首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study reports on the carbon, water, and energy footprints of tomatoes grown in a greenhouse in Northern Italy and two possible future variations of heating and carbon dioxide (CO2) fertilization on the current setup. The heat supply in place, consisting of natural gas (NG) and canola oil combustion, is compared to cogeneration and incineration of municipal solid waste for heating and CO2 from industrial exhaust for fertilization. As a benchmark, the current system is also compared to a conventional system, in which heat is delivered solely based on NG. Each kilogram (kg) of fresh tomatoes (“Cuore di Bue” variety) produced in the current greenhouse emits 2.28 kg CO2 equivalents (eq) and uses 95.5 megajoules (MJ) eq energy and 122 liters (L) of water. Relative to the system in place, the carbon footprint (CF) is 57.5% and 18% higher with conventional NG heating and cogeneration and is 40% lower with waste valorization. Further, 33%, 55%, and 63% less energy and 9%, 96%, and 14% less water are used in the conventional, cogeneration, and waste valorization scenarios, respectively. This confirms that there are multiple strategies to reduce the impact of the tomato production under consideration.  相似文献   

2.
The environmental impact of the water consumption of four typical crop rotations grown in Spain, including energy crops, was analyzed and compared against Spanish agricultural and natural reference situations. The life cycle assessment (LCA) methodology was used for the assessment of the potential environmental impact of blue water (withdrawal from water bodies) and green water (uptake of soil moisture) consumption. The latter has so far been disregarded in LCA. To account for green water, two approaches have been applied: the first accounts for the difference in green water demand of the crops and a reference situation. The second is a green water scarcity index, which measures the fraction of the soil‐water plant consumption to the available green water. Our results show that, if the aim is to minimize the environmental impacts of water consumption, the energy crop rotations assessed in this study were most suitable in basins in the northeast of Spain. In contrast, the energy crops grown in basins in the southeast of Spain were associated with the greatest environmental impacts. Further research into the integration of quantitative green water assessment in LCA is crucial in studies of systems with a high dependence on green water resources.  相似文献   

3.
Literature data for vehicle life cycle water consumption are limited and contradictory; there are no published estimates of vehicle life cycle water withdrawal. To place future discussions of sustainable mobility on a firmer technical basis, we report the results of a cradle‐to‐grave assessment of water withdrawal and water consumption for the gasoline internal combustion engine vehicle (ICEV) and battery electric vehicle (BEV) variants of the 2012 Ford Focus. U.S. average life cycle water withdrawal and consumption of 531 and 131 cubic meters (m3), respectively, for a lifetime driving distance of 160,000 miles are estimated for the Focus ICEV using E10 gasoline. Employing our upper bound of water use in oil refinery operations and corn and ethanol production increases the life cycle withdrawal and consumption to 1,570 and 761 m3, respectively. The U.S. average life cycle water withdrawal for the Focus BEV is 3,770 m3 (7 times that for the ICEV, reflecting the large volume of cooling water required during electricity generation), whereas the water consumption is 170 m3 (comparable to that for the ICEV). Vehicle use is the most significant phase of the life cycle with fuel production, accounting for 49% of water withdrawal and 82% of water consumption for the ICEV. For the BEV, fuel (electricity) production accounts for 92% of life cycle water withdrawal and 85% of consumption. The results highlight the importance of renewable and sustainable fuels and increased vehicle energy efficiency in providing sustainable mobility.  相似文献   

4.
Water consumption related to the life cycle of metals is seldom reported, even though mines are often situated in very dry regions. In this study we quantified the life cycle consumption of groundwater and fresh surface water (blue water footprint [WFblue]) for the extraction and production of high‐grade copper refined from both a copper sulfide ore and a copper oxide ore in the Atacama Desert of northern Chile. Where possible, we used company‐specific data. The processes for extracting copper from the two types of ore are quite different from each other, and the WFblue of the sulfide ore refining process is 2.4 times higher than that of the oxide ore refining process (i.e., 96 cubic meters per metric ton [tonne] of copper versus 40 cubic meters per tonne of copper). Most of the water consumption (59% of WFblue) in the sulfide ore process occurred at the concentrator plant, via seepage, accumulation, and also by evaporation. In the oxide ore process, the main user of water is the heap‐leaching process, with 45% of WFblue. The crushing and agglomeration operations, electrowinning cells, and solution pools are also significant contributors to the total consumption of water in the oxide ore process. Most of the water consumed in the oxide ore process was lost to evaporation. The WFblue of the oxide ore process can be reduced by preventing water evaporation and using more sophisticated devices during irrigation of the leaching heaps. The WFblue of the sulfide ore refining process can be reduced by improving water recovery (i.e., reducing seepage, accumulation, and evaporation) from the tailings dam at the concentrator plant. Using seawater in the production of copper is also a promising option to reduce the WFblue by up to 62%.  相似文献   

5.
Aluminum is one of the most used metals of modern civilization, but its production is responsible for multiple adverse environmental impacts mostly due to aluminum smelting and alumina refining. Previous life cycle assessments (LCAs) have aggregated alumina refining into a single global process even though refining processes are highly spatially differentiated and alumina is highly traded. Our work improves on existing LCAs of primary aluminum by including temporal and spatial differentiation in alumina refining and aluminum smelting and trade of alumina and primary aluminum ingots. We build country‐level impact factors for primary aluminum ingot production and consumption, with the spatial distributions of environmental impacts, from 2000 to 2017, by combining a trade‐linked multilevel material flow analysis with LCA using six midpoint categories of the ReCiPe method. Climate change impacts of primary aluminum production range from 4.5 to 33.6 kg CO2 eq./kg. We then estimate the life cycle production‐ and consumption‐based environmental burdens of primary aluminum ingot by country. High spatial variations exist among impact factors of primary aluminum production. Aggregating the alumina refining processes into a single process may cause important deviations on the impact factors of primary aluminum ingot production (up to 38% differences in climate change impacts). Finally, we estimate the climate change impacts of worldwide primary aluminum production at 1.2 Gt CO2 eq. in 2017 and untangle their spatial origins, localized at 70% in China. Overall, we show the importance of spatial differentiation for highly traded products that rely on highly traded inputs and offer recommendations for LCA practitioners. This article met the requirements for a gold‐gold JIE data openness badge described at http://jie.click/badges .  相似文献   

6.
Norway, like many countries, has realized the need to extensively plan its renewable energy future sooner rather than later. Combined heat and power (CHP) through gasification of forest residues is one technology that is expected to aid Norway in achieving a desired doubling of bioenergy production by 2020. To assess the environmental impacts to determine the most suitable CHP size, we performed a unit process‐based attributional life cycle assessment (LCA), in which we compared three scales of CHP over ten environmental impact categories—micro (0.1 megawatts electricity [MWe]), small (1 MWe), and medium (50 MWe) scale. The functional units used were 1 megajoule (MJ) of electricity and 1 MJ of district heating delivered to the end user (two functional units), and therefore, the environmental impacts from distribution of electricity and hot water to the consumer were also considered. This study focuses on a regional perspective situated in middle‐Norway's Nord‐ and Sør‐Trøndelag counties. Overall, the unit‐based environmental impacts between the scales of CHP were quite mixed and within the same magnitude. The results indicated that energy distribution from CHP plant to end user creates from less than 1% to nearly 90% of the total system impacts, depending on impact category and energy product. Also, an optimal small‐scale CHP plant may be the best environmental option. The CHP systems had a global warming potential ranging from 2.4 to 2.8 grams of carbon dioxide equivalent per megajoule of thermal (g CO2‐eq/MJth) district heating and from 8.8 to 10.5 grams carbon dioxide equivalent per megajoule of electricity (g CO2‐eq/MJel) to the end user.  相似文献   

7.
Nanomaterials are expected to play an important role in the development of sustainable products. The use of nanomaterials in solar cells has the potential to increase their conversion efficiency. In this study, we performed a life cycle assessment (LCA) for an emerging nanowire‐based solar technology. Two lab‐scale manufacturing routes for the production of nanowire‐based solar cells have been compared—the direct growth of GaInP nanowires on silicon substrate and the growth of InP nanowires on native substrate, peel off, and transfer to silicon substrate. The analysis revealed critical raw materials and processes of the current lab‐scale manufacturing routes such as the use of trifluoromethane (CHF3), gold, and an InP wafer and a stamp, which are used and discarded. The environmental performance of the two production routes under different scenarios has been assessed. The scenarios include the use of an alternative process to reduce the gold requirements—electroplating instead of metallization, recovery of gold, and reuse of the InP wafer and the stamp. A number of suggestions, based on the LCA results—including minimization of the use of gold and further exploration for upscaling of the electroplating process, the increase in the lifetimes of the wafer and the stamp, and the use of fluorine‐free etching materials—have been communicated to the researchers in order to improve the environmental performance of the technology. Finally, the usefulness and limitations of lab‐scale LCA as a tool to guide the sustainable development of emerging technologies are discussed.  相似文献   

8.
This work contributes to the development of a dynamic life cycle assessment (DLCA) methodology by providing a methodological framework to link a dynamic system modeling method with a time‐dependent impact assessment method. This three‐step methodology starts by modeling systems where flows are described by temporal distributions. Then, a temporally differentiated life cycle inventory (TDLCI) is calculated to present the environmental exchanges through time. Finally, time‐dependent characterization factors are applied to the TDLCI to evaluate climate‐change impacts through time. The implementation of this new framework is illustrated by comparing systems producing domestic hot water (DHW) over an 80‐year period. Electricity is used to heat water in the first system, whereas the second system uses a combination of solar energy and gas to heat an equivalent amount of DHW at the same temperature. This comparison shows that using a different temporal precision (i.e., monthly vs. annual) to describe process flows can reverse conclusions regarding which case has the best environmental performance. Results also show that considering the timing of greenhouse gas (GHG) emissions reduces the absolute values of carbon footprint in the short‐term when compared with results from the static life cycle assessment. This pragmatic framework for the implementation of time in DLCA studies is proposed to help in the development of the methodology. It is not yet a fully operational scheme, and efforts are still required before DLCA can become state of practice.  相似文献   

9.
Life cycle assessment (LCA) has enabled consideration of environmental impacts beyond the narrow boundary of traditional engineering methods. This reduces the chance of shifting impacts outside the system boundary. However, sustainability also requires that supporting ecosystems are not adversely affected and remain capable of providing goods and services for supporting human activities. Conventional LCA does not account for this role of nature, and its metrics are best for comparing alternatives. These relative metrics do not provide information about absolute environmental sustainability, which requires comparison between the demand and supply of ecosystem services (ES). Techno‐ecological synergy (TES) is a framework to account for ES, and has been demonstrated by application to systems such as buildings and manufacturing activities that have narrow system boundaries. This article develops an approach for techno‐ecological synergy in life cycle assessment (TES‐LCA) by expanding the steps in conventional LCA to incorporate the demand and supply of ecosystem goods and services at multiple spatial scales. This enables calculation of absolute environmental sustainability metrics, and helps identify opportunities for improving a life cycle not just by reducing impacts, but also by restoring and protecting ecosystems. TES‐LCA of a biofuel life cycle demonstrates this approach by considering the ES of carbon sequestration, air quality regulation, and water provisioning. Results show that for the carbon sequestration ecosystem service, farming can be locally sustainable but unsustainable at the global or serviceshed scale. Air quality regulation is unsustainable at all scales, while water provisioning is sustainable at all scales for this study in the eastern part of the United States.  相似文献   

10.
The environmental assessment of nanomanufacturing during the initial process design phase should lead to the development of competitive, safe, and environmentally responsible engineering and commercialization. Given the potential benefits and concerns regarding the use of single‐walled carbon nanotubes (SWNTs), three SWNT production processes have been investigated to assess their associated environmental impacts. These processes include arc ablation (arc), chemical vapor deposition (CVD), and high‐pressure carbon monoxide (HiPco). Without consideration of the currently unknown impacts of SWNT dispersion or other health impacts, life cycle assessment (LCA) methodology is used to analyze the environmental impact and provide a baseline for the environmental footprint of each manufacturing process. Although the technical attributes of the product resulting from each process may not be fully comparable, this study presents comparisons that show that the life cycle impacts are dominated by energy, specifically the electricity used in production. Under base case yield conditions, HiPco shows the lowest environmental impact, while the arc process has the lowest impact under best case yield conditions.  相似文献   

11.
Ecological footprint (EF) is a metric that estimates human consumption of biological resources and products, along with generation of waste greenhouse gas (GHG) emissions in terms of appropriated productive land. There is an opportunity to better characterize land occupation and effects on the carbon cycle in life cycle assessment (LCA) models using EF concepts. Both LCA and EF may benefit from the merging of approaches commonly used separately by practitioners of these two methods. However, few studies have compared or integrated EF with LCA. The focus of this research was to explore methods for improving the characterization of land occupation within LCA by considering the EF method, either as a complementary tool or impact assessment method. Biofuels provide an interesting subject for application of EF in the LCA context because two of the most important issues surrounding biofuels are land occupation (changes, availability, and so on) and GHG balances, two of the impacts that EF is able to capture. We apply EF to existing fuel LCA land occupation and emissions data and project EF for future scenarios for U.S. transportation fuels. We find that LCA studies can benefit from lessons learned in EF about appropriately modeling productive land occupation and facilitating clear communication of meaningful results, but find limitations to the EF in the LCA context that demand refinement and recommend that EF always be used along with other indicators and metrics in product‐level assessments.  相似文献   

12.
No life cycle assessment (LCA) of artisanal and small‐scale mining activities (A&Sma) has been identified as of today, and there are limited studies about large‐scale mining and alluvial mining. The A&Sma are relevant economic sectors in countries with large reserves of mineral resources. Gold is the most representative metal mined with these practices and is used not only in jewelry but also in several electronics appliances. South America accounted for 17% of the total worldwide gold extraction in 2005; A&Sma occurred mostly in Colombia, Peru, and Brazil. The aim of this study is to estimate environmental indicators using methodologies for life cycle inventories (LCIs) in one of the two largest producers of gold through A&Sma in South America, Peru, and to discuss possible indicators for A&Sma in South America. Different functional units were used for each case study, as gold with different concentrations was produced and it was not possible to collect data for downstream processes for both bases. The product systems start in the mining and end with the gold production. Data were collected in two mining sites and, later on, related to the functional units. The results showed the amount of energy and water consumed as well as mercury used and released, carbon dioxide (CO2) emissions, and solid wastes for each type of gold produced.  相似文献   

13.
The concept of eco‐efficiency can be defined with the “product value/environmental influence” ratio. Different models have been proposed to measure eco‐efficiency. The main difference among them is the weighting system used to aggregate the environmental results. Data envelopment analysis (DEA) permits this aggregation without requiring a subjective judgment about the weights. In this study, we applied a DEA model to Spanish Mahón‐Menorca cheese production to determine the most eco‐efficient production techniques. To this end, 16 scenarios of Mahón‐Menorca cheese production were built regarding technical (degree of automation) and cleaner production criteria. The environmental impacts were assessed by means of life cycle assessment. We carried out an economic assessment by determining the economic value added and the net income for each scenario. The results are referred to as 1 kilogram (kg) cheese ripened over 105 days. Through DEA, an eco‐efficiency ratio between 0 and 1 was obtained. Three scenarios were found to be eco‐efficient, with a high degree of automation (enclosed vat and molding and demolding machines) and accelerated cheese ripening. We used Monte Carlo simulation to carry out a sensitivity analysis to compare the influence of price changes on the eco‐efficiency ratio. The results emphasize the consistency and stability of the eco‐efficient scenarios.  相似文献   

14.
Cities are rapidly growing and need to look for ways to optimize resource consumption. Metropolises are especially vulnerable in three main systems, often referred to as the FEW (i.e., food, energy, and water) nexus. In this context, urban rooftops are underutilized areas that might be used for the production of these resources. We developed the Roof Mosaic approach, which combines life cycle assessment with two rooftop guidelines, to analyze the technical feasibility and environmental implications of producing food and energy, and harvesting rainwater on rooftops through different combinations at different scales. To illustrate, we apply the Roof Mosaic approach to a densely populated neighborhood in a Mediterranean city. The building‐scale results show that integrating rainwater harvesting and food production would avoid relatively insignificant emissions (13.9–18.6 kg CO2 eq/inhabitant/year) in the use stage, but their construction would have low environmental impacts. In contrast, the application of energy systems (photovoltaic or solar thermal systems) combined with rainwater harvesting could potentially avoid higher CO2 eq emissions (177–196 kg CO2 eq/inhabitant/year) but generate higher environmental burdens in the construction phase. When applied at the neighborhood scale, the approach can be optimized to meet between 7% and 50% of FEW demands and avoid up to 157 tons CO2 eq/year. This approach is a useful guide to optimize the FEW nexus providing a range of options for the exploitation of rooftops at the local scale, which can aid cities in becoming self‐sufficient, optimizing resources, and reducing CO2 eq emissions.  相似文献   

15.
In view of recent studies of the historical development and current status of industrial symbiosis (IS), life cycle assessment (LCA) is proposed as a general framework for quantifying the environmental performance of by‐product exchange. Recent guidelines for LCA (International Reference Life Cycle Data System [ILCD] guidelines) are applied to answer the main research questions in the IS literature reviewed. A typology of five main research questions is proposed: (1) analysis, (2) improvement, and (3) expansion of existing systems; (4) design of new eco‐industrial parks, and (5) restructuring of circular economies. The LCA guidelines were found useful in framing the question and choosing an appropriate reference case for comparison. The selection of a correct reference case reduces the risk of overestimating the benefits of by‐product exchange. In the analysis of existing systems, environmentally extended input‐output analysis (EEIOA) can be used to streamline the analysis and provide an industry average baseline for comparison. However, when large‐scale changes are applied to the system, more sophisticated tools are necessary for assessment of the consequences, from market analysis to general equilibrium modeling and future scenario work. Such a rigorous application of systems analysis was not found in the current IS literature, but would benefit the field substantially, especially when the environmental impact of large‐scale economic changes is analyzed.  相似文献   

16.
An input‐output‐based life cycle inventory (IO‐based LCI) is grounded on economic environmental input‐output analysis (IO analysis). It is a fast and low‐budget method for generating LCI data sets, and is used to close data gaps in life cycle assessment (LCA). Due to the fact that its methodological basis differs from that of process‐based inventory, its application in LCA is a matter of controversy. We developed a German IO‐based approach to derive IO‐based LCI data sets that is based on the German IO accounts and on the German environmental accounts, which provide data for the sector‐specific direct emissions of seven airborne compounds. The method to calculate German IO‐based LCI data sets for building products is explained in detail. The appropriateness of employing IO‐based LCI for German buildings is analyzed by using process‐based LCI data from the Swiss Ecoinvent database to validate the calculated IO‐based LCI data. The extent of the deviations between process‐based LCI and IO‐based LCI varies considerably for the airborne emissions we investigated. We carried out a systematic evaluation of the possible reasons for this deviation. This analysis shows that the sector‐specific effects (aggregation of sectors) and the quality of primary data for emissions from national inventory reporting (NIR) are the main reasons for the deviations. As a rule, IO‐based LCI data sets seem to underestimate specific emissions while overestimating sector‐specific aspects.  相似文献   

17.
Incorporating the beneficial use of industrial by‐products into the industrial ecology of an urban region as a substitute or supplement for natural aggregate can potentially reduce life cycle impacts. This article specifically looks at the utilization of industrial by‐products (IBPs) (coal ash, foundry sand, and foundry slag) as aggregate for roadway sub‐base construction for the Pittsburgh, Pennsylvania, urban region. The scenarios compare the use of virgin aggregate with the use of a combination of both virgin and IBP aggregate, where the aggregate material is selected based on proximity to the construction site and allows for minimization of transportation impacts. The results indicate that the use of IBPs to supplement virgin aggregate on a regional level has the potential of reducing impacts related to energy use, global warming potential, and emissions of nitrogen oxides (NOx), sulfur dioxide (SO2), carbon monoxide (CO), PM10 (particulate matter—10 microns), mercury (Hg), and lead (Pb). Regional management of industrial by‐products would allow for the incorporation of these materials into the industrial ecology of a region and reduce impacts from the disposal of the IBP materials and the extraction of virgin materials and minimize the impacts from transportation. The combination of reduced economic and environmental costs provides a strong argument for state transportation agencies to develop symbiotic relationships with large IBP producers in their regions to minimize impacts associated with roadway construction and maintenance—with the additional benefit of improved management of these materials.  相似文献   

18.
A carbon footprint (CF) assessment of Chinese high‐speed railways (HSRs) can help guide further development of the world's longest HSR network. In this research, a hybrid economic input‐output and life cycle assessment (EIO‐LCA) method was applied to estimate the CF of the Beijing‐Shanghai HSR line. Specific CFs were analyzed of different subsystems of the line, different stages of production, and three calculation scopes. Results showed that the annual CF of the Beijing‐Shanghai HSR is increasing, whereas the per‐passenger CF constantly declined between 2011 and 2014. Scope 1 emissions account for an average of 4% of the total annual CF, Scope 2 contribute 71%, and Scope 3 comprise 25%. Among the different stages, operation contributes the largest (71%), followed by construction (20%) and maintenance (9%). In the construction stage, the bridges have the largest CF, followed by trains, and then rails. A trade‐off exists between the increase in carbon emissions due to construction of bridges and the reduction in operation emissions affected by leveling changes in terrain. The Beijing‐Shanghai HSR line has a relatively higher per‐passenger CF than eight other HSR lines, which is largely due to China's coal‐based carbon‐intensive energy mix of electricity generation, high proportion of bridges, higher operating speed, and heavier train body. In the future, cleaner electricity supply options, more efficient raw material production, and improvement of trains are keys to reducing the CF of Chinese HSRs.  相似文献   

19.
Aging urban infrastructure is a common phenomenon in industrialized countries. The urban water supply pipeline network in the city of Oslo is an example. Even as it faces increasing operational, maintenance, and management challenges, it needs to better its environmental performance by reducing, for instance, the associated greenhouse gas emissions. In this article the authors examine the environmental life cycle performance of Oslo's water supply pipelines by analyzing annual resource consumption and emissions as well as life cycle assessment (LCA) impact potentials over a period of 16 years, taking into account the production/manufacture, installation, operation, maintenance, rehabilitation, and retirement of pipelines. It is seen that the water supply pipeline network of Oslo has already reached a state of saturation on a per capita basis, that is, it is not expanding any more relative to the population it serves, and the stock is now rapidly aging. This article is part of a total urban water cycle system analysis for Oslo, and analyzes more specifically the environmental impacts from the material flows in the water distribution network, examining six environmental impact categories using the SimaPro (version 7.1.8) software, Ecoinvent database, and the CML 2001 (version 2.04) methodology. The long‐term management of stocks calls for a strong focus on cost optimization, energy efficiency, and environmental friendliness. Global warming and abiotic depletion emerge as the major impact categories from the water pipeline system, and the largest contribution is from the production and installation phases and the medium‐size pipelines in the network.  相似文献   

20.
Life cycle assessment (LCA) was used to compare the current water supply planning in Mediterranean Spain, the so‐called AGUA Programme, with its predecessor, the Ebro river water transfer (ERWT). Whereas the ERWT was based on a single interbasin transfer, the AGUA Programme excludes new transfers and focuses instead on different types of resources, including seawater and brackish water desalination and wastewater reuse, among others. The study includes not only water supply but the whole anthropic cycle of water, from water abstraction to wastewater treatment. In addition to standard LCA impact categories, a specific impact category focusing on freshwater resources is included, which takes into account freshwater scarcity in the affected water catchments. In most impact categories the AGUA Programme obtains similar or even lower impact scores than ERWT. Concerning impacts on freshwater resources, the AGUA Programme obtains an impact score 49% lower than the ERWT. Although the current water planning appears to perform better in many impact categories than its predecessor, this study shows that water supply in Spanish Mediterranean regions is substantially increasing its energy intensity and that Mediterranean basins suffer a very high level of water stress due to increasing demand and limited resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号