首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ethyl 6-O-benzyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranoside (2) was converted, in three steps and in 73% overall yield, into ethyl 6-O-benzyl-2,3-dideoxy-3-C-(hydroxymethyl)-α-d-ribo-hex-2-enopyranoside. This transformation involved silylation of 2 with (bromomethyl)chlorodimethylsilane and application of the Nishiyama-Stork radical cyclisation, followed by Tamao oxidation of the sila cycle. Ethyl 6-O-benzyl-2,3-dideoxy-α-d-threo-hex-2-enopyranoside and benzyl 2,6-di-O-benzyl-α-l-threo-hex-4-enopyranoside were similarly transformed into, respectively, ethyl 6-O-benzyl-2,3-dideoxy-3-C-(hydroxymethyl)-α-d-lyxo-hex-2-enopyranoside (50%), and benzyl 2,6-di-O-benzyl-4-deoxy-4-C-(hydroxymethyl)-β-d-galactopyranoside (71%).  相似文献   

2.
Constant current electrolyses of the glycosyl donors phenyl and ethyl 2,3,4,6-tetra-O-benzyl-1-thio-β-d-glycopyranoside in dry acetonitrile in the presence of various primary and secondary sugar alcohols, performed in an undivided cell, gave β-linked disaccharide derivatives selectively in good yields. Phenyl 2,3,4,6-tetra-O-benzoyl-1-thio-β-d-glycopyranoside gave the β-glucosides exclusively in good to moderate yields.  相似文献   

3.
The disaccharide alpha-L-Fucp-(1 --> 2)-beta-D-Galp-(1 --> O)-Octyl (1) is an acceptor for the human blood group A and B glycosyltransferases. Seven analogues of 1, containing deoxy, methoxy and arabino modifications of the Fuc residue, were chemically synthesized and kinetically evaluated in radioactive enzymatic assays. Both the enzymes tolerate modification of the 3'-OH on the fucose residue. The 2'-OH was found to be key to the recognition of the acceptors by these enzymes. The arabino derivative was recognized as an acceptor by the A transferase (Km of 200 microM), but not the B transferase and is the first synthetic acceptor capable of distinguishing between the two enzyme activities.  相似文献   

4.
The human ABO(H) blood group A and B antigens are generated by the homologous glycosyltransferases A (GTA) and B (GTB), which add the monosaccharides GalNAc and Gal, respectively, to the cell-surface H antigens. In the first comprehensive structural study of the recognition by a glycosyltransferase of a panel of substrates corresponding to acceptor fragments, 14 high resolution crystal structures of GTA and GTB have been determined in the presence of oligosaccharides corresponding to different segments of the type I (alpha-l-Fucp-(1-->2)-beta-D-Galp-(1-->3)-beta-D-GlcNAcp-OR, where R is a glycoprotein or glycolipid in natural acceptors) and type II (alpha-l-Fucp-(1-->2)-beta-D-Galp-(1-->4)-beta-d-GlcNAcp-OR) H antigen trisaccharides. GTA and GTB differ in only four "critical" amino acid residues (Arg/Gly-176, Gly/Ser-235, Leu/Met-266, and Gly/Ala-268). As these enzymes both utilize the H antigen acceptors, the four critical residues had been thought to be involved strictly in donor recognition; however, we now report that acceptor binding and subsequent transfer are significantly influenced by two of these residues: Gly/Ser-235 and Leu/Met-266. Furthermore, these structures show that acceptor recognition is dominated by the central Gal residue despite the fact that the L-Fuc residue is required for efficient catalysis and give direct insight into the design of model inhibitors for GTA and GTB.  相似文献   

5.
A terminal alpha1-3 linked Gal or GalNAc sugar residue is the common structure found in several oligosaccharide antigens, such as blood groups A and B, the xeno-antigen, the Forssman antigen, and the isogloboside 3 (iGb3) glycolipid. The enzymes involved in the addition of this residue display strong amino acid sequence similarities, suggesting a common fold. From a recently solved crystal structure of the bovine alpha3-galactosyltransferase complexed with UDP, homology modeling methods were used to build the four other enzymes of this family in their locked conformation. Nucleotide-sugars, the Mn2+ ion, and oligosaccharide acceptors were docked in the models. Nine different amino acid regions are involved in the substrate binding sites. After geometry optimization of the complexes and analysis of the predicted structures, the basis of the specificities can be rationalized. In the nucleotide-sugar binding site, the specificity between Gal or GalNAc transferase activity is due to the relative size of two clue amino acids. In the acceptor site, the presence of up to three tryptophan residues define the complexity of the oligosaccharide that can be specifically recognized. The modeling study helps in rationalizing the crystallographic data obtained in this family and provides insights on the basis of substrate and donor recognition.  相似文献   

6.
Eight patients (4 suffering from acute myeloid leukemia) exhibiting a loss of ABO red cell antigens, as seen by a mixed-field reaction pattern in agglutination tests, were selected and examined for the level of the A, -B, -H blood group glycosyltransferases within membranes prepared from erythrocyte subpopulations (A or B positive and A or B negative red cells). A or B enzyme activities were largely decreased in membranes which had lost A or B antigens (A or B negative subpopulations) but were within normal level in membrane from cells which had not lost A or B antigens (A or B positive subpopulations). The H enzyme level which was frequently low in the serum was within normal limits in the membrane preparations examined. Since A or B negative subpopulations were normally glycosylated in vitro into A or B reactive structures, the results demonstrate that loss of A or B antigens is related to some alteration of the blood group gene products rather than to significant abnormalities of the membrane precursors.  相似文献   

7.
Ventilatory responses of crabs Carcinus maenas (L.) to changes in ambient oxygen and carbon dioxide were studied in field and laboratory experiments, over a range of PwO2 and Pwco2 conditions encompassing natural variations observed in intertidal rock-pools. Ventilatory activity was assessed by recording gill chamber hydrostatic pressure and estimating the specific ventilation, Vw/MO2, the reciprocal of the difference of oxygen concentrations in inspired and expired waters.

Variations in ambient oxygenation always induced large changes of ventilatory activity, hyperventilation in hypoxia, hypoventilation in hyperoxia. Conversely, PwCO2 changes either at constant PO2 or in combination with different PO2 values (hypoxic hypercapnia or hyperoxic hypocapnia) led only to small or even non-significant ventilatory responses. In the field, strong hyperventilation developed during tidal exposure at night, when the pool water became hypoxic and hypercapnic, whereas during the day the animals hypoventilated in progressively more hyperoxic and hypocapnic conditions.

Thus, in a typical intertidal animal such as C. maenas, the only ventilatory stimulus of ecological significance appears to be the ambient water oxygenation.  相似文献   


8.
The conformations of two synthetic trisaccharides of blood group A and B (alpha-L-Fucp-(1-->2)-[alpha-D-GalpNAc-(1-->3)]-alpha-D-Galp and alpha-L-Fucp-(1-->2)-[alpha-D-Galp-(1-->3)]-alpha-D-Galp, respectively) and of a type A tetrasaccharide alditol, Fucp-(1-->2)-[alpha-D-GalpNAc-(1-->3)]-beta-D-Galp-(1-->3)-GalNAc-ol, were studied by NMR measurements of one-bond C-H residual dipolar couplings in partially oriented liquid crystal solutions. The conformations of the three oligosaccharides were analyzed by generating thousands of structures using a Monte-Carlo method. Two different strategies were applied to calculate theoretical dipolar couplings for these structures. In the first method, the orientation of the molecule was calculated from the optimal fit of the molecular model to the experimental data, while in the second method the orientation tensor was calculated directly from the moment of inertia of the molecular model. Both methods of analysis give similar results but with slightly better agreement with experiment for the former one. The analysis of the results implies a single unique conformation for both blood group epitopes in solution in disagreement with theoretical models suggesting the existence of two conformers in solution.  相似文献   

9.
Human ABO(H) blood group glycosyltransferases GTA and GTB catalyze the final monosaccharide addition in the biosynthesis of the human A and B blood group antigens. GTA and GTB utilize a common acceptor, the H antigen disaccharide alpha-l-Fucp-(1-->2)-beta-d-Galp-OR, but different donors, where GTA transfers GalNAc from UDP-GalNAc and GTB transfers Gal from UDP-Gal. GTA and GTB are two of the most homologous enzymes known to transfer different donors and differ in only 4 amino acid residues, but one in particular (Leu/Met-266) has been shown to dominate the selection between donor sugars. The structures of the A and B glycosyltransferases have been determined to high resolution in complex with two inhibitory acceptor analogs alpha-l-Fucp(1-->2)-beta-d-(3-deoxy)-Galp-OR and alpha-l-Fucp-(1-->2)-beta-d-(3-amino)-Galp-OR, in which the 3-hydroxyl moiety of the Gal ring has been replaced by hydrogen or an amino group, respectively. Remarkably, although the 3-deoxy inhibitor occupies the same conformation and position observed for the native H antigen in GTA and GTB, the 3-amino analog is recognized differently by the two enzymes. The 3-amino substitution introduces a novel intramolecular hydrogen bond between O2' on Fuc and N3' on Gal, which alters the minimum-energy conformation of the inhibitor. In the absence of UDP, the 3-amino analog can be accommodated by either GTA or GTB with the l-Fuc residue partially occupying the vacant UDP binding site. However, in the presence of UDP, the analog is forced to abandon the intramolecular hydrogen bond, and the l-Fuc residue is shifted to a less ordered conformation. Further, the residue Leu/Met-266 that was thought important only in distinguishing between donor substrates is observed to interact differently with the 3-amino acceptor analog in GTA and GTB. These observations explain why the 3-deoxy analog acts as a competitive inhibitor of the glycosyltransferase reaction, whereas the 3-amino analog displays complex modes of inhibition.  相似文献   

10.
Summary The presence of human blood-group antigens was analyzed in the rat cochlea during its postnatal development, using anti-A, anti-B and anti-H antibodies. At no stage was reactivity with anti-A antibody observed. With the anti-H antibody, a strong reactivity was observed from 1 to 9 days after birth within hair cells and some other surface epithelial cells of the cochlear duct. After postnatal day 9, only a faint reactivity persisted in a few non-sensory cells. With the anti-B antibody, only hair cells were selectively labeled. At early stages (postnatal day 1 and 3), the reactivity was intense and observed both around the cell surface and within the supranuclear region of cytoplasm. Later on, the reactivity decreased; it was limited at postnatal day 9 to a reactive spot below the cuticular plate. Results are compared with a preliminary finding describing the first appearance of B and H antigens in the organ of Corti at a prenatal stage, and with data concerning other sensory and neural structures. The appearance and progressive disappearance of B and H antigens on sensory and non-sensory cells can be correlated with significant events in the development of the cochlea. The transient expression of B and H antigens in cochlear sensory cells may correspond to developmental changes in their surface glycoconjugates.  相似文献   

11.
An efficient method for the proteolysis and subsequent analysis of dansylated viral (or other) proteins solubilized with sodium dodecyl sulfate (SDS), after their purification using SDS electrophoresis, is described. The dansylation of proteins or the by-products of the reaction do not interfere in this technique. This very simple technique has important advantages over other methods for the purification and characterization of proteins. The method used indicates that the four viral proteins of densonucleosis virus originate at least partially from a common DNA sequence.  相似文献   

12.
Germ nuclei of Blepharisma japonicum begin meiosis within a few hours when cells of complementary mating types conjugate. We synchronized the onset of conjugation and treated cells in different stages of meiosis with 10 micrograms/ml cycloheximide which strongly inhibits protein synthesis in this ciliate. Cycloheximide arrested meiosis at six stages: I, between pairing of cells and swelling of germ nuclei; II, leptotene; III, zygotene; IV, pachytene; XI, interkinesis; XII, prometaphase II. Five of these arrests were reversible. Puromycin (250-500 micrograms/ml) also inhibited the progress of meiosis, though to lesser extents. We propose that the progression of meiosis of B. japonicum requires at least six proteins which are synthesized sequentially during meiosis.  相似文献   

13.
Chemical synthesis of A, B, and H (type 3) human blood group determinant oligosaccharides (as R-glycosides, R = OCH2CH2CH2NHCOCF3) and their polymeric derivatives are reported. 4,6; 4',6'-Di-O-benzylidene derivative of Gal beta 1----3GalNAc alpha 1----R was chloroacetylated selectively at 3'-OH, the chloroacetate was alpha-fucosylated and dechloroacetylated to give protected H (type 3) trisaccharide bearing free 3'-OH. alpha-Glycosylation of the trisaccharide with 2-azido-3,4,6-tri-O-benzyl-beta-D-galactopyranosyl chloride and 2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl bromide gave rise to protected A and B tetrasaccharides, respectively. Deprotected R-glycosides were converted to OCH2CH2CH2NH2 derivatives. Their reaction with poly(4-nitrophenylacrylate) affords polyacrylamide-coupled conjugates with A, B, and H (type 3) specificity.  相似文献   

14.
The method proposed for measuring glutathione peroxydase (GSH-Px) activity is based on the determination of oxidized glutathione (GSSG) using o-phtalaldehyde (OPT) as a fluorescent reagent. This method makes it possible to study the kinetics of both substrates (peroxide and reduced glutathione, GSH), and allosteric kinetics were found for GSH, with human platelets as the source of GSH-Px. Different methods for platelet disruption were compared. The reference values obtained for GSH-Px activity in human blood platelets by this fluorimetric procedure and the conventional enzymatic method were very similar and significantly higher than those previously reported; the reasons for this difference are discussed.  相似文献   

15.
Genotypically different host specific pathotypes of Bursaphelenchus xylophilus have been identified. These pathotypes elicit different responses in pines depending on susceptibility, tolerance, or resistance. Continued passage of some of these pathotypes on fungal cultures leads to conversion to nonparasitic populations. These populations metabolize carbon substrates to ethanol by an anaerobic pathway, while operating some level of a phosphoenolpyruvate (PEP)-succinate pathway to excrete succinate-lactate and malate. On the other hand, parasitic populations metabolize glucose to lactate-succinate, mainly by a PEP-succinate pathway, and maintain redox balance through glycerol production. Ethanol and malate are not excreted by parasitic populations.  相似文献   

16.
A gas chromatographic procedure for the analysis of nicotine in plasma, which uses quinoline as an internal standard, is reported. The nicotine is extracted with diethyl ether, concentrated without any evaporation, thus avoiding losses, and analyzed without derivatization. The recovery is 83.2 +/- 6.1% (n = 6). Although the analysis is carried out with a classical flame ionization detector, the detection limit is 0.1 ng/ml. Linearity is observed up to 100 ng/ml. The results of the precision analysis performed in the working range indicate a good reproducibility: a coefficient of variation of 5.2% is obtained for within-run analysis and 10.5 to 4.5% for nicotine values from 2.9 to 19.1 ng/ml for day analysis. Since a single run (the limitative step) lasts less than 15 min this improved procedure allows a great number of samples to be processed per day.  相似文献   

17.
At maximally effective concentrations, the opiate peptides β-endorphin (240 nm) and Met-enkephalin (1400 nM) virtually abolished the contractions induced by a maximally effective concentration of 60 nM neurotensin (NT), either in the longitudinal smooth muscle strip or in the intact segment of guinea-pig ileum. This inhibitory effect was concentration-dependent and was totally blocked by naloxone at 100 nM. In contrast a maximally effective concentration of somatostatin (60 nM) partially inhibited (50–60%) the contraction induced by 60 nM NT in either smooth muscle preparation. Somatostatin inhibition was concentration-dependent and was not blocked by naloxone at 100 nM. Atropine at 100 nM inhibited by 50% the contractions induced by 60 nM NT in the intact segment of guinea-pig ileum. The remaining contraction was abolished by β-endorphin and Met-enkephalin and partially reduced by somatostatin. Our results confirm that NT-induced contractions in the guinea-pig ileum are neurogenic and involve a cholinergic as well as a non-cholinergic component. Furthermore, we show that the release of mediators from both components  相似文献   

18.
The eukaryotic histone heterodimer H2A-H2B folds through an obligatory dimeric intermediate that forms in a nearly diffusion-limited association reaction in the stopped-flow dead time. It is unclear whether there is partial folding of the isolated monomers before association. To address the possible contributions of structure in the monomers to the rapid association, we characterized H2A and H2B monomers in the absence of their heterodimeric partner. By far-UV circular dichroism, the H2A and H2B monomers are 15% and 31% helical, respectively—significantly less than observed in X-ray crystal structures. Acrylamide quenching of the intrinsic Tyr fluorescence was indicative of tertiary structure. The H2A and H2B monomers exhibit free energies of unfolding of 2.5 and 2.9 kcal mol− 1, respectively; at 10 μM, the sum of the stability of the monomers is ∼ 60% of the stability of the native dimer. The helical content, stability, and m values indicate that H2B has a more stable, compact structure than H2A. The monomer m values are larger than expected for the extended histone fold motif, suggesting that the monomers adopt an overly collapsed structure. Stopped-flow refolding—initiated from urea-denatured monomers or the partially folded monomers populated at low denaturant concentrations—yielded essentially identical rates, indicating that monomer folding is productive in the rapid association and folding of the heterodimer. A series of Ala and Gly mutations were introduced into H2A and H2B to probe the importance of helix propensity on the structure and stability of the monomers. The mutational studies show that the central α-helix of the histone fold, which makes extensive intermonomer contacts, is structured in H2B but only partially folded in H2A.  相似文献   

19.
Hyperpolarization enhances the intensity of the NMR signals of a molecule, whose in vivo metabolic fate can be monitored by MRI with higher sensitivity. SABRE is a hyperpolarization technique that could potentially be used to image nitric oxide (NO) production in vivo. This would be very important, because NO dysregulation is involved in several pathologies, including cardiovascular ones. The nitric oxide synthase (NOS) pathway leads to NO production via conversion of l-arginine into l-citrulline. NO is a free radical gas with a short half-life in vivo (≈5 s), therefore direct NO quantification is challenging. An indirect method – based on quantifying conversion of an l-Arg- to l-Cit-derivative by 1H NMR spectroscopy – is herein proposed. A small library of pyridyl containing l-Arg derivatives was designed and synthesised. In vitro tests showed that compounds 4aj and 11ac were better or equivalent substrates for the eNOS enzyme (NO2? production = 19–46 μM) than native l-Arg (NO2? production = 25 μM). Enzymatic conversion of l-Arg to l-Cit derivatives could be monitored by 1H NMR. The maximum hyperpolarization achieved by SABRE reached 870-fold NMR signal enhancement, which opens up exciting future perspectives of using these molecules as hyperpolarized MRI tracers in vivo.  相似文献   

20.
Blood group A glycolipid antigens have been found based upon at least four different core saccharides (types 1 to 4). The biological significance of this structural polymorphism is not known, although the successful outcome of transplantations of blood group A2 kidneys to blood group O individuals have been partly explained by the low expression of A type-3 and -4 chain glycolipid antigens in A2 kidneys. If graft rejection due to ABO incompatibility is, in any way, correlated to the expression of type-3 and -4 chain blood group glycolipids, it is of interest to identify possible blood group B structures based on these core saccharides. In a non-acid glycosphingolipid fraction isolated from human blood group B kidneys, mass spectrometry, high-temperature gas chromatography-mass spectrometry and probing of thin-layer chromatograms with Galα1–4Gal-specific Escherichia coli and monoclonal anti-B antibodies provided evidence for minute amounts of Gaα1–3(Fucα1–2)Galβ-HexNac-Galα1–4Galβ-Hex-Ceramide structure consistent with a B type-4 chain heptaglycosylceramide. In contrast, blood group A kidneys have the corresponding A type-4 chain heptaglycosylceramide as the predominant glood group A glycolipid. No, or very low activity of the blood group B gene enzyme on the type-4 chain blood group H hexaglycosylceramide precursor was found by biosynthetic experiments in vitro, which migh explain the low expression of type-4 chain blood group heptaglycosylceramides in human blood group B kidneys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号