in feeding. We argue that food competition in mollies plays a minor role in mediating coexistence between closely related asexual and sexual mollies.  相似文献   

19.

Background  

The Amazon molly (Poecilia formosa) is a small unisexual fish that has been suspected of being threatened by extinction from the stochastic accumulation of slightly deleterious mutations that is caused by Muller's ratchet in non-recombining populations. However, no detailed quantification of the extent of this threat is available.  相似文献   

20.
Paulownia taiwaniana, the widely cultivated, commercially important tree, has been suspected of being of hybrid origin at least since its original publication in 1975. Evidence in support of this thesis, derived from a number of different investigations, is presented in this paper.—Strong evidence comes from a controlled pollination study of the two supposed parental species,P. kawakamii andP. fortunei. F1 seedlings, derived from reciprocal crosses between the suspected parents, exhibited identical banding patterns for a number of enzymes (such as SKDH, GOT, and IDH) withP. taiwaniana, when separated by electrophoresis. Furthermore, comparative morphological studies of trichomes and wood parenchyma patterns between the purported parents andP. taiwaniana reveal that this latter qualitatively exhibits characteristics that combine features of both of the suspected parental types. Biochemically, eight enzyme systems were compared in the three species here under discussion, and, without exception, the electrophoretic banding patterns exhibited byP. taiwaniana represented a combination of the alleles of the other two species. Perhaps the most convincing evidence comes from a genetic analysis of the progeny obtained by selfingP. taiwaniana. Genotypic segregation of the offspring based on a single locus each of SKDH and PGI fit the 1:2:1 hypothesis. Genotypic segregation of the offspring based on two loci each of SP and GOT fit the ratio of 3:6:3:1:2:1. This, taken in conjunction with the other data presented, clearly suggests thatP. taiwaniana is a hybrid involvingP. kawakamii andP. fortunei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号