首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Anolis lizards of the eastern Caribbean islands are parasitized by several species of malaria parasites (Plasmodium). Here I focus on two species of Plasmodium, using molecular data (mitochondrial cytochrome b sequences) to recover the phylogeography of the parasites throughout the Lesser Antilles and Puerto Rico. The two parasites were originally described as a single species, P. azurophilum, which infects both red and white blood cells. Here the two species are termed P. azurophilum Red and P. azurophilum White based on their host cell type. Six haplotypes were found in 100 infections sequenced of P. azurophilum Red and six in 45 infections of P. azurophilum White. Nested clade analysis revealed a significant association of geographical location and clades as well as a pattern of past fragmentation of parasite populations. This is consistent with the hypothesis that vector‐borne parasites such as malaria may be subject to frequent local extinctions and recolonizations. Comparison of the phylogeography of the lizard and parasites shows only weak concordance; that is, the parasites colonized the lizards in the islands, but dispersal events between islands via vectors or failed lizard colonizations were present. The two parasites had different histories, P. azurophilum Red colonized the islands from both the north and south, and P. azurophilum White originated in the central Lesser Antilles, probably from P. azurophilum Red, then moved to both north and south. This is the first study to examine the biogeography of a pair of sibling species of vector‐borne parasites within an island archipelago system.  相似文献   

2.
Potato virus Y (PVY) is an important plant pathogen, whose host range includes economically important crops such as potato, tobacco, tomato, and pepper. PVY presents three main strains (PVY(O), PVY(N) and PVY(C)) and several recombinant forms. PVY has a worldwide distribution, yet the mechanisms that promote and maintain its population structure and genetic diversity are still unclear. In this study, we used a pool of 77 complete PVY genomes from isolates collected worldwide. After removing the effect of recombination in our data set, we used bayesian techniques to study the influence of geography and host species in both PVY population structure and dynamics. We have also performed selection and covariation analyses to identify evolutionarily relevant amino acid residues. Our results show that both geographic and host-driven adaptations explain PVY diversification. Furthermore, purifying selection is the main force driving PVY evolution, although some indications of positive selection accounted for the diversification of the different strains. Interestingly, the analysis of P3N-PIPO, a recently described gene in potyviruses, seems to show a variable length among the isolates analyzed, and this variability is explained, in part, by host-driven adaptation.  相似文献   

3.
Phylogeography and pleistocene evolution in the North American black bear   总被引:5,自引:1,他引:5  
To determine the extent of phylogeographic structuring in North Americanblack bear (Ursus americanus) populations, we examined mitochondrial DNAsequences (n = 118) and restriction fragment length polymorphism profiles(n = 258) in individuals from 16 localities. Among the bears examined, 19lineages falling into two highly divergent clades were identified. Theclades differ at 5.0% of nucleotide positions, a distance consistent withan origin 1.8 MYA, and have different but overlapping geographicaldistributions. Areas of clade cooccurrence show that eastern and westernpopulations are currently mixing, but regional differences in lineagedistribution suggest that mixing has begun only recently. The long-termpopulation history of black bears appears to be characterized predominantlyby long-term regional isolation followed by recent contact andhybridization. Congruence between the pattern of diversity observed inblack bears and patterns of forest refuge formation during the Pleistocenesupports earlier speculation that Pleistocene forest fragmentationsunderlie a common pattern in the phylogeography of North American foresttaxa.  相似文献   

4.
5.
N‐linked glycosylation is known to be a crucial factor for the therapeutic efficacy and safety of monoclonal antibodies (mAbs) and many other glycoproteins. The nontemplate process of glycosylation is influenced by external factors which have to be tightly controlled during the manufacturing process. In order to describe and predict mAb N‐linked glycosylation patterns in a CHO‐S cell fed‐batch process, an existing dynamic mathematical model has been refined and coupled to an unstructured metabolic model. High‐throughput cell culture experiments carried out in miniaturized bioreactors in combination with intracellular measurements of nucleotide sugars were used to tune the parameter configuration of the coupled models as a function of extracellular pH, manganese and galactose addition. The proposed modeling framework is able to predict the time evolution of N‐linked glycosylation patterns during a fed‐batch process as a function of time as well as the manipulated variables. A constant and varying mAb N‐linked glycosylation pattern throughout the culture were chosen to demonstrate the predictive capability of the modeling framework, which is able to quantify the interconnected influence of media components and cell culture conditions. Such a model‐based evaluation of feeding regimes using high‐throughput tools and mathematical models gives rise to a more rational way to control and design cell culture processes with defined glycosylation patterns. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1135–1148, 2016  相似文献   

6.
Cruaud, A., Raherilalao, M. J., Pasquet, E. & Goodman, S. M. (2011) Phylogeography and systematics of the Malagasy rock‐thrushes (Muscicapidae, Monticola). —Zoologica Scripta, 40, 554–566. The patterns of genetic variation and the systematics of members of the widespread Old World genus Monticola (Family Muscicapidae) occurring on Madagascar remain unresolved. Herein, we address these questions by examining the phylogeography of Malagasy Monticola using two molecular markers (ND2 and ATP6, 1.5 kb) from 60 individuals sampled across their known range. To clarify the relationships within the clade groupings, we use a statistical haplotype network and an analysis of the genetic structure of the different populations sampled. A morphological study was conducted in parallel that used many of the same individuals employed in the molecular study to examine potential differences between the recovered clades. Based on molecular genetics and morphology, Mimerinus is distinct from the M. sharpei complex, which is composed of five phylogroups: Group A (Central Highlands, typical sharpei), Group B (Central West, Bemaraha), Group C (Northern Highlands), Group D (Montagne d’Ambre, erythronotus) and Group E (Southwestern, bensoni). While molecular data show high levels of geographical structure, these differences exhibit low levels of intergroup genetic divergence (0.01–0.07%). We suggest that two species of Monticola occur on Madagascar, imerinus and sharpei, and the forms referable to bensoni and erythronotus, as well as unnamed populations from the Central West (Bemahara), should be considered as part of M. sharpei and are populations that are probably isolated and undergoing incipient speciation.  相似文献   

7.
The deep sea is a vast and essentially continuous environment with few obvious barriers to gene flow. How populations diverge and new species form in this remote ecosystem is poorly understood. Phylogeographical analyses have begun to provide some insight into evolutionary processes at bathyal depths (<3000 m), but much less is known about evolution in the more extensive abyssal regions (>3000 m). Here, we quantify geographical and bathymetric patterns of genetic variation (16S rRNA mitochondrial gene) in the protobranch bivalve Ledella ultima, which is one of the most abundant abyssal protobranchs in the Atlantic with a broad bathymetric and geographical distribution. We found virtually no genetic divergence within basins and only modest divergence among eight Atlantic basins. Levels of population divergence among basins were related to geographical distance and were greater in the South Atlantic than in the North Atlantic. Ocean‐wide patterns of genetic variation indicate basin‐wide divergence that exceeds what others have found for abyssal organisms, but considerably less than bathyal protobranchs across similar geographical scales. Populations on either side of the Mid‐Atlantic Ridge in the North Atlantic differed, suggesting the Ridge might impede gene flow at abyssal depths. Our results indicate that abyssal populations might be quite large (cosmopolitan), exhibit only modest genetic structure and probably provide little potential for the formation of new species.  相似文献   

8.
Birds migrating annually to high‐latitude breeding grounds may benefit from the transport of endogenous nutrient reserves that ultimately contribute to reproduction. Shorebirds represent a diverse group of Arctic breeders that typically arrive on the breeding grounds with body reserves enriched in 13C and 15N due to wintering and staging in marine or estuarine habitats. Such isotopic differences between endogenous macronutrient reserves and local foodwebs allow the use of stable isotopes to test for the source of nutrient allocations to eggs. We examined δ13C and δ15N values in lipid‐free yolk and albumen and δ13C values in yolk lipid of first clutches of ten species of sandpiper and plover breeding near Churchill, Manitoba, Canada in 2003. Most birds had egg isotope values indicating a C3 terrestrial biome, which fits primarily an income (exogenous) breeding strategy. Two exceptions were single sandpiper and plover with strong marine isotope values. Among species, strong positive relationships for each isotope between egg tissue components suggest that egg proteins and lipids tended to be derived from the same isotopic source. Correlations of egg δ13C values for lipids and proteins approached theoretical relationships expected for exogenous breeding strategies, based on captive studies. Significant positive correlations between clutch initiation date and δ13C values of egg lipids and albumen suggest some endogenous nutrient contributions to later laid eggs but the circumstances under which this may occur are unstudied. Where possible, we recommend that researchers use blood and fat biopsies from laying females as a means of anchoring endogenous and exogenous endpoints for modeling of each reproductive event. We encourage the isotopic analysis of egg albumen, yolk and yolk lipids among individuals and species and tests of correlations among these components as a means of inferring origins of nutrients to eggs.  相似文献   

9.
LST‐03 lipase from an organic solvent‐tolerant Pseudomonas aeruginosa LST‐03 has high stability and activity in the presence of various organic solvents. In this research, enhancement of organic solvent‐stability of LST‐03 lipase was attempted by directed evolution. The structural gene of the LST‐03 lipase was amplified by the error prone‐PCR method. Organic solvent‐stability of the mutated lipases was assayed by formation of a clear zone of agar which contained dimethyl sulfoxide (DMSO) and tri‐n‐butyrin and which overlaid a plate medium. And the organic solvent‐stability was also confirmed by measuring the half‐life of activity in the presence of DMSO. Four mutated enzymes were selected on the basis of their high organic solvent‐stability in the presence of DMSO. The organic solvent‐stabilities of mutated LST‐03 lipase in the presence of various organic solvents were measured and their mutated amino acid residues were identified. The half‐lives of the LST‐03‐R65 lipase in the presence of cyclohexane and n‐decane were about 9 to 11‐fold longer than those of the wild‐type lipase, respectively. Some substituted amino acid residues of mutated LST‐03 lipases have been located at the surface of the enzyme molecules, while some other amino acid residues have been changed from neutral to basic residues. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

10.
11.
European bat lyssaviruses types 1 and 2 (EBLV-1 and EBLV-2) are widespread in Europe, although little is known of their evolutionary history. We undertook a comprehensive sequence analysis to infer the selection pressures, rates of nucleotide substitution, age of genetic diversity, geographical origin, and population growth rates of EBLV-1. Our study encompassed data from 12 countries collected over a time span of 35 years and focused on the glycoprotein (G) and nucleoprotein (N) genes. We show that although the two subtypes of EBLV-1--EBLV-1a and EBLV-1b--have both grown at a low exponential rate since their introduction into Europe, they have differing population structures and dispersal patterns. Furthermore, there were strong constraints against amino acid change in both EBLV-1 and EBLV-2, as reflected in a low ratio of nonsynonymous to synonymous substitutions per site, particularly in EBLV-1b. Our inferred rate of nucleotide substitution in EBLV-1, approximately 5 x 10(-5) substitutions per site per year, was also one of the lowest recorded for RNA viruses and implied that the current genetic diversity in the virus arose 500 to 750 years ago. We propose that the slow evolution of EBLVs reflects their distinctive epidemiology in bats, where they occupy a relatively stable fitness peak.  相似文献   

12.
Aim We examined patterns of spatial and temporal diversification of the Amazonian endemic chestnut‐tailed antbird, Mymeciza hemimelaena (Thamnophilidae), to evaluate the diversification of a widespread avian taxon across rivers that potentially represent major natural barriers. Location Lowland Amazonia. Methods Sequences of the mitochondrial ND2 and cytochrome b genes were investigated from 65 individuals distributed throughout the entire range of M. hemimelaena, and including the two currently valid subspecies M. h. hemimelaena and M. h. pallens. Based on a combination of phylogeographic tools, molecular dating, and population genetic methods, we reconstructed a spatio‐temporal scenario of diversification of M. hemimelaena in the Amazon. Results The data revealed three genetically divergent and monophyletic groups in M. hemimelaena, which can also be distinguished by a combination of morphological and vocal characters. Two of these clades correspond to the previously described taxa M. h. hemimelaena and M. h. pallens, which are separated by the upper Madeira River, a main Amazonian tributary. The third clade is distributed between the middle reaches of the Madeira River and the much smaller tributaries Jiparaná and Aripuanã, and, although currently treated as M. h. pallens, clearly constitutes an independent evolutionary lineage probably deserving separate species status. Molecular clock and population genetic analyses indicate that diversification in this group occurred throughout the Pleistocene, with demographic fluctuations assumed for M. h. hemimelaena and M. h. pallens. Main conclusions The findings implicate rivers as barriers driving diversification in the M. hemimelaena complex. Levels of mitochondrial DNA divergence and associated morphological and vocal traits support its division into at least three separate species with comparatively small ranges. The existence of a previously unrecognized lineage in the M. hemimelaena complex, and the high degree of population structuring found in M. h. hemimelaena underscore the pervasiveness of cryptic endemism throughout Amazonia and the importance of DNA‐based taxonomic and phylogeographic studies in providing the accurate estimates of diversity that are essential for conservation planning.  相似文献   

13.
In rare but nevertheless important cases it is of practical interest to decrease the thermostability of an enzyme, that is, to increase thermolability in a controlled manner. In the present model study, this unconventional goal has been reached by applying directed evolution to the lipase from Pseudomonas aeruginosa (PAL). By utilizing the B‐factor iterative test (B‐FIT), previously developed to increase the thermostability of enzymes, it was possible to reduce the value from 71.6°C in the case of wild type (WT‐PAL) to 35.6°C (best mutant) without affecting the catalytic profile in terms of substrate acceptance or enantioselectivity at room temperature. Accordingly, saturation mutagenesis was performed at sites in PAL, which on the basis of its X‐ray structure, have the lowest B‐factors indicative of high rigidity. Focused mutations were introduced which can be expected to decrease rigidity, the ensuing increased flexibility leading to higher thermolability without changing the actual catalytic profile. Biotechnol. Bioeng. 2009;102: 1712–1717. © 2008 Wiley Periodicals, Inc.  相似文献   

14.
Models reveal that sexually antagonistic co‐evolution exaggerates female resistance and male persistence traits. Here we adapt an established model by including directional sexual selection acting against persistence. We find similar equilibria to previous models showing that sexually antagonistic co‐evolution can be limited by counteracting sexual, as well as, natural selection. We tested the model using empirical data for the seaweed fly, Coelopa ursina, in which body size acts as a persistence and a resistance trait. Our model can generate continuous co‐evolutionary cycles and stable equilibria, however, all simulations using empirically derived parameter estimates reach stable equilibria. Thus, stable equilibria might be more common in nature than continuous co‐evolutionary cycles, suggesting that sexual conflict is unlikely to promote speciation. The model predicts male biased sexual size dimorphism for C. ursina, comparable with empirically observed values. Male persistence is shown to be more sensitive than female resistance to changes in model parameters.  相似文献   

15.
Recent studies have shown that symbionts can be a source of adaptive phenotypic variation for their hosts. It is assumed that co‐evolution between hosts and symbionts underlies these ecologically significant phenotypic traits. We tested this assumption in the ectosymbiotic fungal associate of the gall midge Asteromyia carbonifera. Phylogenetic analysis placed the fungal symbiont within a monophyletic clade formed by Botryosphaeria dothidea, a typically free‐living (i.e. not associated with an insect host) plant pathogen. Symbiont isolates from four divergent midge lineages demonstrated none of the patterns common to heritable microbial symbioses, including parallel diversification with their hosts, substitution rate acceleration, or A+T nucleotide bias. Amplified fragment length polymorphism genotyping of the symbiont revealed that within‐lineage genetic diversity was not clustered along host population lines. Culture‐based experiments demonstrated that the symbiont‐mediated variation in gall phenotype is not borne out in the absence of the midge. This study shows that symbionts can be important players in phenotypic variation for their hosts, even in the absence of a co‐evolutionary association.  相似文献   

16.
Two major types of Frankia strains are usually recognized, based on the ability to sporulate in‐planta: spore‐positive (Sp+) and spore‐negative (Sp?). We carried out a study of Sp+ and Sp? Frankia strains based on nodules collected on Alnus glutinosa, Alnus incana and Alnus viridis. The nodules were phenotyped using improved histology methods, and endophytic Frankia strain genotype was determined using a multilocus sequence analysis approach. An additional sampling was done to assess the relation between Sp+ phenotype frequency and genetic diversity of Frankia strains at the alder stand scale. Our results revealed that (i) Sp+ and Sp? Alnus‐infective Frankia strains are genetically different even when sampled from the same alder stand and the same host–plant species; (ii) there are at least two distinct phylogenetic lineages of Sp+ Frankia that cluster according to the host–plant species and without regard of geographic distance and (iii) genetic diversity of Sp+ strains is very low at the alder stand scale compared with Sp? strains. Difference in evolutionary history and genetic diversity between Sp+ and Sp? Frankia allows us to discuss the possible ecological role of in‐planta sporulation.  相似文献   

17.
A continuum of alleles model with pair-wise AxA epistasis is proposed and its transmission genetic, and variational properties are analysed. The basic idea is that genes control the values of underlying variables, which affect the genotypic value of phenotypic characters proportional to a "scaling factor". Epistasis is the influence of one gene on the average effect of another gene. In this model, epistasis is introduced as a mutational effect of one gene on the scaling factors of another gene. In accordance with empirical results, the model assumes that the average direct effect of mutations is zero, as is the average epistatic effect. The model predicts that, on average, a mutation at one locus increases the expected mutational variance of mutations at another interacting locus. The increase in mutational variance is predicted to be equal to the variance of the pair-wise epistatic effects. This result is consistent with the observation that mutant phenotypes tend to be more variable than the wildtype phenotype. Another generic result of this model is that the frequency of canalizing mutations can at most be equal to the frequency of de-canalizing mutations. Furthermore, it is predicted that the mutational variance of a character increases at least linearly with the size of the character; hence this model is scale variant. In the case of two characters it is shown that the dimensionality of the locus-specific mutational effect distribution is invariant, i.e. the rank of the mutational covariance matrix M is invariant. While in additive models the mutational covariance matrix is always and entirely invariant, the invariance in the case of epistatic models is unexpected. Epistatic interactions can change the magnitude of the mutational (co)variances at a locus and can thus influence the structure of the mutational covariance matrix. However, in the present model the dimensionality of the mutational effect distribution remains the same. A consequence of this result is that, in this model, the genetic architecture of a set of characters is always evolvable i.e. no hard constraints can evolve.  相似文献   

18.
Recombination is a major evolutionary force, increasing genetic diversity and permitting efficient coevolution of fungal pathogen(s) with their host(s). The ascomycete Fusarium graminearum is a devastating pathogen of cereal crops, and can contaminate food and feed with harmful mycotoxins. Previous studies have suggested a high adaptive potential of this pathogen, illustrated by an increase in pathogenicity and resistance to fungicides. In this study, we provide the first detailed picture of the crossover events occurring during meiosis and discuss the role of recombination in pathogen evolution. An experimental recombinant population (n = 88) was created and genotyped using 1306 polymorphic markers obtained from restriction site‐associated DNA sequencing (RAD‐seq) and aligned to the reference genome. The construction of a high‐density linkage map, anchoring 99% of the total length of the reference genome, allowed the identification of 1451 putative crossovers, positioned at a median resolution of 24 kb. The majority of crossovers (87.2%) occurred in a relatively small portion of the genome (30%). All chromosomes demonstrated recombination‐active sections, which had a near 15‐fold higher crossover rate than non‐active recombinant sections. The recombination rate showed a strong positive correlation with nucleotide diversity, and recombination‐active regions were enriched for genes with a putative role in host–pathogen interaction, as well as putative diversifying genes. Our results confirm the preliminary analysis observed in other F. graminearum strains and suggest a conserved ‘two‐speed’ recombination landscape. The consequences with regard to the evolutionary potential of this major fungal pathogen are also discussed.  相似文献   

19.
Laboratory evolution studies provide fundamental biological insight through direct observation of the evolution process. They not only enable testing of evolutionary theory and principles, but also have applications to metabolic engineering and human health. Genome‐scale tools are revolutionizing studies of laboratory evolution by providing complete determination of the genetic basis of adaptation and the changes in the organism's gene expression state. Here, we review studies centered on four central themes of laboratory evolution studies: (1) the genetic basis of adaptation; (2) the importance of mutations to genes that encode regulatory hubs; (3) the view of adaptive evolution as an optimization process; and (4) the dynamics with which laboratory populations evolve.  相似文献   

20.
West Nile virus (WNV) is the most widely distributed of the encephalitic flaviviruses and is a major cause of encephalitis, with isolates obtained from all continents, apart from Antarctica. Subsequent to its divergence from the other members of the Japanese encephalitis virus complex, presumably in Africa, WNV has diverged into individual lineages that mostly correspond with geographic distribution. Here we elucidate the phylogeography and evolutionary history of isolates from lineage 1 of WNV. Interestingly, there are many examples of the same amino acid having evolved independently on multiple occasions. In Africa, WNV exists in an endemic cycle, whereas it is epidemic in Europe, being reintroduced regularly from Africa either directly (in western Europe) or via the Middle East (in eastern Europe). Significantly, introduction into other geographic areas has occurred on one occasion only in each region, leading to subsequent establishment and expansion of the virus in these areas. Only one endemic genotype each is present in India and Australia, suggesting that WNV was successfully introduced into these locations once only. Each introduction occurred many centuries ago, probably due to trade and exploration during the 19th century. Likewise, in the Americas, WNV was successfully introduced in 1999 and subsequently became endemic across most temperate regions of North America (NA). In contrast to previous suggestions, an isolate from the epidemic in Israel in 1998 was not the direct progenitor of the NA epidemic; rather, both epidemics originated from the same (unknown) location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号