首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diversity of centrohelids in inland saline waters was studied with metabarcoding for the first time. The fragment of V6–V7 regions of 18S rDNA was sequenced with newly designed primers. Obtained OTUs were identified with molecular phylogenetic analysis and comparison of the signatures in 39es9 hairpin of V7. The obtained data included some OTUs, which could be attributed to four described species, but the majority belonged to previously established or novel environmental clades. Along with some presumably marine/brackish clades and freshwater/low salinity (0–2 ppt) clades, seven presumable species demonstrating broad (from 1–2 up to 78 ppt) salinity tolerance were detected. A number of OTUs belonged to Raphidocystis contractilis, which is known from three independent findings in brackish habitats only. Thus, it was assumed that this species is stenohaline and specifically adapted to salinity 5–15 ppt. The high level of salinity tolerance was suggested for centrohelids before based on morphology, which was used to justify their cosmopolitan distribution. Later these views were criticized based on environmental sequencing, but the results of the current survey indicate, that at least some species are present at salinities from almost freshwater (1–2 ppt) to twice oceanic (78 ppt) and are presumably capable of overcoming oceanic salinity barriers for their distribution.  相似文献   

2.
The spread of non-native Rio Grande cichlids (Herichthys cyanoguttatus) in southeast Louisiana includes brackish habitats. We studied the effects of three different salinity levels on the biology of juvenile H. cyanoguttatus for 13 months to determine the potential of this species to spread through local estuaries. The highest salinity tolerated was 30.0 psu, and these fish did not survive acclimation to the 32 psu treatment. Fish in brackish conditions grew slower than fish in freshwater conditions, indicating a potential long-term detriment to juvenile fish living in brackish conditions. Aggression levels were notably higher for fish in brackish (15 psu) vs. freshwater conditions. This persisted through the entire experiment even after acclimation back to freshwater. This study indicates that higher salinity habitats in Louisiana can be tolerated by this species. It also raises a question about the effect of higher salinities on aggressive behavior.  相似文献   

3.
The invasive, euryhaline hydroid Cordylophora sp. is a colonial cnidarian present in both freshwater and brackish water habitats. Individuals contend with osmotic stress at the tissue and cellular level. It has been suggested that this hydroid's ability to expand its range of distribution by invading new habitats is due in large part to an ability to acclimate to new salinities. The purpose of this study was to assess colony growth and morphological changes at various salinities in freshwater and brackish genotypes of Cordylophora sp. Single genotypes from a known freshwater clade (0.5 psu; Des Plaines River) and a known brackish clade (16 psu; Napa River) were cultured and gradually transitioned to 12 different salinities ranging 0.5–22 psu, and we characterized the growth rates and hydranth morphological features at each salinity. Colony growth was optimal at 0.5 psu for the freshwater genotype and 10 psu for the brackish genotype. Changes in hydranth morphology in the freshwater genotype were primarily observed at higher salinities, while morphological changes in the brackish genotype primarily occurred at lower salinities. Our results for the brackish genotype generally concur with previous work, but this study is the first to document the response of a freshwater genotype of Cordylophora sp. to various salinities. Differences in growth between these two genotypes strongly support the previously proposed existence of multiple cryptic species. Furthermore, because this hydroid is quite prevalent in freshwater and brackish systems as a fouling organism, understanding the effects of various salinities on the successful establishment of Cordylophora sp. is an important contribution to the understanding of the ecophysiology and management of this invasive hydroid.  相似文献   

4.
Ontogeny of osmoregulation and salinity tolerance were investigated throughout the larval development of two congeneric species of sesarmid crab, Armases ricordi (H. Milne Edwards) and A. roberti (H. Milne Edwards), and compared with previous observations from two further congeners, A. miersii (Rathbun) and A. angustipes (Dana). In the semiterrestrial coastal species A. ricordi, the zoeal stages were only at moderately reduced salinities (17-25.5‰) capable of hyper-osmoregulation, being osmoconformers at higher concentrations. The megalopa was the first ontogenetic stage of this species, which exhibited significant hyper-osmoregulation at further reduced salinities (≥ 5‰), as well as a moderately developed function of hypo-regulation at high concentrations (32-44‰). The riverine species A. roberti showed similar overall patterns in the ontogeny of osmoregulation, however, also some striking differences. In particular, its first zoeal stage showed already at hatching a strong capability of hyper-osmoregulation in salinities down to 5‰. Interestingly, this early expressed function became significantly weaker in the subsequent zoeal stages, where survival and capabilities of hyper-osmoregulation were observed only at salinities down to 10‰. The function of hyper-regulation in strongly dilute media re-appeared later, in the megalopa stage, which tolerated even an exposure to freshwater (0.2‰). Differential species- and stage-specific patterns of osmoregulation were compared with contrasting life styles, reproductive behaviours, and life-history strategies. In A. ricordi, the larvae are released into coastal marine waters, where salinities are high, and thus, no strong hyper-osmoregulation is needed throughout the zoeal phase. The megalopa stage of this species, by contrast, may invade brackish mangrove habitats, where osmoregulatory capabilities are required. Strong hyper-osmoregulation occurring in both the initial and final larval stages (but not in the intermediate zoeal stages) of A. roberti correspond to patterns of ontogenetic migration in this species, including hatching in freshwater, larval downstream transport, later zoeal development in estuarine waters, and final re-immigration of megalopae and juvenile crabs into limnic habitats, where the conspecific adults live. Similar developmental changes in the ecology and physiology of early life-history stages seem to occur also in A. angustipes. A. miersii differs from all other species, showing an early expression and a gradual subsequent increase of the function of hyper-osmoregulation. This ontogenetic pattern corresponds with an unusual reproductive biology of this species, which breeds in supratidal (i.e. land-locked) rock pools, where variations in salinity are high and unpredictable. Matching patterns in the ontogeny of osmoregulation and life-history strategies indicate a crucial adaptive role of osmoregulation for invasions of (by origin marine) crabs into brackish, limnic and terrestrial environments.  相似文献   

5.
The euryhaline gastropod Theodoxus fluviatilis is found in northern Germany in freshwater or in brackish water habitats in the Baltic Sea. Previous studies have revealed that individuals from both habitats are not distinguishable by morphological characters or by sequence comparison of DNA encoding 16S RNA or cytochrome C. As reported in this study, animals collected in the two habitats differ substantially in their physiological ability to adapt to different salinities. Comparison of accumulation rates of ninhydrin-positive substances (NPS) in foot muscle upon transfer of animals to higher medium salinities revealed that brackish water animals were perfectly able to mobilize NPS, while freshwater animals had only limited ability to do so. In an attempt to explore whether this difference in physiology may be caused by genetic differentiation, we compared protein expression patterns of soluble foot muscle proteins using 2D gel electrophoresis and silver staining. Of the 40 consistently detected protein spots, 27 showed similar levels in protein expression in animals collected from freshwater or brackish water habitats, respectively. In 12 spots, however, protein concentration was higher in brackish water than in freshwater animals. In four of these spots, expression levels followed increases or decreases in medium salinities. In a different set of 4 of these 12 spots, protein levels were always higher in brackish water as compared to freshwater animals, regardless of their physiological situation (14 days in artificial pond water or in medium with a salinity of 16‰). The remaining 4 of the 12 spots had complex expression patterns. Protein levels of the remaining single spot were generally higher in freshwater animals than in brackish water animals. These expression patterns may indicate that freshwater and brackish water animals of T. fluviatilis belong to different locally adapted populations with subtle genetic differentiation.  相似文献   

6.
The life history traits of Daphnia magna were studied in laboratory experiments under freshwater and brackish (5 salinity) conditions. The variability of responses within and between populations was examined by comparing 11 clones from a brackish lake and 10 clones from a freshwater pond. Experimental clones were hatched from ephippia collected from the sediment and thus represent random samples of the clone banks of each population.Most clones with a high salinity tolerance were from the population of the brackish habitat, but some were also found in the freshwater population. Thus, freshwater populations appear to have the potential to invade brackish habitats. A proportion of clones from the brackish population had very low fitness (measured as er) under freshwater conditions. This unexpected result means that freshwater adaptation can be lost by the freshwater cladoceran Daphnia magna. The effects of unfavourable conditions on growth and reproduction varied among clones and were not correlated. This clonal variation in growth and reproduction indicates that the environmental sensitivities of these traits are independent. The pattern of fitness reaction norms showed no trade-off between fitness under brackish and under freshwater conditions for either population. Thus, euryhaline generalists should be favoured in habitats with salinity fluctuations between freshwater and brackish conditions.  相似文献   

7.
8.
The effects of salinity on the growth and valve morphology of five benthic estuarine diatoms (Nitzschia pusilla, N. frustulum, N. palea, N. filiformis var. conferta and Eolimna subminuscula), isolated from both freshwater and brackish/marine habitats, were investigated. The four Nitzschia strains grew well over a broad salinity range, though some (N. pusilla, N. frustulum) showed a broader salinity range tolerance (from fully saline down to at least 9.5 ppt) than others (N. palea, N. filiformis var. conferta had reduced growth at salinities of 16 ppt and above). Salinity significantly affected the valve morphology of the five strains studied. However, there was no consistent pattern in either the morphological characters affected or the direction of the effects. Although significant, the effects of salinity on valve morphology were very small and therefore it seems that the taxonomic usefulness of some of the classical taxonomical characters is not undermined.  相似文献   

9.
Leaf beetles of the genus Macroplea live permanently under water. Species‐specific preferences for either freshwater or brackish water are available in the literature. To detect potential physiological differences, the oxygen consumption of Macroplea mutica and Macroplea appendiculata from habitats with differing salinities is measured at two different salinities (0 and 10). The specific oxygen consumption does not depend on oxygen saturation of the water (values in the approximate range of 25–100% occur during the experiments). There is no difference between species or sampling locations. Similarly, the salinity during the measurements does not affect the oxygen consumption of the beetles, either when compared as salinity per se (0 versus 10), or when classified as home salinity or atypical salinity. Comparisons with other chrysomelid beetles and aquatic insects (using available published data) reveal that the two Macroplea species have relatively low metabolic rates. This finding is discussed in the light of activity patterns and morphology, especially the reduction of flight muscles, which comprise a highly metabolically active tissue.  相似文献   

10.
The semiterrestrial crab Neohelice (=Chasmagnathus) granulata (Dana 1851) is a predominant species in brackish salt marshes, mangroves and estuaries. Its larvae are exported towards coastal marine waters. In order to estimate the limits of salinity tolerance constraining larval retention in estuarine habitats, we exposed in laboratory experiments freshly hatched zoeae to six different salinities (5–32‰). At 5‰, the larvae survived for a maximum of 2 weeks, reaching only exceptionally the second zoeal stage, while 38% survived to the megalopa stage at 10‰. Shortest development and negligible mortality occurred at all higher salt concentrations. These observations show that the larvae of N. granulata can tolerate a retention in the mesohaline reaches of estuaries, with a lower limit of ca. 10–15‰. Maximum survival at 25‰ suggests that polyhaline conditions rather than an export to oceanic waters are optimal for successful larval development of this species. In another experiment, we tested the capability of the last zoeal stage (IV) for reimmigration from coastal marine into brackish waters. Stepwise reductions of salinity during this stage allowed for moulting to the megalopa at 4–10‰. Although survival was at these conditions reduced and development delayed, these results suggest that already the zoea-IV stage is able to initiate the reimmigration into estuaries. After further salinity reduction, megalopae survived in this experiment for up to >3 weeks in freshwater, without moulting to juvenile crabs. In a similar experiment starting from the megalopa stage, successful metamorphosis occurred at 4–10‰, and juvenile growth continued in freshwater. Although these juvenile crabs showed significantly enhanced mortality and smaller carapace width compared to a seawater control, our results show that the late larval and early juvenile stages of N. granulata are well adapted for successful recruitment in brackish and even limnetic habitats.  相似文献   

11.
Salinity is one of the most important drivers of the distribution, abundance and diversity of organisms. Previous studies on the evolution of saline tolerance have been mainly centred on marine and terrestrial organisms, while lineages inhabiting inland waters remain largely unexplored. This is despite the fact that these systems include a much broader range of salinities, going from freshwater to more than six times the salinity of the sea (i.e. >200 g/L). Here, we study the pattern and timing of the evolution of the tolerance to salinity in an inland aquatic lineage of water beetles (Enochrus species of the subgenus Lumetus, family Hydrophilidae), with the general aim of understanding the mechanisms by which it was achieved. Using a time‐calibrated phylogeny built from five mitochondrial and two nuclear genes and information about the salinity tolerance and geographical distribution of the species, we found that salinity tolerance appeared multiple times associated with periods of global aridification. We found evidence of some accelerated transitions from freshwater directly to high salinities, as reconstructed with extant lineages. This, together with the strong positive correlation found between salinity tolerance and aridity of the habitats in which species are found, suggests that tolerance to salinity may be based on a co‐opted mechanism developed originally for drought resistance.  相似文献   

12.
Possible reproductive isolation between freshwater and brackish water populations of the dioecious charophyte Chara aspera was studied by means of cross-fertilization experiments and AFLP (Amplified Fragment Length Polymorphism). Three Swedish freshwater populations and three (German and Swedish) Baltic Sea populations of C. aspera were sampled. Cross-fertilization experiments were performed in a full combination setup of all populations and with two different salinities (0 and 10 PSU). Both freshwater and brackish water females formed about 70% more gametangia at 0 than at 10 PSU. Male individuals collected from freshwater had higher fertility than brackish water males at both salinities. 57% of all gametangia of females from freshwater developed into oospores compared to only 8% of gametangia of brackish water females. 42% of all oospores were fertilized in crosses between habitats (freshwater–brackish water) compared to 36% in crosses within habitats, the difference was not significant.Oospore and bulbil germination was investigated using propagules from freshwater and brackish water populations and incubation salinities of 0, 5, 10 and 20 PSU. None of the oospores collected from brackish water germinated. Germination of oospores and bulbils from freshwater was higher at 0 and 5 PSU than at higher salinities. Only around 40% of bulbils from brackish water germinated at 20 PSU compared to around 70% at the other three salinities. Germination of all bulbils was delayed at 20 PSU compared to other salinities.Genetic similarities (Jaccard indices of AFLP data) were higher within than between populations, but comparisons within habitat (freshwater–freshwater and brackish water–brackish water) were not different from comparisons between habitats.Our results did not identify any reproductive isolation between freshwater and brackish water populations, but indicate low gene flow between the two habitats. Oospore and bulbil germination success were highest at salinities corresponding to the conditions of their original habitat, suggesting genetic adaptation to their environmental conditions and indicating that propagules transported from freshwater to brackish water or vice versa will hardly develop into fertile plants. Additionally, brackish water plants perform poorer in all aspects of sexual reproduction than freshwater plants. Possibly, successful dispersal of oospores is not subjected to high selective pressure within the Baltic Sea where new sites easily can be colonized by means of vegetative reproduction. We assume that these adaptations will favour speciation within C. aspera and support the idea of the geologically young Baltic Sea as a “cradle of plant evolution”.  相似文献   

13.
The green macroalgal genus Ulva (Ulvales, Ulvophyceae, Chlorophyta) is distributed worldwide from marine to freshwater environments. Comparative analyses of hyposalinity tolerance among marine, brackish, and freshwater Ulva species were performed by fluorescein diacetate viability counts. The subtidal marine species Ulva sp., collected from a depth of 30 m, showed the poorest tolerance to low salinity. This species died in 5 practical salinity units (PSU) artificial seawater or freshwater within 1 day. Its closely related species U. linza L. (an intertidal species) and U. prolifera Müller (a brackish species) showed varying tolerances to low salinity. After 7 days of freshwater exposure, the viability of U. linza L. decreased to approximately 20%, while U. prolifera Müller showed nearly 100% viability. The freshwater species U. limnetica Ichihara et Shimada, not yet found in coastal areas, was highly viable in seawater.  相似文献   

14.
In brackish water the variety of marine and freshwater parasite species is considerably reduced. The distribution in brackish water of most marine endoparasites is restricted by the salinity tolerance of their hosts, most of the parasite species are more tolerant than their hosts. The influence of salinity and temperature on nine species has been examined; first stage larvae of Contracaecum aduncum develop in 0-32‰ salinity; Cryptocotyle lingua proved to be infective at salinities down to 4‰. The greatest resistance was found in Anisakis larvae from herring Clupea harengus , which survived for more than half a year. Parasites in the fish intestines appear to be unaffected by changing water salinities, as the osmolarity in the intestines stays nearly constant. Marine ectoparasites ( Acanthochondria depressa, Lepeophtheirus pectoralis ) survive about three times longer than freshwater species ( Piscicola geometra, Argulus foliaceus ) when salinity is 16‰. High temperature increases the effects of adverse salinities on parasites. There is evidence that none of these ecto-parasitic species can develop within the range of 7-20‰ salinity.  相似文献   

15.
Cable bacteria (CB) are Desulfobulbaceae that couple sulphide oxidation to oxygen reduction over centimetre distances by mediating electric currents. Recently, it was suggested that the CB clade is composed of two genera, Ca. Electronema and Ca. Electrothrix, with distinct freshwater and marine habitats respectively. However, only a few studies have reported CB from freshwater sediment, making this distinction uncertain. Here, we report novel data to show that salinity is a controlling factor for the diversity and the species composition within CB populations. CB sampled from a freshwater site (salinity 0.3) grouped into Ca. Electronema and could not grow under brackish conditions (salinity 21), whereas CB from a brackish site (salinity 21) grouped into Ca. Electrothrix and decreased by 93% in activity under freshwater conditions. On a regional scale (Baltic Sea), salinity significantly influenced species richness and composition. However, other environmental factors, such as temperature and quantity and quality of organic matter were also important to explain the observed variation. A global survey of 16S rRNA gene amplicon sequencing revealed that the two genera did not co-occur likely because of competitive exclusion and identified a possible third genus.  相似文献   

16.
The serpulid annelid Ficopomatus enigmaticus is a widely distributed invader of shallow‐water, brackish habitats in subtropical and temperate regions, where it has numerous damaging ecological and economic effects. Its distributional pattern suggests that temperature and salinity play important roles in limiting its distribution, but because other factors often covary with these, drawing strong conclusions from these patterns is difficult. In an effort to more clearly identify the effects of these factors, we examined tolerance to acute thermal (16–28°C) and salinity (0–35 psu) stress by larvae (5‐day exposure, unfed) and adults (14‐day exposure, unfed) of F. enigmaticus in the laboratory experiments. Larvae showed higher mortality at the highest temperature tested 28°C; adult survival was unaffected by temperature. Neither larvae nor adults survived exposure to pure freshwater (0 psu), but survived well at salinities ranging 3.5–35 psu. In addition, high salinity did not slow tube growth in adults. These results suggest that salinity stress, in particular, does not directly limit the distribution of F. enigmaticus to low‐salinity habitats. Experimental work on the distribution of F. enigmaticus is uncommon in the literature, but is likely needed to identify the abiotic or biotic factors that limit the distribution of this frequently invasive species.  相似文献   

17.
Salt tolerance of the freshwater tubificid Limnodrilus hoffmeisteri varied from an LD 50 of 10 ppt to 10.5 ppt for mature and immature worms without sediment, 9.4 to 10.5 in sand, and 14.3 for immatures acclimated to 5 ppt. Ilyodrilus templetoni was similarly intolerant to higher salinities. The estuarine Tubificoides gabriellae tolerated salt water, but was susceptible to freshwater, with LD 50's of 2 and 3.5 when acclimated to 5 and 10 ppt sea water. It survived immersion in freshwater for 3 hours. The estuarine naidids Paranais litoralis and frici experienced mortalities at both high and low salinities but showed a wide tolerance range. The coastal tubificid Monopylephorus irroratus showed almost complete tolerance to the salinity range employed. The findings reflected field distributions especially when interstitial salinities were measured, but worms did not occupy the full range of habitats possible in terms of salinity alone.  相似文献   

18.
Salinity tolerance of diapausing eggs of freshwater zooplankton   总被引:3,自引:0,他引:3  
1. Many freshwater zooplankton produce diapausing eggs capable of withstanding periods of adverse environmental conditions, such as anoxia, drought and extreme temperature. These eggs may also allow oligostenohaline species to survive increased salinity during periods of tidal flux or evaporation, and here we test the ability of diapause eggs to withstand such conditions. 2. Salinity tolerance may also enable organisms to invade new environments. The increased rate of introduction of non‐indigenous species to the Laurentian Great Lakes since 1989, when ballast water exchange regulations (to replace fresh/brackish water at sea with full seawater) were first implemented for transoceanic vessels, has stimulated studies that explore mechanisms of introduction, other than of active animals, in ballast water. One hypothesis proposes that freshwater organisms transported in ballast tanks as diapausing eggs may be partially responsible for the increased rate of species introduction, as these eggs may tolerate a wide array of adverse environmental conditions, including exposure to saline water. 3. We collected ballast sediments from transoceanic vessels entering the Great Lakes, isolated diapausing eggs of three species (Bosmina liederi, Daphnia longiremis and Brachionus calyciflorus), and measured the effect of salinity on hatching rate. In general, exposure to salinity significantly reduced the hatching rate of diapausing eggs. However, as non‐indigenous species can establish from a small founding population, it is unclear whether salinity exposure will be effective as a management tool.  相似文献   

19.
Berezina  Nadya A.  Panov  Vadim E. 《Hydrobiologia》2004,514(1-3):199-206

In the early 1970s, the Baikalian amphipod Gmelinoides fasciatus (Stebbing) was intentionally introduced into several lakes in the Gulf of Finland basin in order to enhance fish production. By 1996, G. fasciatus successfully colonized the littoral zone of Lake Ladoga and, via the Neva River, invaded the Neva Bay, the freshwater part of the Neva Estuary. In 1999, G. fasciatus was first registered in the inner Neva Estuary, the very first record of the Baikalian amphipod in brackish waters of the Baltic Sea. Distribution, abundance, reproduction and population structure of G. fasciatus in the Neva Estuary were studied during 1998–2000. In some locations of the Neva Estuary, maximum densities of G. fasciatus reached 3500 ind. m−2. In general, density and biomass of G. fasciatus in the freshwater part of the Neva Estuary were higher (around 1.5 fold) than in the brackish-water part. Fecundity of this amphipod averaged 10–20 eggs per female, depending on body size of females and season. In order to assess the possibility of further spread of G. fasciatus in the Baltic Sea, the salinity tolerance of this species was determined in a series of laboratory experiments. Our results showed that the invasive amphipod G. fasciatus is potentially able to colonize shallow coastal habitats of, for example, the Gulf of Bothnia, Gulf of Riga and other parts of the Baltic Sea with water salinities ranging from 1 to 5 psu.

  相似文献   

20.
Maintenance of genetic variation at loci under selection has profound implications for adaptation under environmental change. In temporally and spatially varying habitats, non‐neutral polymorphism could be maintained by heterozygote advantage across environments (marginal overdominance), which could be greatly increased by beneficial reversal of dominance across conditions. We tested for reversal of dominance and marginal overdominance in salinity tolerance in the saltwater‐to‐freshwater invading copepod Eurytemora affinis. We compared survival of F1 offspring generated by crossing saline and freshwater inbred lines (between‐salinity F1 crosses) relative to within‐salinity F1 crosses, across three salinities. We found evidence for both beneficial reversal of dominance and marginal overdominance in salinity tolerance. In support of reversal of dominance, survival of between‐salinity F1 crosses was not different from that of freshwater F1 crosses under freshwater conditions and saltwater F1 crosses under saltwater conditions. In support of marginal overdominance, between‐salinity F1 crosses exhibited significantly higher survival across salinities relative to both freshwater and saltwater F1 crosses. Our study provides a rare empirical example of complete beneficial reversal of dominance associated with environmental change. This mechanism might be crucial for maintaining genetic variation in salinity tolerance in E. affinis populations, allowing rapid adaptation to salinity changes during habitat invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号