首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Global climate models predict significant changes to the rainfall regimes of the grassland biome, where C cycling is particularly sensitive to the amount and timing of precipitation. We explored the effects of both natural interannual rainfall variability and experimental rainfall additions on net C storage and loss in annual grasslands. Soil respiration and net primary productivity (NPP) were measured in treatment and control plots over four growing seasons (water years, or WYs) that varied in wet‐season length and the quantity of rainfall. In treatment plots, we increased total rainfall by 50% above ambient levels and simulated one early‐ and one late‐season storm. The early‐ and late‐season rain events significantly increased soil respiration for 2–4 weeks after wetting, while augmentation of wet‐season rainfall had no significant effect. Interannual variability in precipitation had large and significant effects on C cycling. We observed a significant positive relationship between annual rainfall and aboveground NPP across the study (P=0.01, r2=0.69). Changes in the seasonal timing of rainfall significantly affected soil respiration. Abundant rainfall late in the wet season in WY 2004, a year with average total rainfall, led to greater net ecosystem C losses due to a ~50% increase in soil respiration relative to other years. Our results suggest that C cycling in annual grasslands will be less sensitive to changes in rainfall quantity and more affected by altered seasonal timing of rainfall, with a longer or later wet season resulting in significant C losses from annual grasslands.  相似文献   

2.
Climate change will affect grasslands in a number of ways, but the consequences of a warmer, drier world for grazers is uncertain. Predicting future grazer performance is complex since climate change affects both the quantity and quality of forage through a combination of processes that occur over a range of time scales. To better predict the consequences of climate change for grazer performance, a dataset was compiled of over a quarter million bison weights distributed across 22 US herds that span a large range of climates. Patterns of bison body mass among sites, age classes, and sexes were analyzed with respect to differences in geographic patterns of climate and interannual variation in climate. While short-term effects of climate variability are likely to depend on the magnitude and timing of precipitation during the year, grazers will be negatively affected by sustained hotter, drier conditions most likely associated with reductions in forage quality. Short-term, little effect of high temperatures on bison performance is observed, which suggests that the long-term effects of higher temperatures are likely to accrue over time as nitrogen availability in grasslands is reduced and forage quality declines. If relationships observed for bison are general for cattle, the economic consequences of higher temperatures due to decreased weight gain in US cattle could be on the order of US$1B per 1°C increase in temperature. Long-term monitoring of forage quality as well as native and domesticated grazer performance is recommended to better understand climate change effects on grazers.  相似文献   

3.
Livestock grazing can be used as a key management tool for maintaining healthy ecosystems. However, the effectiveness of using grazing to modify habitat for species of conservation concern depends on how the grazing regime is implemented. Timing of grazing is one grazing regime component that is less understood than grazing intensity and grazer identity, but is predicted to have important implications for plant and higher trophic level responses. We experimentally assessed how timing of cattle grazing affected plant and arthropod communities in high-elevation grasslands of southwest Montana to better evaluate its use as a tool for multi-trophic level management. We manipulated timing of grazing, with one grazing treatment beginning in mid-June and the other in mid-July, in two experiments conducted in different grassland habitat types (i.e., wet meadow and upland) in 2011 and 2012. In the upland grassland experiment, we found that both early and late grazing treatments reduced forb biomass, whereas graminoid biomass was only reduced with late grazing. Grazing earlier in the growing season versus later did not result in greater recovery of graminoid or forb biomass as expected. In addition, the density of the most ubiquitous grassland arthropod order (Hemiptera) was reduced by both grazing treatments in upland grasslands. A comparison of end-of-season plant responses to grazing in upland versus wet meadow grasslands revealed that grazing reduced graminoid biomass in the wet meadow and forb biomass in the upland, irrespective of timing of grazing. Both grazing treatments also reduced end-of-season total arthropod and Hemiptera densities and Hemiptera biomass in both grassland habitat types. Our results indicate that both early and late season herbivory affect many plant and arthropod characteristics in a similar manner, but grazing earlier may negatively impact species of conservation concern requiring forage earlier in the growing season.  相似文献   

4.
We found in an earlier study that mosquitofish (Gambusia affinis and G. holbrooki) ceased reproduction in the late summer, long before the end of warm weather, stored fat, then utilized reserves to survive the winter and initiate reproduction the following spring. We hypothesized that this pattern of fat utilization was a life history adaptation that enabled the fish to acquire food resources in the autumn then allocate them to reproduction the following spring when the fitness of the young would be greater. Here we evaluate one aspect of this hypothesis by evaluating the probability of survival to maturity and fecundity of young as a function of date of birth. We placed cohorts comprising eight to ten litters of young born early‐, mid‐ or late in the reproductive season in replicate field enclosures. The entire experiment was repeated in two different years. Early‐born young had a significantly higher probability of survival to maturity but did not differ in fecundity relative to the last cohort of the season. Early‐born young also attained maturity early enough to reproduce in their year of birth while late‐born young had to overwinter before reproduction. The fitness consequences to the mother of either producing one more litter of young at the end of the season, versus instead storing fat and reproducing the following spring are not as determinate as are the effects of date of birth on offspring fitness. Females most often gain fitness by not producing one last litter and instead over‐wintering. If, however, the overwinter survival of offspring is not influenced by their size at the end of the season, then a female's fitness could be enhanced by producing one more litter late in the season. If instead the probability of overwinter survival is strongly influenced by the size of offspring at the end of the season, then our results suggest that a female gains more by deferring reproduction and storing for overwinter survival and reproduction the following spring.  相似文献   

5.
The influence of horn fly control with commercially available ear tags was studied on beef replacement heifers (n = 670) for growth and reproductive performance. The study was conducted at five sites in Louisiana over 3 yr. Heifers used were yearling replacement females that were exposed to fertile bulls during a limited spring breeding season that coincided with the horn fly season. In mid to late May of each year, heifers were randomly assigned to one of two horn fly treatments: untreated and treated for horn fly control. The trial continued each year until September or October at the end of fly season. Pregnancy status was determined by rectal palpation. Horn fly populations were controlled on the treated heifers at moderate levels (84%). Total weight gain of treated heifers was 14% greater than for untreated heifers. Horn fly treatment had no effect on pregnancy rate (78% and 75% for untreated and treated heifers, respectively). Treatment differences for weight gain were of greater magnitude for heifers failing to conceive than for heifers that became pregnant. Weight gains of nonpregnant treated heifers were 33% greater than for nonpregnant untreated heifers, whereas weight gains of pregnant treated heifers were 8% greater than for pregnant untreated heifers. In conclusion, horn fly control on yearling beef replacement heifers improved weight gain but had no effect on first exposure reproduction.  相似文献   

6.
Much of the native grasslands in agricultural regions have been converted to cropland or tilled and seeded with non‐native grasses for livestock production. Several grassland songbird species occupy planted grasslands, but occupancy or density may not be a reliable indicator of habitat quality. I studied the breeding biology of Sprague's pipit Anthus spragueii from 2004 to 2008 in Saskatchewan, Canada. My objective was to determine the extent to which the breeding biology, density and reproductive success of pipits varied in planted and native grasslands. Peak clutch initiation occurred in mid‐ to late‐May in planted and native grassland. Peak pipit density also occurred in May, but density drastically declined over the breeding season in planted grassland. Clutch size varied among years and declined over the breeding season, but was similar in planted (4.7  0.1 SE) and native grasslands (4.5  0.1 SE). Daily nest survival rates varied with age of the nest and date, but the relationships differed in the two habitats and was likely a result of lower nestling survival in planted grassland compared to native grassland. The number of young fledged per nest increased as the season progressed and tended to be greater in native (1.2  0.1 SE) than planted (0.9  0.2 SE) grasslands. Seasonal productivity was much greater in native grassland. Only three nests were initiated after May in planted grassland and all were unsuccessful, whereas pipit young fledged at higher rates from nests initiated in native grassland in June and July than planted grassland nests initiated in May. The number of fledged young from successful nests did not vary strongly with habitat, date or year. This research indicates that planted grasslands attract pipits at the beginning of the breeding season, but habitat suitability and reproductive success substantially declines as the breeding season progresses compared to that found in native grassland.  相似文献   

7.
Effects of grazing on grassland soil carbon: a global review   总被引:2,自引:0,他引:2  
Soils of grasslands represent a large potential reservoir for storing CO2, but this potential likely depends on how grasslands are managed for large mammal grazing. Previous studies found both strong positive and negative grazing effects on soil organic carbon (SOC) but explanations for this variation are poorly developed. Expanding on previous reviews, we performed a multifactorial meta‐analysis of grazer effects on SOC density on 47 independent experimental contrasts from 17 studies. We explicitly tested hypotheses that grazer effects would shift from negative to positive with decreasing precipitation, increasing fineness of soil texture, transition from dominant grass species with C3 to C4 photosynthesis, and decreasing grazing intensity, after controlling for study duration and sampling depth. The six variables of soil texture, precipitation, grass type, grazing intensity, study duration, and sampling depth explained 85% of a large variation (±150 g m?2 yr?1) in grazing effects, and the best model included significant interactions between precipitation and soil texture (P = 0.002), grass type, and grazing intensity (P = 0.012), and study duration and soil sampling depth (P = 0.020). Specifically, an increase in mean annual precipitation of 600 mm resulted in a 24% decrease in grazer effect size on finer textured soils, while on sandy soils the same increase in precipitation produced a 22% increase in grazer effect on SOC. Increasing grazing intensity increased SOC by 6–7% on C4‐dominated and C4–C3 mixed grasslands, but decreased SOC by an average 18% in C3‐dominated grasslands. We discovered these patterns despite a lack of studies in natural, wildlife‐dominated ecosystems, and tropical grasslands. Our results, which suggest a future focus on why C3 vs. C4‐dominated grasslands differ so strongly in their response of SOC to grazing, show that grazer effects on SOC are highly context‐specific and imply that grazers in different regions might be managed differently to help mitigate greenhouse gas emissions.  相似文献   

8.
Climate variability is a major structuring factor in grassland ecosystems, yet there is great uncertainty in how changes in precipitation affect grazing herbivores. We determined how interannual variation in the timing and magnitude of precipitation affected the weight gain of free-roaming bison in their first and second year. Bison weights were analyzed for 14 years for Konza Prairie, Kansas, and 12 years for Tallgrass Prairie Preserve, Oklahoma. Greater late-summer precipitation increased bison weight gain. For every 100 mm precipitation, weight gain increased 6.4–15.3 kg depending on age classes and site. In contrast, greater midsummer precipitation decreased weight gain. For every additional 100 mm precipitation, weight decreased 9.7–17.3 kg depending on age class and site. The decreased weight gain of bison with greater midsummer precipitation was associated with increased grass stem production during the period for each of three dominant grasses at Konza Prairie. Although greater stem production increases the quantity of aboveground biomass, it should decrease the overall nutritional quality of biomass to grazers, which would reduce weight gain. With offsetting effects of mid- and late-summer precipitation on weight gain, these results show that predicting the effects of climate change on grazers must incorporate both the timing and magnitude of changes in precipitation and their effects on both the quantity and quality of biomass.  相似文献   

9.
Mesic grasslands in North America and South Africa share many structural attributes, but less is known of their functional similarities. We assessed the control of a key ecosystem process, aboveground net primary production (ANPP), by interannual variation in precipitation amount and pattern via analysis of data sets (15- and 24-year periods) from long-term research programs on each continent. Both sites were dominated by C4 grasses and had similar growing season climates; thus, we expected convergence in precipitation–ANPP relationships. Lack of convergence, however, would support an alternative hypothesis—that differences in evolutionary history and purportedly greater climatic variability in South Africa fundamentally alter the functioning of southern versus northern hemisphere grasslands. Neither mean annual precipitation nor mean ANPP differed between the South African and North American sites (838 vs. 857 mm/year, 423.5 vs. 461.4 g/m2 respectively) and growing season precipitation–ANPP relationships were similar. Despite overall convergence, there were differences between sites in how the seasonal timing of precipitation affected ANPP. In particular, interannual variability in precipitation that fell during the first half of the growing season strongly affected annual ANPP in South Africa (P < 0.01), but was not related to ANPP in North America (P = 0.098). Both sites were affected similarly by late season precipitation. Divergence in the seasonal course of available soil moisture (chronically low in the winter and early spring in the South African site vs. high in the North American site) is proposed as a key contingent factor explaining differential sensitivity in ANPP to early season precipitation in these two grasslands. These long-term data sets provided no support for greater rainfall, temperature or ANPP variability in the South African versus the North American site. However, greater sensitivity of ANPP to early season precipitation in the South African grassland suggests that future patterns of productivity may be more responsive to seasonal changes in climate compared with the North American site.  相似文献   

10.
Age‐specific variation in reproductive effort can affect population dynamics, and is a key component of the evolution of reproductive tactics. Late‐life declines are a typical feature of variation in reproduction. However, the cause of these declines, and thus their implications for the evolution of life‐history tactics, may differ. Some prior studies have shown late‐life reproductive declines to be tied to chronological age, whereas other studies have found declines associated with terminal reproduction irrespective of chronological age. We investigated the extent to which declines in late life reproduction are related to chronological age, terminal reproductive attempt or a combination of both in the thorn‐tailed rayadito Aphrastura spinicauda, a small passerine bird that inhabits the temperate forest of South America. To this end we used long‐term data (10 years) obtained on reproductive success (laying date, clutch size and nestling weight) of females in a Chilean population. Neither chronological age nor terminal reproductive attempt explained variation in clutch size or nestling weight, however we observed that during the terminal reproductive attempt older females tended to lay later in the breeding season and younger females laid early in the breeding season, but this was not the case when the reproductive attempt was not the last. These results suggests that both age‐dependent and age‐independent effects influence reproductive output and therefore that the combined effects of age and physiological condition may be more relevant than previously thought.  相似文献   

11.
1. The flesh fly, Sarcophaga crassipalpis, is anautogenous and largely relies on adult‐acquired income resources for reproduction, but allocates some larvally derived capital into the first clutch. Therefore, the timing of adult resource acquisition may be important for both reproductive timing and magnitude of capital vs. income resources allocated to reproduction. Specifically, we predict that flesh flies that wait longer to acquire adult income resources will allocate greater quantities of larvally derived capital to the first clutch. 2. To test how reproductive allocation in flesh flies responds to the timing of adult protein availability, we provided pulses of protein only on day 3, 6, 9, or 12 after eclosion, a series of times equivalent to the onset of oogensis and early, middle and late oogenic development in individuals fed ad libitum. Protein pulses contained isotopically distinct carbon (13C), allowing us to distinguish between larval capital and adult‐income resources allocated towards reproduction. 3. Neither the timing of oocyte development nor reproductive allotment (egg number by egg size) was altered by the timing of protein availability. 4. There was no effect of adult protein acquisition timing on the quantity of larvally derived somatic capital vs. adult‐acquired income carbon allocated to reproduction. While flesh flies have remarkable pre‐feeding plasticity in reproductive timing, they appear to have little post‐feeding plasticity in allocation of stored reserves towards reproduction.  相似文献   

12.
Intensification of the global hydrological cycle with atmospheric warming is expected to increase interannual variation in precipitation amount and the frequency of extreme precipitation events. Although studies in grasslands have shown sensitivity of aboveground net primary productivity (ANPP) to both precipitation amount and event size, we lack equivalent knowledge for responses of belowground net primary productivity (BNPP) and NPP. We conducted a 2‐year experiment in three US Great Plains grasslands – the C4‐dominated shortgrass prairie (SGP; low ANPP) and tallgrass prairie (TGP; high ANPP), and the C3‐dominated northern mixed grass prairie (NMP; intermediate ANPP) – to test three predictions: (i) both ANPP and BNPP responses to increased precipitation amount would vary inversely with mean annual precipitation (MAP) and site productivity; (ii) increased numbers of extreme rainfall events during high‐rainfall years would affect high and low MAP sites differently; and (iii) responses belowground would mirror those aboveground. We increased growing season precipitation by as much as 50% by augmenting natural rainfall via (i) many (11–13) small or (ii) fewer (3–5) large watering events, with the latter coinciding with naturally occurring large storms. Both ANPP and BNPP increased with water addition in the two C4 grasslands, with greater ANPP sensitivity in TGP, but greater BNPP and NPP sensitivity in SGP. ANPP and BNPP did not respond to any rainfall manipulations in the C3‐dominated NMP. Consistent with previous studies, fewer larger (extreme) rainfall events increased ANPP relative to many small events in SGP, but event size had no effect in TGP. Neither system responded consistently above‐ and belowground to event size; consequently, total NPP was insensitive to event size. The diversity of responses observed in these three grassland types underscores the challenge of predicting responses relevant to C cycling to forecast changes in precipitation regimes even within relatively homogeneous biomes such as grasslands.  相似文献   

13.
Cheatgrass (Bromus tectorum) and other exotic winter‐active plants can be persistent invaders in native grasslands, growing earlier in the spring than native plants and pre‐empting soil resources. Effective management strategies are needed to reduce their abundance while encouraging the reestablishment of desirable native plants. In this 4‐year study, we investigated whether mowing and seeding with native perennial grasses could limit growth of exotic winter‐actives, and benefit growth of native plants in an invaded grassland in Colorado, United States. We established a split‐plot experiment in October 2008 with 3 mowing treatments: control, spring‐mowed, and spring/summer‐mowed (late spring, mid‐summer, and late summer), and 3 within‐plot seeding treatments: control, added B. tectorum seeds, and added native grass seeds. Cover of plant species and aboveground biomass were measured for 3 years. In March and June of 2010, 2011, and March of 2012, B. tectorum and other winter‐annual grasses were half as abundant in both mowing treatments as in control plots; however, cover of non‐native winter‐active forbs increased 2‐fold in spring‐mowed plots and almost 3‐fold in spring/summer‐mowed plots relative to controls. These patterns remained consistent 1 year after termination of treatments. Native cool‐season grasses were most abundant in spring‐mowed plots, and least abundant in control plots. There was higher cover of native warm‐season grasses in spring/summer‐mowed plots than in control plots in July 2011 and 2012. The timing of management can have strong effects on plant community dynamics in grasslands, and this experiment indicates that adaptive management can target the temporal niche of undesirable invasive species.  相似文献   

14.
Abstract. 1. From the early 1960s to 2000 Nezara viridula (Heteroptera: Pentatomidae) expanded its range northwards in Japan and reached Osaka following climate warming recorded in the region. 2. The timing of diapause induction and its effect on life‐history traits were studied under quasi‐natural conditions in Osaka. Egg masses were placed outdoors in six series in July–November 1999. Developmental events were monitored until September 2000. 3. Adult diapause was induced in September–October in agreement with the photoperiodic response obtained under laboratory conditions. Induction of diapause in early October ensured the highest winter survival. Nymphs that hatched after late September died by December–April showing that the species cannot survive winter in the nymphal stage. 4. Life‐history traits varied between the early (non‐diapause reproduction) and late (post‐diapause reproduction) series. Thus, non‐diapause females produced significantly fewer egg masses than did females that reproduced only after diapause. The timing of diapause induction strongly affected overwintering success and post‐diapause performance: females that became adults and entered diapause in October lived longer, had a longer period of oviposition, and produced more eggs in larger egg masses than females that attained adulthood and entered diapause in September. 5. Females from the early series reproduced until late November, although progeny from the late September eggs were destined to die during the winter. Pre‐winter reproduction of adults that emerged in mid‐September or later was a result of the imperfect timing of diapause induction. It is an ineffective allocation of resources and may be considered the ecological cost of range expansion. 6. To establish in the region, N. viridula will probably evolve a lengthening of the critical photoperiod of the diapause induction response. This will allow the species to enter diapause earlier and, thus, avoid maladaptive late‐autumn reproduction but, perhaps, increase the cost of diapause because of a possible adverse impact of pre‐winter high temperature conditions on overwintering.  相似文献   

15.
SUMMARY 1. Experiments using implanted substrata were conducted in Yuccabine Creek, a n upland stream in north-eastern Australia which exhibits a strong seasonal pattern of discharge and temperature. The implanted substrata were either set in the stream bed or were raised in the water column. Three experiments were run, at different times of the year.
2. Colonization rate was dependent on benthic abundance, mobility of the fauna and distribution of resources. The rates on embedded trays were similar in the late wet season and mid dry season, but colonization rate in the late dry season was greater.
3. Drift alone could have accounted for all colonization in the late wet season, 63% of colonization in the mid dry season and less (unmeasured) in the late dry season. Drift acts to disperse early instars to patches of suitable habitat after the summer wet-season peak in reproduction.
4. Following the wet season, stream discharge decreases, benthic abundance increases, resources become more concentrated, and movements of animals in contact with the substratum play an increasingly important role in colonization.  相似文献   

16.
Changing precipitation regimes could have profound influences on carbon (C) cycle in the biosphere. However, how soil C release from terrestrial ecosystems responds to changing seasonal distribution of precipitation remains unclear. A field experiment was conducted for 4 years (2013–2016) to examine the effects of altered precipitation distributions in the growing season on soil respiration in a temperate steppe in the Mongolian Plateau. Over the 4 years, both advanced and delayed precipitation peaks suppressed soil respiration, and the reductions mainly occurred in August. The decreased soil respiration could be primarily attributable to water stress and subsequently limited plant growth (community cover and belowground net primary productivity) and soil microbial activities in the middle growing season, suggesting that precipitation amount in the middle growing season is more important than that in the early, late, or whole growing seasons in regulating soil C release in grasslands. The observations of the additive effects of advanced and delayed precipitation peaks indicate semiarid grasslands will release less C through soil respiratory processes under the projected seasonal redistribution of precipitation in the future. Our findings highlight the potential role of intra‐annual redistribution of precipitation in regulating ecosystem C cycling in arid and semiarid regions.  相似文献   

17.
Grasslands are globally extensive; they exist in many different climates, at high and low elevations, on nutrient‐rich and nutrient‐poor soils. Grassland distributions today are closely linked to human activities, herbivores, and fire, but many have been converted to urban areas, forests, or agriculture fields. Roughly 80% of fires globally occur in grasslands each year, making fire a critical process in grassland dynamics. Yet, little is known about the long‐term history of fire in grasslands. Here, we analyze sedimentary archives to reconstruct grassland fire histories during the Holocene. Given that grassland locations change over time, we compare several charcoal‐based fire reconstructions based on alternative classification schemes: (a) sites from modern grassland locations; (b) sites that were likely grasslands during the mid‐Holocene; and (c) sites based on author‐derived classifications. We also compare fire histories from grassland sites, forested sites, and all sites globally over the past 12,000 years. Forested versus grassland sites show different trends: grassland burning increased from the early to mid‐Holocene, reaching a maximum about 8000–6000 years ago, and subsequently declined, reaching a minimum around 4000 years ago. In contrast, biomass burning in forests increased during the Holocene until about 2000 years ago. Continental grassland fire history reconstructions show opposing Holocene trends in North versus South America, whereas grassland burning in Australia was highly variable in the early Holocene and much more stable after the mid‐Holocene. The sharp differences in continental as well as forest versus grassland Holocene fire history trajectories have important implications for our understanding of global biomass burning and its emissions, the global carbon cycle, biodiversity, conservation, and land management.  相似文献   

18.
In Sweden the deciduous forest perennial Sanicula europaea L. (Apiaceae) is frequently subjected to leaf loss due to cattle grazing and trampling. In a two-season field experiment, the effects of the extent, timing and repetition of leaf removal on survival, growth and reproduction in S. europaea were examined. Removal of vegetative tissue in S. europaea reduced future survival, growth and flowering probabilities. The magnitude of these effects depended both on the extent and the timing of the season of the leaf losses, as greater leaf losses had more negative effects than moderate and early removals had more negative consequences than late. Moreover, the probability of an individual to regrow the same season after severe losses was higher when losses occurred early in the season than when they occurred late. And, those defoliated early that did regrow, did so to a larger extent than those defoliated later. Experimental responses were more pronounced after a second year of leaf removals, indicating that repeated herbivory exhausts resources. Thus, herbivory causing losses in vegetative tissue will affect the performance of S. europaea. However, the impact depends on the extent and timing of the leaf losses. This should be considered in managing policies and cattle should, if possible, not be introduced early in the growing season.  相似文献   

19.
The timing of annual events such as reproduction is a critical component of how free‐living organisms respond to ongoing climate change. This may be especially true in the Arctic, which is disproportionally impacted by climate warming. Here, we show that Arctic seabirds responded to climate change by moving the start of their reproduction earlier, coincident with an advancing onset of spring and that their response is phylogenetically and spatially structured. The phylogenetic signal is likely driven by seabird foraging behavior. Surface‐feeding species advanced their reproduction in the last 35 years while diving species showed remarkably stable breeding timing. The earlier reproduction for Arctic surface‐feeding birds was significant in the Pacific only, where spring advancement was most pronounced. In both the Atlantic and Pacific, seabirds with a long breeding season showed a greater response to the advancement of spring than seabirds with a short breeding season. Our results emphasize that spatial variation, phylogeny, and life history are important considerations in seabird phenological response to climate change and highlight the key role played by the species’ foraging behavior.  相似文献   

20.
Patricia  Majluf 《Journal of Zoology》1992,227(3):367-383
In most species, synchronous, seasonal reproduction is usually associated with higher offspring survival in animals giving birth around the peak, relative to those breeding at the extremes of the reproductive season. In contrast, in the South American fur seal ( Arctocephalus australis ) at Punta San Juan, Peru, females pupping around the peak of births had a greater probability of losing their pups and/or tended to lose them at an earlier age than females breeding early or late in the season. However, the timing of breeding in this population varies little between years and is consistently synchronous. Individual females maintained their relative breeding times in consecutive years, regardless of whether or not they lost their pup the previous year. Thus, pup mortality seems to have no effect on the timing of reproduction in this population.
High breeding densities and the consequent high pup mortality in the S. American fur seal in Peru may have resulted from intense poaching outside protected areas and are of recent origin. The reproductive synchrony in this population could have originally evolved as a response to seasonal variations in food availability and weather conditions, differences in female or pup body condition, predation pressure, sexual selection and/or harassment avoidance, but at the present high density levels has become maladaptive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号