首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because of the magnitude of land use currently occurring in tropical regions, the local loss of animal species due to habitat fragmentation has been widely studied, particularly in the case of vertebrates. Many invertebrate groups and the ichneumonid wasps in particular, however, have been poorly studied in this context, despite the fact that they are one of the most species-rich groups and play an important role as regulators of other insect populations. Here, we recorded the taxonomic composition of ichneumonid parasitoids and assessed their species richness, abundance, similarity, and dominance in the Los Tuxtlas tropical rain forest, Mexico. We compared two forest types: a continuous forest (640 ha) and a forest fragment (19 ha). We sampled ichneumonids using four malaise traps in both forest types during the dry (September–October) and rainy (March–April) seasons. A total of 104 individuals of Ichneumonidae belonging to 11 subfamilies, 18 genera, and 42 species were collected in the continuous forest and 11 subfamilies, 15 genera, and 24 species were collected in the forest fragment. Species richness, abundance, and diversity of ichneumonids were greater in the continuous forest than in the forest fragment. We did not detect differences between seasons. Species rank/abundance curves showed that the ichneumonid community between the forest types was different. Species similarity between forest types was low. The most dominant species in continuous forest was Neotheronia sp., whereas in the forest fragment, it was Orthocentrus sp. Changes in the ichneumonid wasp community may compromise important tropical ecosystem processes.  相似文献   

2.
Parasitoid wasp communities of the canopy of temperate forests are still largely unexplored. Very little is known about the community composition of parasitoids between canopy and understory and how much of this difference is related to forest structure or parasitoid biological strategies. In this study we investigated upon the difference in the community composition of the parasitic wasps Ichneumonidae between canopy and understory in a lowland temperate forest in northern Italy. We used general linear models to test whether parasitic strategy modifies species vertical stratification and the effect of forest structure. We also tested differences in β‐diversity between canopy and understory traps and over time within single forest layers. We found that stand basal area was positively related to species richness, suggesting that the presence of mature trees can influence local wasp diversity, providing a higher number of microhabitats and hosts. The ichneumonid community of the canopy was different from that of the understory, and the β‐diversity analysis showed higher values for the canopy, due to a higher degree of species turnover between traps. In our analyses, the vertical stratification was different between groups of ichneumonids sharing different parasitic strategies. Idiobiont parasitoids of weakly or deeply concealed hosts were more diverse in the understory than in the canopy while parasitoids of spiders were equally distributed between the two layers. Even though the ichneumonid community was not particularly species‐rich in the canopy of the temperate forests, the extension of sampling to that habitat significantly increased the number of species recorded.  相似文献   

3.
Extensive research has been conducted to reveal how species diversity affects ecosystem functions and services. Yet, consequences of diversity loss for ecosystems as a whole as well as for single community members are still difficult to predict. Arthropod communities typically are species‐rich, and their species interactions, such as those between herbivores and their predators or parasitoids, may be particularly sensitive to changes in community composition. Parasitoids forage for herbivorous hosts by using herbivore‐induced plant volatiles (indirect cues) and cues produced by their host (direct cues). However, in addition to hosts, non‐suitable herbivores are present in a parasitoid's environment which may complicate the foraging process for the parasitoid. Therefore, ecosystem changes in the diversity of herbivores may affect the foraging efficiency of parasitoids. The effect of herbivore diversity may be mediated by either species numbers per se, by specific species traits, or by both. To investigate how diversity and identity of non‐host herbivores influence the behaviour of parasitoids, we created environments with different levels of non‐host diversity. On individual plants in these environments, we complemented host herbivores with 1–4 non‐host herbivore species. We subsequently studied the behaviour of the gregarious endoparasitoid Cotesia glomerata L. (Hymenoptera: Braconidae) while foraging for its gregarious host Pieris brassicae L. (Lepidoptera: Pieridae). Neither non‐host species diversity nor non‐host identity influenced the preference of the parasitoid for herbivore‐infested plants. However, after landing on the plant, non‐host species identity did affect parasitoid behaviour, whereas non‐host diversity did not. One of the non‐host species, Trichoplusia ni Hübner (Lepidoptera: Noctuidae), reduced the time the parasitoid spent on the plant as well as the number of hosts it parasitized. We conclude that non‐host herbivore species identity has a larger influence on C. glomerata foraging behaviour than non‐host species diversity. Our study shows the importance of species identity over species diversity in a multitrophic interaction of plants, herbivores, and parasitoids.  相似文献   

4.
The pace of climate change in the Arctic is dramatic, with temperatures rising at a rate double the global average. The timing of flowering and fruiting (phenology) is often temperature dependent and tends to advance as the climate warms. Herbarium specimens, photographs, and field observations can provide historical phenology records and have been used, on a localised scale, to predict species’ phenological sensitivity to climate change. Conducting similar localised studies in the Canadian Arctic, however, poses a challenge where the collection of herbarium specimens, photographs, and field observations have been temporally and spatially sporadic. We used flowering and seed dispersal times of 23 Arctic species from herbarium specimens, photographs, and field observations collected from across the 2.1 million km2 area of Nunavut, Canada, to determine (1) which monthly temperatures influence flowering and seed dispersal times; (2) species’ phenological sensitivity to temperature; and (3) whether flowering or seed dispersal times have advanced over the past 120 years. We tested this at different spatial scales and compared the sensitivity in different regions of Nunavut. Broadly speaking, this research serves as a proof of concept to assess whether phenology–climate change studies using historic data can be conducted at large spatial scales. Flowering times and seed dispersal time were most strongly correlated with June and July temperatures, respectively. Seed dispersal times have advanced at double the rate of flowering times over the past 120 years, reflecting greater late‐summer temperature rises in Nunavut. There is great diversity in the flowering time sensitivity to temperature of Arctic plant species, suggesting climate change implications for Arctic ecological communities, including altered community composition, competition, and pollinator interactions. Intraspecific temperature sensitivity and warming trends varied markedly across Nunavut and could result in greater changes in some parts of Nunavut than in others.  相似文献   

5.
Insects are particularly vulnerable to rapid environmental changes, which are disproportionally affecting high latitudes. Increased temperature could influence insect species differentially and reshape assemblages over time. We quantified temporal assemblage turnover of Arctic Diptera (flies) in the Muscidae, one of the most diverse and abundant families of Arctic insects, using time series data from Zackenberg, north‐east Greenland. We measured temporal patterns of abundance, diversity, and composition of muscid assemblages in wet fen, mesic and arid heath habitats from yearly collections spanning 1996–2014 and tested their relationship to climate. A total of 18 385 individuals representing 16 species of muscid flies were identified. A significant decrease of 80% of total muscid abundance was observed during the study period. Species richness declined in each habitat type but this trend was not significant across habitats. The number of common and abundant species also decreased significantly over time across habitats revealing a temporal modification of species evenness. Significant temporal changes in composition observed in the wet fen and across habitats were mainly driven by a change in relative abundance of certain species rather than by species replacement. Shift in composition in each habitat and decline in muscid abundance across habitats were associated with summer temperature, which has significantly increased over the study period. However, relationships between temperature and muscid abundance at the species level were noticeable for a few species only. Significant directional change in composition was documented in the wet fen but no biotic homogenization across habitats was observed. As one of the few studies of species‐level changes in abundance, diversity and composition of an insect taxon in the Arctic over the past two decades, our study shows that habitat types may modulate insect species responses to recent climate change and that contrasting species responses can alter species assemblages within a few decades.  相似文献   

6.
Global climate change is expected to alter the polar bioregions faster than any other marine environment. This study assesses the biodiversity of seaweeds and associated eukaryotic pathogens of an established study site in northern Baffin Island (72° N), providing a baseline inventory for future work assessing impacts of the currently ongoing changes in the Arctic marine environment. A total of 33 Phaeophyceae, 24 Rhodophyceae, 2 Chlorophyceae, 12 Ulvophyceae, 1 Trebouxiophyceae, and 1 Dinophyceae are reported, based on collections of an expedition to the area in 2009, complemented by unpublished records of Robert T. Wilce and the first‐ever photographic documentation of the phytobenthos of the American Arctic. Molecular barcoding of isolates raised from incubated substratum samples revealed the presence of 20 species of brown seaweeds, including gametophytes of kelp and of a previously unsequenced Desmarestia closely related to D. viridis, two species of Pylaiella, the kelp endophyte Laminariocolax aecidioides and 11 previously unsequenced species of the Ectocarpales, highlighting the necessity to include molecular techniques for fully unraveling cryptic algal diversity. This study also includes the first records of Eurychasma dicksonii, a eukaryotic pathogen affecting seaweeds, from the American Arctic. Overall, this study provides both the most accurate inventory of seaweed diversity of the northern Baffin Island region to date and can be used as an important basis to understand diversity changes with climate change.  相似文献   

7.
Our pigment analyses from a year‐long study in the coastal Beaufort Sea in the western Canadian Arctic showed the continuous prevalence of eukaryotic picoplankton in the green algal class Prasinophyceae. Microscopic analyses revealed that the most abundant photosynthetic cell types were Micromonas‐like picoprasinophytes that persisted throughout winter darkness and then maintained steady exponential growth from late winter to early summer. A Micromonas (CCMP2099) isolated from an Arctic polynya (North Water Polynya between Ellesmere Island and Greenland), an ice‐free section, grew optimally at 6°C–8°C, with light saturation at or below 10 μmol photons·m?2·s?1 at 0°C. The 18S rDNA analyses of this isolate and environmental DNA clone libraries from diverse sites across the Arctic Basin indicate that this single psychrophilic Micromonas ecotype has a pan‐Arctic distribution. The 18S rDNA from two other picoprasinophyte genera was also found in our pan‐Arctic clone libraries: Bathycoccus and Mantoniella. The Arctic Micromonas differed from genotypes elsewhere in the World Ocean, implying that the Arctic Basin is a marine microbial province containing endemic species, consistent with the biogeography of its macroorganisms. The prevalence of obligate low‐temperature, shade‐adapted species in the phytoplankton indicates that the lower food web of the Arctic Ocean is vulnerable to ongoing climate change in the region.  相似文献   

8.
We investigated the community structure of ichneumonid wasps inhabiting beech forests at six sites in the Tanzawa Mountains of Japan under different magnitudes of impact by sika deer Cervus nippon and beech sawfly Fagineura crenativora on vegetation. Using yellow flight-interception traps, we captured 2,528 ichneumonid wasps representing 367 species in 23 subfamilies. The number of species at each site ranged from 77 to 136 and approximately 80% of these were low-density species (i.e. only one to two individuals captured per site). The number of individuals at each site ranged from 248 to 897, and the percentage of the beech sawfly parasitoids varied widely from 1% to 57%. The numbers of species in parasitoid groups categorized according to their hosts, that is, sawfly (not including the beech sawfly), Lepidoptera, woodborer, fungivore or the others, did not greatly differ among the study sites. Parasitoids attacking herbivorous insects exceeded others in species richness and abundance at all sites. Six sites were classified into four groups in terms of abundance of the host groups when excluding the parasitoids of the beech sawfly, but into only two groups when including these parasitoids. Species diversity and evenness were the highest at the least impacted site even if the beech sawfly parasitoids were excluded from calculation. We suggested some environmental factors, such as groundcover vegetation, abundance of the beech sawfly and structure and age of forest stands, that could have affected the community structure of ichneumonid wasps in the beech forests.  相似文献   

9.
Food web changes in arctic ecosystems related to climate warming   总被引:3,自引:0,他引:3  
Sedimentary records from three Canadian High Arctic ponds on Ellesmere Island, spanning the last several thousand years, show major shifts in pond communities within the last ~200 years. These paleolimnological data indicate that aquatic insect (Diptera: Chironomidae) populations rapidly expanded and greatly increased in community diversity beginning in the 19th century. These invertebrate changes coincided with striking shifts in algal (diatom) populations, indicating strong food‐web effects because of climate warming and reduced ice‐cover in ponds. Predicted future warming in the Arctic may produce ecological changes that exceed the large shifts that have already occurred since the 19th century.  相似文献   

10.
Vegetation-rich patches in the High Arctic may serve as a significant source for vegetation reconstruction in the climate changes. Diversity and colonization, however, of such potential source populations in the High Arctic has rarely been studied. We examined chloroplast sequence variation in Salix arctica, a key species in the Canadian High Arctic, from four adjacent glacial moraines of differing ages on Ellesmere Island, Canada, as well as two other populations located at the center and southern end of the species’ range. The estimated ages of the moraines varied from 35,000 to 250 years old. The older moraine populations showed higher within-population genetic variation compared with the other moraine populations, which is generally attributed to differences in establishment age associated with plant densities among moraines. The moraines with smaller plant density had lower genetic diversity and had no private haplotypes, indicating the local population size and genetic diversity may not be recovered within a few thousand years. This suggests seed dispersal at a local scale may be limited even in species with high velocity of seed dispersal, and that High Arctic vegetation-rich patches may serve as significant source populations for sustaining local genetic diversity. In addition, the three regions we observed comprised an evolutionarily distinct lineage and significant population differentiation. This implies multiple sources for the colonization during the most recent deglaciation, resulting in the current wide distribution. Local as well as range-wide processes of colonization would be essential to understand vegetation responses in High Arctic to the environmental changes.  相似文献   

11.
We have examined the effects of herbivore diversity on parasitoid community persistence and stability, mediated by nonspecific information from herbivore‐infested plants. First, we investigated host location and patch time allocation in the parasitoid Cotesia glomerata in environments where host and/or nonhost herbivores were present on Brassica oleracea leaves. Parasitoids were attracted by infochemicals from leaves containing nonhost herbivores. They spent considerable amounts of time on such leaves. Thus, when information from the plant is indistinct, herbivore diversity is likely to weaken interaction strengths between parasitoids and hosts. In four B. oleracea fields, all plants contained herbivores, often two or more species. We modelled parasitoid–herbivore communities increasing in complexity, based on our experiments and field data. Increasing herbivore diversity promoted the persistence of parasitoid communities. However, at a higher threshold of herbivore diversity, parasitoids became extinct due to insufficient parasitism rates. Thus, diversity can potentially drive both persistence and extinctions.  相似文献   

12.
A new cold-adapted yeast species, Gelidatrema psychrophila sp. nov., was isolated from a melt-pool microbial mat community, on an ice island located in Disraeli Fjord, Ellesmere Island, in the Canadian High Arctic. Molecular analysis of the D1/D2 domain sequence of the large subunit rDNA showed that this species is novel and could grow at sub-zero temperatures and in vitamin-free media. These characteristics were likely acquired by the yeast to survive in extreme, perennially cold oligotrophic environments.  相似文献   

13.
西沙群岛礁栖鱼类物种多样性及其食性特征   总被引:1,自引:0,他引:1  
通过新的方法(即潜水调查法)调查了西沙群岛浅水区的礁栖鱼类, 并从食性角度分析鱼类群落特征及其对水质环境变化的响应。2006年5-6月, 对西沙群岛6个岛礁(东岛、永兴岛、羚羊礁、金银岛、华光礁和中建岛)共10个站位的礁栖鱼类种类、数量和长度进行了调查, 结合公开资料(FishBase等)确定鱼类食性。共记录到29科71属119种鱼, 其中50种是新记录。至此, 西沙群岛的鱼类总记录已达到717种。从不同站位来看, 永兴岛西的种类数量和Shannon-Wiener多样性指数均最高。多数鱼种分布范围狭小。摄食浮游动物和底栖无脊椎动物的鱼类是优势类群, 而草食性、杂食性和食物链顶端食性的鱼类数量和生物量较低, 反映出西沙群岛珊瑚礁生态系统整体上健康稳定。永兴岛的杂食性鱼类的数量比例和生物量比例均高于其他岛礁, 反映出鱼类群落已对水体富营养化产生响应。  相似文献   

14.
Climate change will have profound and unanticipated effects on species distributions. The pace and nature of this change is largely unstudied, especially for the most diverse elements of terrestrial communities--the arthropods--here we have only limited knowledge concerning the taxonomy and the ecology of these groups. Because Arctic ecosystems have already experienced significant increases in temperature over the past half century, shifts in community structure may already be in progress. Here we utilise collections of a particularly hyperdiverse insect group--parasitoid wasps (Hymenoptera; Braconidae; Microgastrinae)--at Churchill, Manitoba, Canada in the early and mid-twentieth century to compare the composition of the contemporary community to that present 50-70 years ago. Morphological and DNA barcoding results revealed the presence of 79 species of microgastrine wasps in collections from Churchill, but we estimate that 20% of the local fauna awaits detection. Species composition and diversity between the two time periods differ significantly; species that were most common in historic collections were not found in contemporary collections and vice versa. Using barcodes we compared these collections to others from across North America; contemporary Churchill species are most affiliated with more south-western collections, while historic collections were more affiliated with eastern collections. The past five decades has clearly seen a dramatic change of species composition within the area studied coincident with rising temperature.  相似文献   

15.
Adequate connectivity between discontinuous habitat patches is crucial for the persistence of metapopulations across space and time. Loss of landscape connectivity is often a direct result of fragmentation caused by human activities but also can be caused indirectly through anthropogenic climate change. Peary caribou (Rangifer tarandus pearyi) are widely dispersed across the islands of the Canadian Arctic Archipelago and rely on sea ice to move seasonally between island habitats throughout their range. Seasonal connectivity provided by sea ice is necessary to maintain genetic diversity and to facilitate dispersal and recolonization of areas from which caribou have been extirpated. We used least‐cost path analysis and circuit theory to model connectivity across Peary caribou range, and future climate projections to investigate how this connectivity might be affected by a warming climate. Further, we used measures of current flow centrality to estimate the role of High Arctic islands in maintaining connectivity between Peary caribou populations and to identify and prioritize those islands and linkages most important for conservation. Our results suggest that the Bathurst Island complex plays a critical role in facilitating connectivity between Peary caribou populations. Large islands, including Banks, Victoria, and Ellesmere have limited roles in connecting Peary caribou. Without rigorous greenhouse gas emission reductions our projections indicate that by 2100 all connectivity between the more southern Peary caribou populations will be lost for important spring and early‐winter movement periods. Continued connectivity across the Canadian Arctic Archipelago, and possibly Peary caribou persistence, ultimately hinges on global commitments to limit climate change. Our research highlights priority areas where, in addition to emission reductions, conservation efforts to maintain connectivity would be most effective.  相似文献   

16.
  1. Large and small mammalian herbivores are present in most vegetated areas in the Arctic and often have large impacts on plant community composition and ecosystem functioning. The relative importance of different herbivores and especially how their specific impact on the vegetation varies across the Arctic is however poorly understood.
  2. Here, we investigate how large and small herbivores influence vegetation density and plant community composition in four arctic vegetation types in Scandinavia and Alaska. We used a unique set of exclosures, excluding only large (reindeer and muskoxen) or all mammalian herbivores (also voles and lemmings) for at least 20 years.
  3. We found that mammalian herbivores in general decreased leaf area index, NDVI, and abundance of vascular plants in all four locations, even though the strength of the effect and which herbivore type caused these effects differed across locations. In three locations, herbivore presence caused contrasting plant communities, but not in the location with lowest productivity. Large herbivores had a negative effect on plant height, whereas small mammalian herbivores increased species diversity by decreasing dominance of the initially dominating plant species. Above‐ or belowground disturbances caused by herbivores were found to play an important role in shaping the vegetation in all locations.
  4. Synthesis: Based on these results, we conclude that both small and large mammalian herbivores influence vegetation in Scandinavia and Alaska in a similar way, some of which can mitigate effects of climate change. We also see important differences across locations, but these depend rather on local herbivore and plant community composition than large biogeographical differences among continents.
  相似文献   

17.
Arctic wildlife is often presented as being highly at risk in the face of current climate warming. We use the long-term (up to 24 years) monitoring records available on Bylot Island in the Canadian Arctic to examine temporal trends in population attributes of several terrestrial vertebrates and in primary production. Despite a warming trend (e.g. cumulative annual thawing degree-days increased by 37% and snow-melt date advanced by 4–7 days over a 23-year period), we found little evidence for changes in the phenology, abundance or productivity of several vertebrate species (snow goose, foxes, lemmings, avian predators and one passerine). Only primary production showed a response to warming (annual above-ground biomass of wetland graminoids increased by 123% during this period). We nonetheless found evidence for potential mismatches between herbivores and their food plants in response to warming as snow geese adjusted their laying date by only 3.8 days on average for a change in snow-melt of 10 days, half of the corresponding adjustment shown by the timing of plant growth (7.1 days). We discuss several reasons (duration of time series, large annual variability, amplitude of observed climate change, nonlinear dynamic or constraints imposed by various rate of warming with latitude in migrants) to explain the lack of response by herbivores and predators to climate warming at our study site. We also show how length and intensity of monitoring could affect our ability to detect temporal trends and provide recommendations for future monitoring.  相似文献   

18.
Sandstone outcrops around Eureka, Ellesmere Island, Nunavut (80°N) in the Canadian high Arctic are host to abundant cryptoendolithic microbial communities. Continuous measurements over 2 years (2002–2004) of climate and environmental parameters showed that cryptoendolithic habitats experience warmer temperatures and wetter conditions than the exposed rock surface. Subsurface temperature fluctuations were moderated by the thermal capacity of the rock substrate and varied as a function of depth, aspect, and albedo. Rain, snow or snowmelt substantially increased subsurface moisture levels, which persist for significant time periods after initial precipitation events. These conditions produced a habitat amenable to colonization by cyanobacteria, fungi and algae. The dominance of one microbial community over another varied between sites, however these differences existed in habitats with similar temperature conditions. Greater diversity of microorganisms at this Arctic location compared to similar habitats in the Antarctic Dry Valleys is explained by warmer temperatures during summer months that lead to longer periods for both active (∼3,700 h year−1) and ideal (∼2,500 h year−1) calculated metabolic activities as well as abundant moisture in the form of liquid water.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

19.
Climate change has the potential to influence the persistence of ecological communities by altering their stability properties. One of the major drivers of community stability is species diversity, which is itself expected to be altered by climate change in many systems. The extent to which climatic effects on community stability may be buffered by the influence of species interactions on diversity is, however, poorly understood because of a paucity of studies incorporating interactions between abiotic and biotic factors. Here, I report results of a 10-year field experiment, the past 7 years of which have focused on effects of ongoing warming and herbivore removal on diversity and stability within the plant community, where competitive species interactions are mediated by exploitation through herbivory. Across the entire plant community, stability increased with diversity, but both stability and diversity were reduced by herbivore removal, warming and their interaction. Within the most species-rich functional group in the community, forbs, warming reduced species diversity, and both warming and herbivore removal reduced the strength of the relationship between diversity and stability. Species interactions, such as exploitation, may thus buffer communities against destabilizing influences of climate change, and intact populations of large herbivores, in particular, may prove important in maintaining and promoting plant community diversity and stability in a changing climate.  相似文献   

20.
Climate change in the Neotropics is causing upslope range shifts. We used arrays of ant species collected in a cloud forest at 1,500 m in Área de Conservación Guanacaste (ACG), northwestern Costa Rica, collected in two time periods (1998–2000 and 2008–2011) to measure changes in species richness and diversity over a decade. Using metrics of community structure, we found that the species assemblage in the collections from the 1990s was significantly phylogenetically clustered and functionally less diverse as compared to collections from the early 2000s. At both time points, the assemblages were significantly phylogenetically clustered and while the difference in functional diversity between the time points was not significant, the ant assemblage has become lighter in color (on average) over time. When individual species are considered, the overall pattern of replacement is consistent with the cloud forest ant assemblage being colonized by arrivals from lower elevation forests. The invertebrate communities on cloud forested mountain tops are especially vulnerable to a changing climate as there are two factors working together; no higher terrain to which they can move and the invasion of more and more taxa from lower downslope. This vulnerability is already measurable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号