首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mutualistic symbiosis and nitrogen fixation of legume rhizobia play a key role in ecological environments. Although many different rhizobial species can form nodules with a specific legume, there is often a dominant microsymbiont, which has the highest nodule occupancy rates, and they are often known as the “most favorable rhizobia”. Shifts in the most favorable rhizobia for a legume in different geographical regions or soil types are not well understood. Therefore, in order to explore the shift model, an experiment was designed using successive inoculations of rhizobia on one legume. The plants were grown in either sterile vermiculite or a sandy soil. Results showed that, depending on the environment, a legume could select its preferential rhizobial partner in order to establish symbiosis. For perennial legumes, nodulation is a continuous and sequential process. In this study, when the most favorable rhizobial strain was available to infect the plant first, it was dominant in the nodules, regardless of the existence of other rhizobial strains in the rhizosphere. Other rhizobial strains had an opportunity to establish symbiosis with the plant when the most favorable rhizobial strain was not present in the rhizosphere. Nodule occupancy rates of the most favorable rhizobial strain depended on the competitiveness of other rhizobial strains in the rhizosphere and the environmental adaptability of the favorable rhizobial strain (in this case, to mild vermiculite or hostile sandy soil). To produce high nodulation and efficient nitrogen fixation, the most favorable rhizobial strain should be selected and inoculated into the rhizosphere of legume plants under optimum environmental conditions.  相似文献   

3.
《Journal of plant physiology》2014,171(18):1732-1739
Legumes have the unique ability to fix atmospheric nitrogen (N2) via symbiotic bacteria in their nodules but depend heavily on phosphorus (P), which affects nodulation, and the carbon costs and energy costs of N2 fixation. Consequently, legumes growing in nutrient-poor ecosystems (e.g., sandstone-derived soils) have to enhance P recycling and/or acquisition in order to maintain N2 fixation. In this study, we investigated the flexibility of P recycling and distribution within the nodules and their effect on N nutrition in Virgilia divaricata Adamson, Fabaceae, an indigenous legume in the Cape Floristic Region of South Africa. Specifically, we assessed tissue elemental localization using micro-particle-induced X-ray emission (PIXE), measured N fixation using nutrient concentrations derived from inductively coupled mass-spectrometry (ICP-MS), calculated nutrient costs, and determined P recycling from enzyme activity assays. Morphological and physiological features characteristic of adaptation to P deprivation were observed for V. divaricata. Decreased plant growth and nodule production with parallel increased root:shoot ratios are some of the plastic features exhibited in response to P deficiency. Plants resupplied with P resembled those supplied with optimal P levels in terms of growth and nutrient acquisition. Under low P conditions, plants maintained an increase in N2-fixing efficiency despite lower levels of orthophosphate (Pi) in the nodules. This can be attributed to two factors: (i) an increase in Fe concentration under low P, and (ii) greater APase activity in both the roots and nodules under low P. These findings suggest that V. divaricata is well adapted to acquire N under P deficiency, owing to the plasticity of its nodule physiology  相似文献   

4.
Nitrogen fixation is an important biological process in terrestrial ecosystems and for global crop production. Legume nodulation and N2 fixation have been improved using nodule-enhancing rhizobacteria (NER) under both regular and stressed conditions. The positive effect of NER on legume–rhizobia symbiosis can be facilitated by plant growth-promoting (PGP) mechanisms, some of which remain to be identified. NER that produce aminocyclopropane-1-carboxylic acid deaminase and indole acetic acid enhance the legume–rhizobia symbiosis through (i) enhancing the nodule induction, (ii) improving the competitiveness of rhizobia for nodulation, (iii) prolonging functional nodules by suppressing nodule senescence and (iv) upregulating genes associated with legume–rhizobia symbiosis. The means by which these processes enhance the legume–rhizobia symbiosis is the focus of this review. A better understanding of the mechanisms by which PGP rhizobacteria operate, and how they can be altered, will provide opportunities to enhance legume–rhizobial interactions, to provide new advances in plant growth promotion and N2 fixation.  相似文献   

5.
6.
7.
Summary Symbiotic nitrogen fixation in angiosperms normally occurs in buried root nodules and is severely inhibited in flooded soils. A few plant species, however, respond to flooding by forming nodules on stems, or, in one case, submerged roots with aerenchyma. We report here the novel occurrence of aerial rhizobial nodules attached to adventitious roots of the legume,Pentaclethra macroloba, in a lowland tropical rainforest swamp in Costa Rica. Swamp sapdings (1–10 cm diameter) support an average 12 g nodules dry weight per plant on roots 2–300 cm above water, and nodules remain in aerial positions at least 6 months. Collections from four swamp plants maintained linear activity rates (3–14 moles C2H4/g nodule dry weight/hr) throughout incubations for 6 and 13 hrs; excised nodule activity in most legumes declines after 1–2 hrs. Preliminary study of the anatomy and physiology suggest aerial nodules possess unusual features associated with tolerance to swamp conditions. High host tree abundance and nodulation in the swamp compared to upland sites indicate the aerial root symbiosis may contribute more fixed nitrogen to the local ecosystem than the more typical buried root symbiosis.  相似文献   

8.
We examined the development of the aquatic N2-fixing symbiosis between Rhizobium sp. (itNeptunia) and roots of Neptunia natans L. f. (Druce) (previously N. oleracea Lour.) under natural and laboratory conditions. When grown in its native marsh habitat, this unusual aquatic legume does not develop root hairs, the primary sites of rhizobial infection for most temperate legumes. Under natural conditions, the aquatic plant floats and develops nitrogen-fixing nodules at emergence of lateral roots on the primary root and on adventitious roots at stem nodes, but not from the stem itself. Cytological studies using various microscopies revealed that the mode of root infection involved an intercellular route of entry followed by an intracellular route of dissemination within nodule cells. After colonizing the root surface, the bacteria entered the primary root cortex through natural wounds caused by splitting of the epidermis and emergence of young lateral roots, and then stimulated early development of nodules at the base of such roots. The bacteria entered the nodule through pockets between separated host cells, then spread deeper in the nodule through a narrower intercellular route, and eventually evoked the formation of infection threads that penetrated host cells and spread throughout the nodule tissue. Bacteria were released from infection droplets at unwalled ends of infection threads, became enveloped by peribacteroid membranes, and transformed into enlarged bacteroids within symbiosomes. In older nodules, the bacteria within symbiosomes were embedded in an unusual, extensive fibrillar matrix. Cross-inoculation tests of 18 isolates of rhizobia from nodules of N. natans revealed a host specificity enabling effective nodulation of this aquatic legume, with lesser affinity for Medicago sativa and Ornithopus sp., and an inability to nodulate several other crop legume species. Acetylene reduction (N2 fixation) activity was detected in nodules of N. natans growing in aquatic habitats under natural conditions in Southern India. These studies indicate that a specific group of Rhizobium sp. (Neptunia) occupies a unique ecological niche in aquatic environments by entering into a N2-fixing root-nodule symbiosis with Neptunia natans.We thank J. Whallon for technical assistance, G. Truchet, J. Vasse, S. Wagener, J. Beaman, F. DeBruijn, F. Ewers, and A. Squartini for helpful comments, and N.N. Prasad and G. Birla for assistance in conducting field observations. This work was supported by the Michigan Agricultural Experiment Station and National Science Foundation grants DIR-8809640 and BIR-9120006 awarded to the MSU Center for Microbial Ecology. This study is dedicated to the memory of Dr. Joseph C. Burton, a friend and colleague who made many contributions to the study of the Rhizobiumlegume symbiosis.  相似文献   

9.
The supernodulating mutants of legumes lack the internal regulation of the number of symbiotic root nodules that harbour N2-fixing nodule bacteria. On one hand, these mutants represent an efficient tool for dramatic increase in the degree of rhizobial symbiosis development. The trait of released nodulation is often associated with the desirable resistance of nodule initiation and functioning to the inhibition by ambient nitrate. On the other hand, the more intense and stable atmospheric nitrogen fixation of supernodulated plants is devalued by plant growth depression that results from the disproportion between the photosynthetic capacity of the shoot and the catabolic demands of symbiotic nodules. The deleterious effects of excessive nodulation can be neutralised or alleviated by a breeding strategy aimed at creating an ideotype of N2-fixing legume. The growth depression can be diminished by the reduction in the nodule number typical for supernodulators, that is, 6–10-fold of the wild type, to the level found permissive for the particular crop. This shift should be accompanied with breeding aimed at the increased photosynthetic capacity of the shoot. Forage varieties of legumes represent a reserve of high photosynthetic and shoot growth capacity, thanks to a long-term breeding history for green biomass accumulation. Moreover, the deleterious effects of supernodulation are less perceived after introgression into the background of forage varieties in view of different criteria in their evaluation, such as nitrogen accumulation and biomass production per crop area unit. The growth of supernodulators can be further corrected by breeding for auxiliary traits such as long-vine shoot architecture, a longer vegetation period and late flowering. The same strategy is applicable to the compensation for inherent pleiotropic changes in plant development, which are often associated with primarily symbiotic mutations. Supporting evidence for the efficiency of the described approach has already been reported.  相似文献   

10.
Symbiosis specificity in the legume: rhizobial mutualism   总被引:1,自引:0,他引:1  
Legume plants are able to engage in root nodule symbiosis with nitrogen-fixing soil bacteria, collectively called rhizobia. This mutualistic association is highly specific, such that each rhizobial species/strain interacts with only a specific group of legumes, and vice versa. Symbiosis specificity can occur at multiple phases of the interaction, ranging from initial bacterial attachment and infection to late nodule development associated with nitrogen fixation. Genetic control of symbiosis specificity is complex, involving fine-tuned signal communication between the symbiotic partners. Here we review our current understanding of the mechanisms used by the host and bacteria to choose their symbiotic partners, with a special focus on the role that the host immunity plays in controlling the specificity of the legume - rhizobial symbiosis.  相似文献   

11.
Referee: Prof. Dr. Dietrich Werner, FG Zellbiologie und Angewandte Botanik, Fachbereich Biologie, Philipps-Universität Marburg, Karl-von-Frisch-Strasse, D-35032 Marburg, Germany Rhizobia are well known for their capacity to establish a symbiosis with legumes. They inhabit root nodules, where they reduce atmospheric nitrogen and make it available to the plant. Biological nitrogen fixation is an important component of sustainable agriculture, and rhizobial inoculants have been applied frequently as biofertilizers. In this review we present recently developed technologies and strategies for selecting quality inoculant strains by taking into consideration the complex interaction between the edaphic environment with the genotypes of both the legume and its microsymbiont. Enhanced competitive ability in an inoculant strain is a key requirement for successful colonization of plant roots, nodule formation, and subsequent N2-fixation. We discuss several avenues for the management and manipulation of rhizobial competition as well as genes that influence competition in the rhizosphere. The use of molecular techniques has greatly contributed to our knowledge of nodule-bacterial diversity and phylogeny. Approaches to the study of rhizobial diversity as well as mechanisms for the evolutionary diversification of nodulating bacteria are presented. Rhizobium genomes ranging from 5.5 to 9?Mb have been sequenced recently and deposited in public databases. A comparison of sequence data has led to a better understanding of genes involved in the symbiotic process as well as possible mechanisms responsible for horizontal transfer of genetic elements and symbiosis genes among rhizobia. Furthermore, rhizobia are frequent rhizosphere colonizers of a wide range of plants and may also inhabit nonleguminous plants endophytically. In these rhizospheric and endophytic habitats they may exhibit several plant growth-promoting effects, such as hormone production, phosphate solubilization, and the suppression of pathogens.  相似文献   

12.
Mineral nturient defiencies are a major constraint limiting legume nitrogen fixation and yield. In this review general techniques for assessing nutrient involvement in symbiotic nitrogen fixation are described and specific methods are outlined for determining which developmental phase of the symbiosis is most sensitive to nutrient deficiency. The mineral nutrition of the Rhizobium component of the symbiosis is considered both as the free living organism in the soil and as bacteroids in root nodules. Rhizobial growth and survival in soils is not usually limited by nutrient availability. Multiplication of rhizobia in the legume rhizosphere is limited by low Ca availability. Nodule initiation is affected by severe Co deficiency through effects on rhizobia. Nodule development is limited by severe B deficiency via an effect on plant cell growth. Fe deficiency limits nodule development by affecting rhizobia and strains of rhizobia differ widely in their ability to acquire sufficient Fe for their symbiotic development. Nodule function requires more Mo than does the host plant, and in some symbioses nitrogen fixation may be specifically limited by low availability of Ca, Co, Cu and Fe. The importance of the peribacteriod membrane in determining nutrient availability to bacteroids is considered. It is concluded that the whole legume-Rhizobium symbiosis should be considered when improving legume growth and yield under nutrient stress conditions. Differences among rhizobial strains in their ability to obtain mineral nutrients from their environment may be agronomically important.  相似文献   

13.
14.
15.
豆科草本植物固氮是陆地生态系统重要的自然氮输入方式, 影响着草地生产的经济性和可持续性。为探讨氮磷交互作用影响豆科草本植物生物固氮率的潜在生理生态机制, 该研究选取8种豆科草本植物分别种植在对照、氮肥添加、磷肥添加和氮磷耦合添加处理的土壤中, 进行野外盆栽实验。测定了初花期植物生物量和营养含量、根部碳水化合物含量、根际pH、根际柠檬酸含量、根际有效磷含量、植物根瘤生物量、磷含量及其生物固氮率。主要结果: 依赖于豆科物种, 氮添加显著促进了豆科草本植物根际磷的活化, 降低了根生物量分配以及根系非结构性碳水化合物含量。在两种磷添加处理下, 氮添加导致8种豆科草本植物根瘤生物量平均下降27%-36%, 生物固氮率平均下降20%-33%。磷添加降低了根际的磷活化, 但促进了豆科草本植物根系发育和非结构性碳水化合物的积累。在施氮和不施氮条件下, 磷添加分别使8种豆科草本植物的生物固氮率提高了45%-69%和0-47%。氮添加降低豆科草本植物生物固氮率, 其原因是氮添加提高了植物磷需求, 为活化更多磷, 豆科草本植物降低根系生物量和根系非结构性碳水化合物的含量, 导致根瘤发育受到限制。在氮添加的同时进行磷添加, 能够改善土壤氮磷平衡, 促进根系生长和非结构性碳水化合物积累, 缓解了增氮对生物固氮的抑制作用。  相似文献   

16.
The effect of phosphorus deficiency on growth, nodulation and phytase activity was studied in glasshouse for four symbioses involving two faba bean cultivars, namely Aguadulce (AG) and Alfia (AL), and two local rhizobial isolates, namely RhF1 and RhF2. The P deficiency was applied by adding 25 µmol of Pi plant?1 week?1 to nutrient solution, whereas the sufficient control received 125 µmol plant?1 week?1. At flowering stage, the plants were harvested for assessment of growth and nodulation, P and N contents in organs as well as activities of phytase and phosphatases in nodules. The latter were highly stimulated by P deficiency, particularly for AL–RhF1 symbiosis for which shoot growth and P content were not affected by P deficiency. Using in situ RT-PCR, the expression of a plant histidine acid phytase HAP gene was detected in the nodule cortex under P deficiency. It is concluded that high nodule phytase activity constitutes a mechanism for faba bean plants to adapt their nitrogen fixation to P deficiency.  相似文献   

17.
In legumes, symbiotic nitrogen (N) fixation (SNF) occurs in specialized organs called nodules after successful interactions between legume hosts and rhizobia. In a nodule, N-fixing rhizobia are surrounded by symbiosome membranes, through which the exchange of nutrients and ammonium occurs between bacteria and the host legume. Phosphorus (P) is an essential macronutrient, and N2-fixing legumes have a higher requirement for P than legumes grown on mineral N. As in the previous studies, in P deficiency, barrel medic (Medicago truncatula) plants had impaired SNF activity, reduced growth, and accumulated less phosphate in leaves, roots, and nodules compared with the plants grown in P sufficient conditions. Membrane lipids in M. truncatula tissues were assessed using electrospray ionization–mass spectrometry. Galactolipids were found to increase in P deficiency, with declines in phospholipids (PL), especially in leaves. Lower PL losses were found in roots and nodules. Subsequently, matrix-assisted laser desorption/ionization–mass spectrometry imaging was used to spatially map the distribution of the positively charged phosphatidylcholine (PC) species in nodules in both P-replete and P-deficient conditions. Our results reveal heterogeneous distribution of several PC species in nodules, with homogeneous distribution of other PC classes. In P poor conditions, some PC species distributions were observed to change. The results suggest that specific PC species may be differentially important in diverse nodule zones and cell types, and that membrane lipid remodeling during P stress is not uniform across the nodule.

ESI–MS and matrix-assisted laser desorption ionization–mass spectrometry imaging reveal alterations in Medicago truncatula nodules membrane lipid composition and spatial distribution in phosphorus deficiency.  相似文献   

18.
The legume-rhizobia symbiosis is a classical mutualism where fixed carbon and nitrogen are exchanged between the species. Nonetheless, the plant carbon that fuels nitrogen (N(2)) fixation could be diverted to rhizobial reproduction by 'cheaters'--rhizobial strains that fix less N(2) but potentially gain the benefit of fixation by other rhizobia. Host sanctions can decrease the relative fitness of less-beneficial reproductive bacteroids and prevent cheaters from breaking down the mutualism. However, in certain legume species, only undifferentiated rhizobia reproduce, while only terminally differentiated rhizobial bacteroids fix nitrogen. Sanctions were, therefore, tested in two legume species that host non-reproductive bacteroids. We demonstrate that even legume species that host non-reproductive bacteroids, specifically pea and alfalfa, can severely sanction undifferentiated rhizobia when bacteroids within the same nodule fail to fix N(2). Hence, host sanctions by a diverse set of legumes play a role in maintaining N(2) fixation.  相似文献   

19.
Breeding for better symbiosis   总被引:6,自引:0,他引:6  
Z. Rengel 《Plant and Soil》2002,245(1):147-162
The present review gives a critical assessment of the literature dealing with symbiosis between rhizobia and legumes and between AM fungi and most plants. Associative N2 fixation (even though strictly speaking not a symbiotic relationship) does have some characteristics of symbiosis due to mutualistic dependence and usefulness of the relationship, and is therefore covered in this review. Nodulation in the rhizobia–legume symbiosis may be limited by an insufficient amount of the nod-gene inducers released from seed and/or roots. However, there is genotypic variation in the germplasm of legume species in all components of the signalling pathway, suggesting a prospect for improving nodulation by selecting and/or transforming legume genotypes for increased exudation of flavonoids and other signalling compounds. Deciphering chromosomal location as well as cloning nod, nif and other genes important in nodulation and N2 fixation will allow manipulation of the presence and expression of these genes to enhance the symbiotic relationship. Increased efficacy of symbiotic N2 fixation can be achieved by selecting not only the best host genotypes but by selecting the best combination of host genotype and nodule bacteria. As flavonoids exuded by legume seedlings may not only be nod-gene inducers, but also stimulants for hyphal growth of the AM fungi, selecting and/or transforming plants to increase exudation of these flavonoids may result in a double benefit for mycorrhizal legumes. Mutants unable to sustain mycorrhizal colonisation are instrumental in understanding the colonisation process, which may ultimately pay off in breeding for the more effective symbiosis. In conclusion, targeted efforts to breed genotypes for improved N2 fixation and mycorrhizal symbiosis will bring benefits in increased yields of crops under a wide range of environmental conditions and will contribute toward sustainability of agricultural ecosystems in which soil-plant-microbe interactions will be better exploited.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号