首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungal insecticides developed from filamentous pathogens of insects are notorious for their slow killing action through cuticle penetration, depressing commercial interest and practical application. Genetic engineering may accelerate their killing action but cause ecological risk. Here we show that a Beauveria bassiana formulation, HV8 (BbHV8), engineered for fast per os killing of caterpillars by an insect midgut-acting toxin (Vip3Aa1) overexpressed in conidia has both high field efficacy and safety in full-season protection of cabbage from the damage of an insect pest complex dominated by Pieris rapae larvae, followed by Plutella xylostella larvae and aphids. In two fields repeatedly sprayed during summer, BbHV8 resulted in overall mean efficacies of killing of 71% and 75%, which were similar or close to the 70% and 83% efficacies achieved by commercially recommended emamectin benzoate but much higher than the 31% and 48% efficacies achieved by the same formulation of the parental wild-type strain (WT). Both BbHV8 and WT sprays exerted no adverse effect on a nontarget spider community during the trials, and the sprays did not influence saprophytic fungi in soil samples taken from the field plots during 4 months after the last spray. Strikingly, BbHV8 and the WT showed low fitness when they were released into the environment because both were decreasingly recovered from the field lacking native B. bassiana strains (undetectable 5 months after the spray), and the recovered isolates became much less tolerant to high temperature and UV-B irradiation. Our results highlight for the first time that a rationally engineered fungal insecticide can compete with a chemical counterpart to combat insect pests at an affordable cost and with low ecological risk.  相似文献   

2.
3.
Vegetative insecticidal protein (Vip) is a newly discovered family of toxin protein isolated from Bacillus thuringiensis (Bt). An 88.5-kDa Vip3Aa protein was secreted by a local strain of the bacterium during the vegetative growth phase. The full length of the coding region ‘2.3 kbp’ of the vip3Aa gene was isolated from plasmid DNA, cloned in pGEM-T vector and finally cloned in pQE-30 expression vector. Nucleotide sequence revealed 98% homology with that of the previously isolated genes. Expression of the vip3Aa in Escherichia coli was carried out and the expressed protein was detected in the concentrated supernatant, not in the pellet. This indicated that vip3Aa is secreted into the culture medium. Expressed protein was purified, blotted, and assayed against the cotton leaf worm Spodoptera littoralis. The LC50 was found to be 142.4 µ/mL while the LC50 was 90 ppm for the wild strain. These results suggest the use of either the isolated Bt strains or the expressed vip3Aa in an integrated pest management program against lepidopteran insect pests.  相似文献   

4.
Expression of the Cry2Aa2 protein was targeted specifically to the green tissues of transgenic tobacco Nicotiana tabacum cv. Xanthi plants. This deployment was achieved by using the promoter region of the gene encoding the Solanum tuberosum leaf and stem specific (ST-LS1) protein. The accumulated levels of toxin in the leaves were found to be effective in achieving 100 mortality of Heliothis virescens larvae. The levels of Cry2Aa2 expression in the leaves of these transgenic plants were up to 0.21 of the total soluble proteins. Bioassays with R1 transgenic plants indicated the inheritance of cry2Aa2 in the progeny plants. Tissue-specific expression of the Bt toxin in transgenic plants may help in controlling the potential occurrence of insect resistance by limiting the amount of toxin to only predated tissues. The results reported here validate the use of the ST-LS1 gene promoter for a targeted expression of Bt toxins in green tissues of plants.  相似文献   

5.
A neutral trehalase (NTH1) of fungal entomopathogen Beauveria bassiana was characterized for the first time as a 743-aa enzyme (84.4 kDa). To identify crucial stress-responsive elements (STREs) to control the expression of the NTH-coding gene (BbNTH1) in response to different stresses, the full-length promoter (−2713 bp) upstream of its open reading frame and three upstream-truncated fragments (−1912, −1060 and −560 bp) were fused to the reporter gene eGFP and then transformed into B. bassiana, respectively. Consequently, eGFP was well expressed as intensive fluorescence in mycelia, conidiogenic cells and forming conidia controlled by the full-length promoter with five STREs. Surprisingly, transformants controlled by the shortest fragment with last two STREs at −315 and −274 bp exhibited consistently brightest fluorescence in mycelia under 3-h oxidative adaption of 0.3-1.2 mM menadione, and in colonies under 6-day osmotic stress of 0.5-1 M NaCl and thermal stress of 15-540 min at 40 °C after 3-day growth at 25 °C. Single or dual site-directed mutations of the two STREs from CCCCT to CATCT significantly altered the gene response to the multiple stresses. Thus, the two STREs in the downstream 560-bp region of the promoter are crucial to regulating not only constitutive but stress-inducible expression of the target gene.  相似文献   

6.
The entomopathogenic fungus Beauveria bassiana acts slowly on insect pests through cuticle infection. Vegetative insecticidal proteins (Vip3A) of Bacillus thuringiensis kill lepidopteran pests rapidly, via per os infection, but their use for pest control is restricted to integration into transgenic plants. A transgenic B. bassiana strain (BbV28) expressing Vip3Aa1 (a Vip3A toxin) was thus created to infect the larvae of the oriental leafworm moth Spodoptera litura through conidial ingestion and cuticle adhesion. Vip3Aa1 (∼88 kDa) was highly expressed in the conidial cytoplasm of BbV28 and was detected as a digested form (∼62 kDa) in the larval midgut 18 and 36 h after conidial ingestion. The median lethal concentration (LC50) of BbV28 against the second-instar larvae feeding on cabbage leaves sprayed with conidial suspensions was 26.2-fold lower than that of the wild-type strain on day 3 and 1.1-fold lower on day 7. The same sprays applied to both larvae and leaves for their feeding reduced the LC50 of the transformant 17.2- and 1.3-fold on days 3 and 7, respectively. Median lethal times (LT50s) of BbV28 were shortened by 23 to 35%, declining with conidial concentrations. The larvae infected by ingestion of BbV28 conidia showed typical symptoms of Vip3A action, i.e., shrinkage and palsy. However, neither LC50 nor LT50 trends differed between BbV28 and its parental strain if the infection occurred through the cuticle only. Our findings indicate that fungal conidia can be used as vectors for spreading the highly insecticidal Vip3A protein for control of foliage feeders such as S. litura.Entomopathogenic fungi, such as Beauveria bassiana and Metarhizium anisopliae, infect hosts through the cuticle and are classic biocontrol agents used against insect pests with either chewing or sucking mouthparts (3, 10, 25, 31). However, their action on target pests is quite slow due to a latent period of several days. This slow action is an obstacle to commercial development of mycoinsecticides (11, 29).Fungal infection starts from the adhesion of conidia to the host cuticle, followed by germination and cuticle penetration into the hemocoel, where fungal cells are propagated by budding until the mycosis-affected host dies from nutrition depletion (10). Conidia ingested by foliage feeders, such as caterpillars, rarely cause substantial infection before excretion due to the lack of intestine-specific virulence factors (29). For this reason, fungal agents are often not very effective against leaf-ingesting insects, which are still able to cause considerable damages before dying of mycosis. Thus, efforts have been increasing to enhance fungal virulence by genetic manipulation. Fungal infection of aphids was accelerated by overexpressing a silkworm chitinase or a hybrid chitinase in B. bassiana (6, 8). Integration of a scorpion neurotoxin in M. anisopliae for specific expression in insect hemolymph after cuticle penetration resulted in 22-, 9-, and 16-fold increases of fungal toxicity to the tobacco hornworm Manduca sexta, the yellow fever mosquito Aedes aegypti, and the coffee berry borer Hypothenemus hampei, respectively (21, 33). Similarly, B. bassiana expressing the scorpion neurotoxin showed a 15-fold increase of insecticidal activity against Masson''s pine caterpillar (Dendrolimus punctatus), and its action on the larvae of D. punctatus and Galleria mellonella was accelerated 24 and 40% (17), respectively. These studies have shed light upon the feasibility of enhancing fungal biocontrol potential by gene transformation. However, none of the genes transformed into the fungal pathogens was an intestine-specific virulence factor to enhance fungal infection per os, although foliage feeders may ingest a large number of conidia sprayed on crop leaves.Vegetative insecticidal proteins (Vips) are a novel class of toxins secreted by Bacillus thuringiensis at the stages of vegetative and stationary growth and show insecticidal activities only in insect intestines (26). Among these, Vip3A has been proven to kill a broad spectrum of lepidopteran insects (2, 5, 18, 19, 26) and may overcome pest resistance to Bacillus thuringiensis endotoxins (Bt endotoxins) (4, 5). As an intestine-specific virulence factor, Vip3A lyses midgut epithelium cells of insects after ingestion (38), forming pores on the cell membrane (12, 13). Not surprisingly, the Vip-encoding genes are considered excellent candidates for new generation of transgenic crops (34). Transgenic plants expressing Vip3A not only exhibit high efficacy against the cotton bollworm Helicoverpa armigera (16, 32) but also are safe to vertebrates (1, 22). However, none of the Vip toxins has been developed commercially like Bt endotoxin formulations, perhaps largely due to their limited yield in cell cultures and an instability of their noncrystal structure. Thus, a new approach is needed to develop Vip-vectoring products for pest control.Fungal conidia can readily be mass produced on solid substrates, such as small grains (36), and usually are formulated as active ingredients of mycoinsecticides (3), making them potential vectors to carry the Vip toxins onto crop foliages by field spray. This study sought to express Vip3Aa1 toxin (a Vip3A member) in a wild-type strain of B. bassiana. Our goal was to enhance the insecticidal activity of transgenic conidia by per os infection in addition to normal cuticle infection. A genetically stable transformant expressing the toxin was generated and assayed for its oral and cuticle infectivity to the larvae of the oriental leafworm moth Spodoptera litura (Noctuidae) in parallel with the wild-type strain.  相似文献   

7.
【目的】探究腺苷酸糖基化因子ARF在球孢白僵菌(Beauveria bassiana)中存在种类及生物学功能。【方法】利用BLASTp搜索球孢白僵菌非冗余蛋白数据库,鉴定ARF并进行聚类分析,结合表达分析、反义抑制、超量表达野生型基因和GTP解离位点与结合位点突变的基因,解析其中1个ARF与白僵菌发育分化、逆境胁迫反应和毒力的关系。【结果】球孢白僵菌中存在至少6个ARF或类似蛋白,分别聚类于酵母、人类ARF及其类似蛋白的不同类群。其中BBA_01574与人类的ARF3、ARF4和ARF5聚为一类,命名为BbarfA。BbarfA在成熟的分生孢子和球形膨大时期表达明显高于芽管伸长期。反义抑制BbarfA加速了孢子萌发,提高了菌株毒力,而超量表达BbarfA和点突变GTP解离区域的BbarfA则延迟了孢子萌发速度,降低了菌株毒力。尽管BbarfA转录受高盐、髙渗、氧化和高温胁迫的诱导,但遗传修饰的转化子与野生菌株对上述胁迫反应的敏感性无明显差异。【结论】BbarfA介导分生孢子萌发和毒力。  相似文献   

8.
Beauveria bassiana s.l. is a cosmopolitan fungus used in the control of different species of arthropods. The current study explored the virulence for ticks, proteolytic and lipolytic activities of 10 Brazilian B. bassiana s.l. isolates. For this purpose, Rhipicephalus microplus biological parameters was evaluated after immersion of the engorged females in fungal suspension (108 conidia mL?1) and the enzymatic activities were performed posteriorly the fungal growth in minimal medium. After the biological assays, five isolates changed all parameters analysed with highest efficacy of approximately 61% (CG 206) and 66% (CG 481). However, we observed that the most virulent isolates did not show the highest enzymatic activities. Interestingly, CG 500, considered an isolate of intermediate efficacy, demonstrated higher enzymatic activities than the other isolates in four of five analyses (total protease, Pr1, Pr2 and lipase; p?相似文献   

9.
10.
刘慧  李博  牛林  邱林  王永 《生物安全学报》2018,27(4):255-259
【目的】Bt杀虫蛋白发挥杀虫活性的重要前提是Cry蛋白能够与昆虫中肠上皮细胞刷状缘膜囊(BBMVs)上的受体蛋白结合。在前期获得二化螟氨肽酶N1(Aminopeptidase N,APN1)基因全长序列的基础上,明确二化螟APN1多肽片段与Cry2Aa的结合能力。【方法】将二化螟APN1序列片段在大肠杆菌BL21(DE3)中表达,利用蛋白质单向电泳和ligand blotting技术分析二化螟APN1多肽片段与Cry2Aa的结合能力。【结果】重组载体可在表达菌株BL21(DE3)中表达一个约70 ku的蛋白,纯化后的多肽条带单一,纯度较好。Ligand blot分析结果显示,表达的二化螟APN1多肽片段可以与活化的Cry2Aa杀虫蛋白结合,且结合条带随着重组蛋白上样量的降低而减弱。【结论】APN1多肽片段可以与Cry2Aa结合,为阐明APN1基因的功能奠定基础,也为其他Bt蛋白的受体蛋白相关研究提供新的借鉴。  相似文献   

11.
12.
13.
A novel solid-state fermentation apparatus, namely an upright multi-tray conidiation chamber, was developed to facilitate the production of aerial conidia of fungal biocontrol agents, such as Beauveria bassiana. The chamber with 25 bottom-meshed metal trays had a capacity of ≥50 kg rice with each tray holding ≥2 kg. In repeated trials, a mean yield of 2.4 (1.8–2.7) × 1012 conidia kg−1 rice was harvested from the 7-day cultures of B. bassiana in a fully loaded chamber. The new apparatus has a high potential for bulk production of fungal conidia.  相似文献   

14.
Studies were conducted tosearch for fungal strains with potentialpathogenicity against Diabrotica speciosa(Germar) (Coleoptera: Chrysomelidae).Among sixteen fungal isolates screenedthe most virulent was a Beauveria bassiana(Balsamo) Vuillemin isolate (FHD13) thatcaused 70% mortality of D. speciosathird instar larvae. The LC50 value ofB. bassiana isolate FHD13 was3.48 × 1010 conidia/ml.Different temperatures (4, 17 and 26 °C)and vegetable oils (corn, sunflower and canola)used for storage did not significantly affectviability of conidia. A pathogenicity trialagainst D. speciosa larvae performed withthe corn oil formulation (1 × 108 conidia/mlof oil) caused 65% of mortality.  相似文献   

15.
16.
17.
Seventeen isolates of Metarhizium anisopliae (Metschnikoff) Sorokin and two isolates of Beauveria bassiana (Balsamo) Vuillemin were evaluated for their pathogenicity against the tobacco spider mite, Tetranychus evansi Baker & Pritchard. In the laboratory all the fungal isolates were pathogenic to the adult female mites, causing mortality between 22.1 and 82.6%. Isolates causing more than 70% mortality were subjected to dose–response mortality bioassays. The lethal concentration causing 50% mortality (LC50) values ranged between 0.7×107 and 2.5×107 conidia ml−1. The lethal time to 50% mortality (LT50) values of the most active isolates of B. bassiana and M. anisopliae strains varied between 4.6 and 5.8 days. Potted tomato plants were artificially infested with T. evansi and treated with B. bassiana isolate GPK and M. anisopliae isolate ICIPE78. Both fungal isolates reduced the population density of mites as compared to untreated controls. However, conidia formulated in oil outperformed the ones formulated in water. This study demonstrates the prospects of pathogenic fungi for the management of T. evansi.  相似文献   

18.
Characterization of Chimeric Bacillus thuringiensis Vip3 Toxins   总被引:5,自引:0,他引:5       下载免费PDF全文
Bacillus thuringiensis vegetative insecticidal proteins (Vip) are potential alternatives for B. thuringiensis endotoxins that are currently utilized in commercial transgenic insect-resistant crops. Screening a large number of B. thuringiensis isolates resulted in the cloning of vip3Ac1. Vip3Ac1 showed high insecticidal activity against the fall armyworm Spodoptera frugiperda and the cotton bollworm Helicoverpa zea but very low activity against the silkworm Bombyx mori. The host specificity of this Vip3 toxin was altered by sequence swapping with a previously identified toxin, Vip3Aa1. While both Vip3Aa1 and Vip3Ac1 showed no detectable toxicity against the European corn borer Ostrinia nubilalis, the chimeric protein Vip3AcAa, consisting of the N-terminal region of Vip3Ac1 and the C-terminal region of Vip3Aa1, became insecticidal to the European corn borer. In addition, the chimeric Vip3AcAa had increased toxicity to the fall armyworm. Furthermore, both Vip3Ac1 and Vip3AcAa are highly insecticidal to a strain of cabbage looper (Trichoplusia ni) that is highly resistant to the B. thuringiensis endotoxin Cry1Ac, thus experimentally showing for the first time the lack of cross-resistance between B. thuringiensis Cry1A proteins and Vip3A toxins. The results in this study demonstrated that vip3Ac1 and its chimeric vip3 genes can be excellent candidates for engineering a new generation of transgenic plants for insect pest control.  相似文献   

19.
Beauveria bassiana has a high insecticidal potential to control the tarnished plant bug, Lygus lineolaris, a significant pest of strawberries. Screening experiments showed that L. lineolaris adults were susceptible to several B. bassiana isolates. Another screening test with Coleomegilla maculata, a natural enemy found in strawberries, was also performed in order to select the isolate having lower entomopathogenic impact on this insect. Based on data obtained from both insect species and on the ecozone origin of the B. bassiana isolates, INRS‐IP and INRS‐CFL isolates were selected for further experiments. The LC50 values of these two isolates against L. lineolaris adults were 7.8 × 105 and 5.3 × 105 conidia/ml, and average survival time (AST) values were 4.46 and 4.37 days at a concentration of 1 × 108 conidia/ml respectively. Results also indicated that L. lineolaris nymphs are susceptible to the selected isolates. During field experiments, using a randomized block design with four replicates, INRS‐IP and INRS‐CFL isolates were applied at two rates (1 × 1011 and 1 × 1013 conidia/ha) weekly during a period of 4 weeks. These multiple applications triggered a significant reduction of L. lineolaris nymphal populations in strawberries. Twenty‐four days after the first application, a significant difference was observed between the mean population densities of surviving nymphs in all B. bassiana‐treated plots (less than one insect per five plants) compared with those in control plots (four insects per five plants). During the field experiment, persistence of insecticidal activity and viability of B. bassiana conidia were also monitored. The results showed the presence of viable and infective conidia up to 6 days after each application on strawberry foliage. Moreover, the multiple applications of B. bassiana at the rate of 1 × 1013 conidia/ha triggered a significant reduction in strawberry fruit injuries induced by L. lineolaris feeding behaviour compared with the control plots.  相似文献   

20.
Beauveria bassiana is a commercially important entomopathogenic fungus. Like other insect fungal pathogens, B. bassiana usually produces asexual reproductive bodies, conidia, for dispersal, transmission and infection of insects. Adequate mass-production of high quality conidia is crucial to development of an efficient B. bassiana insecticide. However, little is known about details of conidiation in this fungus in response to environmental signals, which limits understanding of the mechanism of conidiation and improvement in conidia production. Here, morphologenetic changes of B. bassiana under different light conditions are reported. When cultured in total darkness, B. bassiana hyphae can grow continuously with few reproductive structures differentiated, while illumination with white light resulted in prolific formation of conidiophores bearing abundant conidia, indicating that light could stimulate conidiation of B. bassiana. Among the single colour lights tested, blue light was the most effective to stimulating sporulation. Colonies became adapted for blue light stimulus only after hyphae had grown in total darkness for at least 96 h, whereas the photoadaptation obviously declined after 144 h. For the exposure time, 3 min of blue light pulse was enough to stimulate conidiation in the photoadapted mycelia, while prolonged light exposure over 3 min resulted in a decrease in conidia yield. Our results provided useful clues for understanding the mechanism of conidiation mediated by light in B. bassiana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号