首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diving capabilities of the Procellariformes remain the least understood component of avian diving physiology. Due to their relatively small size, shearwaters may have high oxygen consumption rates during diving relative to their available oxygen stores. Dive performance in this group should be strongly limited by the trade‐off between oxygen consumption and oxygen stores, and shearwaters could be a good model group for testing predictions of dive theory. Many earlier measurements of shearwater dive behaviour relied on observations from the surface or potentially biased technology, and it is only recently that diving behaviour has been observed using electronic recorders for many of the clades within the family. The diving behaviour of Manx Shearwaters Puffinus puffinus breeding in Wales, UK, was studied on a large sample of birds using time–depth–temperature recorders deployed on chick‐rearing shearwaters in July and August over 3 years (2009–2011). Light availability apparently limited diving as dives only occurred between 04:00 and 19:00 h GMT. All individuals routinely dived deeper than traditionally assumed, to a mean maximum depth of 31 m and occasionally down to nearly 55 m. We compiled all available data for a comparison of the dive depth across shearwater species. There was a positive allometric relationship between maximum dive depth and body mass across Puffinus and Ardenna shearwater species, as expected, but only if samples of fewer than two individuals were excluded. The large intra‐specific range in maximum dive depth in our study illustrates that apparent diversity in diving performance across species must be interpreted cautiously.  相似文献   

2.
Tufted ducks Aythya fuligula do not control buoyancy during diving   总被引:1,自引:0,他引:1  
Work against buoyancy during submergence is a large component of the energy costs for shallow diving ducks. For penguins, buoyancy is less of a problem, however they still seem to trade‐off levels of oxygen stores against the costs and benefits of buoyant force during descent and ascent. This trade‐off is presumably achieved by increasing air sac volume and hence pre‐dive buoyancy (Bpre) when diving deeper. Tufted ducks, Aythya fuligula, almost always dive with nearly full oxygen stores so these cannot be increased. However, the high natural buoyancy of tufted ducks guarantees a passive ascent, so they might be expected to decrease Bpre before particularly deep, long dives to reduce the energy costs of diving. Body heat lost to the water can also be a cause of substantial energy expenditure during a dive, both through dissipation to the ambient environment and through the heating of ingested food and water. Thus dive depth (dd), duration and food type can influence how much heat energy is lost during a dive. The present study investigated the relationship between certain physiological and behavioural adjustments by tufted ducks to dd and food type. Changes in Bpre, deep body temperature (Tb) and dive time budgeting of four ducks were measured when diving to two different depths (1.5 and 5.7 m), and for two types of food (mussels and mealworms). The hypothesis was that in tufted ducks, Bpre decreases as dd increases. The ducks did not change Bpre in response to different diving depths, and thus the hypothesis was rejected. Tb was largely unaffected by dives to either depth. However, diving behaviour changed at the greater dd, including an increase in dive duration and vertical descent speed. Behaviour also changed depending on the food type, including an increase in foraging duration and vertical descent speed when mussels were present. Behavioural changes seem to represent the major adjustment made by tufted ducks in response to changes in their diving environment.  相似文献   

3.
Many air-breathing aquatic foragers may be killed by aerial or subsurface predators while recovering oxygen at the surface; yet the influence of predation risk on time allocation during dive cycles is little known in spite of numerous studies on optimal diving. We modeled diving behavior under the risk of predation at the surface. The relationship between time spent at the surface and the risk of death is predicted to influence the optimal surface interval, regardless of whether foragers accumulate energy at a constant rate while at the food patch, deplete food resources over the course of the dive, or must search for food during the dive. When instantaneous predation risk during a single surface interval decreases with time spent at the surface, a diver should increase its surface interval relative to that which maximizes energy intake, thereby increasing dive durations and reducing the number of surfacings per foraging bout. When instantaneous risk over a single surface interval does not change or increases with increasing time at the surface, divers should decrease their surface interval (and consequently their dive duration) relative to that which maximizes energy intake resulting in more dives per foraging bout. The fitness consequences of selecting a suboptimal surface interval vary with the risk function and the way divers harvest energy when at depth. Finally, predation risk during surface intervals should have important consequences for habitat selection and other aspects of the behavioral ecology of air-breathing aquatic organisms.  相似文献   

4.
Surfacing behaviour is fundamental in the ecology of aquatic air-breathing organisms; however, it is only in vertebrates that the evolutionary ecology of diving has been well characterized. Here, we explore the diving behaviour of dytiscid beetles, a key group of surface-exchanging freshwater invertebrates, by comparing the dive responses of 25 taxa (Deronectes and Ilybius spp.) acclimated at two temperatures. The allometric slopes of dive responses in these dytiscids appear similar to those of vertebrate ectotherms, supporting the notion that metabolic mode shapes the evolution of diving performance. In both genera, beetles spend more time submerged than on the surface, and surface time does not vary with the temperature of acclimation. However, presumably in order to meet increased oxygen demand at higher temperatures, Deronectes species increase surfacing frequency, whereas Ilybius species decrease dive time, an example of 'multiple solutions.' Finally, widespread northern species appear to possess higher diving performances than their geographically restricted southern relatives, something which may have contributed to their range expansion ability.  相似文献   

5.
Although theoretical models predict that the quality of foraging patches has little effect on optimal dive time with increasing depth, many empirical studies show that dive time at a given depth may vary. We developed a model that incorporated patch quality as a parameter of energy intake as a nonlinear function of time, and applied it to the diving behaviour of Brünnich's guillemots, Uria lomvia. The model indicated that optimal dive time can vary widely depending on the parameter. It also explained the convergence of observed dive times with travel time. Assuming the birds dived optimally, this parameter can be estimated from travel time and dive time for each dive. Foraging patches with larger estimated parameter values were favoured by the birds, suggesting that the parameter indicated patch quality. We used this parameter to test an optimal patch use model in divers. The results indicate that Brünnich's guillemots adjust their diving behaviour adaptively depending on patch quality, and that the optimal diving model is valid for prediction of observed dive patterns if patch quality is incorporated appropriately. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

6.
The theoretical aerobic diving limit (tADL) specifies the duration of a dive after which oxygen reserves available for diving are depleted. The tADL has been calculated by dividing the available oxygen stores by the diving metabolic rate (DMR). Contrary to diving mammals, most diving birds examined to date exceed the tADL by a large margin. This discrepancy between observation and theory has engendered two alternative explanations suggesting that dive duration is extended either anaerobically or by depressing aerobic metabolism. Current formulations of tADL uncritically assume that DMR is independent of depth. However, diving birds differ from other vertebrate divers by having a larger respiratory system volume and by retaining air in their plumage while diving, thereby elevating buoyancy. Because air compresses with depth, diving power requirement decreases with depth. Following this principle, we modeled DMR to depth for Adelie and little penguins and reformulated the tADL accordingly. The model's results suggest that < approximately 5% of natural dives by Adelie penguins exceed the reformulated tADL(d), or maximal aerobic depth, and none in the more buoyant little penguin. These data suggest that, for both small and large species, deep diving birds rarely if ever exceed tADL(d).  相似文献   

7.
The purpose of this study was to characterize for the first time seabird diving behavior during bimodal foraging. Little auks Alle alle, small zooplanktivorous Alcids of the High Arctic, have recently been shown to make foraging trips of short and long duration. Because short (ST) and long trips (LT) are thought to occur in different locations and serve different purposes (chick‐ and self‐feeding, respectively) we hypothesized that foraging differences would be apparent, both in terms of water temperature and diving characteristics. Using Time Depth Recorders (TDRs), we tested this hypothesis at three colonies along the Greenland Sea with contrasting oceanographic conditions. We found that diving behavior generally differed between ST and LT. However, the magnitude of the disparity in diving characteristics depended on local foraging conditions. At the study site where conditions were favorable, diving behavior differed only to a small degree between LT and ST. Together with a lack of difference in diving depth and ocean temperature, this indicates that these birds did not increase their foraging effort during ST nor did they travel long distances to seek out more profitable prey. In contrast, where local foraging conditions were poor, birds increased their diving effort substantially to collect a chick meal during ST as indicated by longer, more U‐shaped dives with slower ascent rates and shorter resting times (post‐dive intervals and extended surface pauses). In addition, large differences in diving depth and ocean temperature indicate that birds forage on different prey species and utilize different foraging areas during LT, which may be up to 200 km away from the colony. Continued warming and deteriorating near‐colony foraging conditions may have energetic consequences for little auks breeding in the eastern Greenland Sea.  相似文献   

8.
Neutral buoyancy at the stationary depth is advantageous for diving animals. The adjustment of the air inspiration before diving can be a mechanism of buoyancy control for diving animals with lungs. The stationary depth of neutral buoyancy becomes deeper with larger inspiration. Our aim was to examine whether the loggerhead sea turtle,Caretta caretta regulates the buoyancy to be neutral at the stationary depth of the dive. During an internesting period of the breeding season, we recorded the diving pattern of an adult female using a time-depth recorder and a time-swim distance recorder. The dives were classified into four types (Types 1 to 4) based on the time-depth profile. Types-3 and 4 (66% of the total dive duration) have three phases in each dive: (1) first descent, (2) gradual ascent (stationary period), and (3) final ascent. In the gradual ascent phase, the turtle stayed at a certain depth without swimming. This means that the turtle was neutrally buoyant during the gradual ascent phase. The depth of the gradual ascent phase was positively correlated with the dive duration, supporting the hypothesis that neutral buoyancy of the loggerhead turtle is achieved by the air in their lungs.  相似文献   

9.
1. Cormorants are typically considered as wettable diving birds with high thermoregulatory costs and are presumed to exert substantial predatory pressure on fish stocks.
2. The stomach temperatures of seven Great Cormorants and three European Shags were recorded during a total of 108 foraging trips undertaken near the Chausey Islands breeding colony (France).
3. Both species kept a constant body temperature during the dive series which lasted up to 158 min and were conducted in 12°C water. Consequently, assuming that heat loss to the water is equal to heat production in diving Great Cormorants, the minimal insulating plumage air volume was calculated to be 0·371 × 10–3 m3 (corresponding to a 1·62-mm air layer) in males and 0·347 × 10–3 m3 (corresponding to a 1·90-mm air layer) in females.
4. Furthermore, it is shown that plumage air volume and dive depth are the major factors influencing heat flux to the water and that the energetics of diving Great Cormorants may also vary substantially according to fat layer thickness, water temperature and body temperature. Swim speed plays only a minor role.
5. Considering these results, it is postulated that Great Cormorants may have optimized plumage air volume so as to minimize both mechanical costs (upthrust) and thermoregulatory costs of swimming in cold, shallow water.
6. Finally, body temperature patterns recorded in different cormorant species while diving are compared.  相似文献   

10.
Leopard seals are conspicuous apex predators in Antarctic coastal ecosystems, yet their foraging ecology is poorly understood. Historically, the ecology of diving vertebrates has been studied using high‐resolution time‐depth records; however, to date such data have not been available for leopard seals. Twenty‐one time‐depth recorders were deployed on seasonally resident adult females in January and February between 2008 and 2014. The average deployment length was 13.65 ± 11.45 d and 40,308 postfilter dives were recorded on 229 foraging trips. Dive durations averaged 2.20 ± 1.23 min. Dives were shallow with 90.1% measuring 30 m or less, and a mean maximum dive depth of 16.60 ± 10.99 m. Four dive types were classified using a k‐means cluster analysis and compared with corresponding animal‐borne video data. Dive activity (number of dives/hour) was concentrated at night, including crepuscular periods. Haul‐out probabilities were highest near midday and were positively correlated with available daylight. Visual observations and comparisons of diving activity between and within years suggest individual‐based differences of foraging effort by time of day. Finally, dive and video data indicate that in addition to at‐surface hunting, benthic searching and facultative scavenging are important foraging strategies for leopard seals near coastal mesopredator breeding colonies.  相似文献   

11.
Information on seabird foraging behaviour outside the breeding season is currently limited. This knowledge gap is critical as this period is energetically demanding due to post‐fledging parental care, feather moult and changing environmental conditions. Based on species’ body size, post‐fledging parental strategy and primary moult schedule we tested predictions for key aspects of foraging behaviour (maximum dive depth (MDD), daily time submerged (DTS) and diurnal dive activity (DDA)) using dive depth data collected from three seabird species (common guillemot Uria aalge, razorbill Alca torda and Atlantic puffin Fratercula arctica) from the end of the breeding season (July) to mid‐winter (January). We found partial support for predictions associated with body size; guillemots had greater MDD than razorbills but MDD did not differ between razorbills and puffins, despite the former being 35% heavier. In accordance with sexual monomorphism in all three species, MDD did not differ overall between the sexes. However, in guillemots and razorbills there were sex‐specific differences, such that male guillemots made deeper dives than females, and males of both species had higher DTS. In contrast, there were no marked sex differences in dive behaviour of puffins in July and August in accordance with their lack of post‐fledging parental care and variable moult schedule. We found support for the prediction that diving effort would be greater in mid‐winter compared to the period after the breeding season. Despite reduced daylight in mid‐winter, this increase in DTS occurred predominantly during the day and only guillemots appeared to dive nocturnally to any great extent. In comparison to diving behaviour of these species recorded during the breeding season, MDD was shallower and DTS was greater during the non‐breeding period. Such differences in diving behaviour during the post‐breeding period are relevant when identifying potential energetic bottlenecks, known to be key drivers of seabird population dynamics.  相似文献   

12.
ABSTRACT

With the development and implementation of tracking technology, we are now able to monitor the foraging behaviour of seabirds while at sea. Time-Depth Recorders (TDRs) were fitted to Hutton's shearwaters (Puffinus huttoni), an endangered endemic New Zealand species, to measure how diving behaviour varies over the breeding cycle. Hutton's shearwaters (~350?g) dive up to 339 times per day (average 68.8) at depths to 35?m (average 5.6?m), and for periods up to 60?s (average 19.2?s). Incubating birds dived deeper than birds feeding chicks, and a significant difference in diving depth and dive duration were detected at different times of the day. Neither dive frequency nor dive duration differed significantly between years, but there was some annual variation in dive depths. The temporal variation we observed in the diving behaviour of Hutton's shearwaters suggests they are likely to exploit different types of pelagic prey at different stages in their breeding cycle. With on-going changes in the marine environment, monitoring changes in feeding behaviour using TDRs may provide a way to assess environmental change and improve the conservation of this species.  相似文献   

13.
Body insulation is critically important for diving marine endotherms. However,cormorants have a wettable plumage, which leads to poor insulation. Despitethis, these birds are apparently highly successful predatorsin most aquatic ecosystems. We studied the theoretical influenceof water temperature, dive depth, foraging techniques, and preyavailability on the energetic costs of diving, prey search time,daily food intake, and survival in foraging, nonbreeding greatcormorants (Phalacrocorax carbo). Our model was based on fieldmeasurements and on data taken from the literature. Water temperatureand dive depth influenced diving costs drastically, with predicted increasesof up to 250% and 258% in males and females, respectively. Changes inwater temperature and depth conditions may lead to an increaseof daily food intake of 500-800 g in males and 440-780 g infemales. However, the model predicts that cormorant foragingparameters are most strongly influenced by prey availability,so that even limited reduction in prey density makes birds unableto balance energy needs and may thus limit their influence onprey stocks. We discuss the ramifications of these results withregard to foraging strategies, dispersal, population dynamics,and intraspecific competition in this avian predator and pointout the importance of this model species for our understandingof foraging energetics in diving endotherms.  相似文献   

14.
Diving behavior and its frequency may differ among species of mosquito larvae because of differences in predation pressure. The present study aimed to investigate the relationship between water depth and predation frequency on two mosquito species, Culex tritaeniorhynchus (wetland breeder) and Aedes albopictus (container breeder), by the diving beetle Eretes griseus. Culex tritaeniorhynchus spends more time at the surface than A. albopictus, which spends more time thrashing underwater. When intact mosquito larvae of both species were present, the diving beetles consumed almost all A. albopictus larvae (98.3%). After all the A. albopictus larvae had been consumed, the diving beetles began to prey on C. tritaeniorhynchus. In order to compare the effect of position on the predation preference of the diving beetles, equal numbers of both species were heat‐killed and allowed to settle on the bottom of the container. When all the dead mosquito larvae had sunk to the bottom of a plastic container, the diving beetles caught both mosquito species at random. These results indicate that mosquito larvae near the surface were eaten less frequently by diving beetles than those at the bottom. The low diving frequency of C. tritaeniorhynchus is regarded as a form of anti‐predatory behavior.  相似文献   

15.
Little is known about the foraging behavior of top predators in the deep mesopelagic ocean. Elephant seals dive to the deep biota‐poor oxygen minimum zone (OMZ) (>800 m depth) despite high diving costs in terms of energy and time, but how they successfully forage in the OMZ remains largely unknown. Assessment of their feeding rate is the key to understanding their foraging behavior, but this has been challenging. Here, we assessed the feeding rate of 14 female northern elephant seals determined by jaw motion events (JME) and dive cycle time to examine how feeding rates varied with dive depth, particularly in the OMZ. We also obtained video footage from seal‐mounted videos to understand their feeding in the OMZ. While the diel vertical migration pattern was apparent for most depths of the JME, some very deep dives, beyond the normal diel depth ranges, occurred episodically during daylight hours. The midmesopelagic zone was the main foraging zone for all seals. Larger seals tended to show smaller numbers of JME and lower feeding rates than smaller seals during migration, suggesting that larger seals tended to feed on larger prey to satisfy their metabolic needs. Larger seals also dived frequently to the deep OMZ, possibly because of a greater diving ability than smaller seals, suggesting their dependency on food in the deeper depth zones. Video observations showed that seals encountered the rarely reported ragfish (Icosteus aenigmaticus) in the depths of the OMZ, which failed to show an escape response from the seals, suggesting that low oxygen concentrations might reduce prey mobility. Less mobile prey in OMZ would enhance the efficiency of foraging in this zone, especially for large seals that can dive deeper and longer. We suggest that the OMZ plays an important role in structuring the mesopelagic ecosystem and for the survival and evolution of elephant seals.  相似文献   

16.
An aquatic lifestyle poses serious restriction to air-breathing animals in terms of time and energy spent during a dive cycle. The diving frequency increases with water temperature, therefore an ectotherm's time budget greatly depends on the thermal characteristics of the aquatic environment. Available data suggests that time costs caused by temperature-dependent dive frequency can be partially compensated for by adjusting the swimming speed and diving angle during dive cycle. We tested this prediction by examining the influence of temperature on the diving behaviour of the alpine newt, Triturus alpestris. The ascending speed and angle showed disparate patterns of temperature dependency, with a minor influence on travel duration. Surprisingly, at higher temperatures, the diving newts saved most of their time by restricting swimming activity in the water column during their return to the bottom and not by adjusting their ascending duration. Hence, aquatic newts have the capacity to reduce temperature-dependent time costs of aerial breathing primarily by behavioural modifications during the descending phase of the dive cycle.  相似文献   

17.
Heat transfer from the periphery is an important thermoregulatory response in exercising mammals. However, when marine mammals submerge, peripheral vasoconstriction associated with the dive response may preclude heat dissipation at depth. To determine the effects of exercise and diving on thermoregulation in cetaceans, we measured heat flow and skin temperatures of bottlenose dolphins (Tursiops truncatus) trained to follow a boat and to dive to 15 m. The results demonstrated that skin temperatures usually remained within 1 °C of the water after all exercise levels. Heat flow from peripheral sites (dorsal fin and flukes) increased over resting values immediately after exercise at the water surface and remained elevated for up to 20 min. However, post-exercise values for heat flow from the flukes and dorsal fin decreased by 30–67% when dolphins stationed at 15 m below the surface. The pattern in heat flow was reversed during ascent. For example, mean heat flow from the flukes measured at 5 m depth, 40.10 ± 2.47 W · m−2, increased by 103.2% upon ascent. There is some flexibility in the balance between thermal and diving responses of dolphins. During high heat loads, heat transfer may momentarily increase during submergence. However, the majority of excess heat in dolphins appears to be dissipated upon resurfacing, thereby preserving the oxygen-conserving benefits of the dive response. Accepted: 4 January 1999  相似文献   

18.
Overall, large animals dive longer and deeper than small animals; however, after the difference in body size is taken into account, smaller divers often tend to make relatively longer dives. Neither physiological nor theoretical explanations have been provided for this paradox. This paper develops an optimal foraging diving model to demonstrate the effect of body size on diving behaviour, and discusses optimal diving behaviour in relation to body size. The general features of the results are: (1) smaller divers should rely more heavily on anaerobic respiration, (2) larger divers should not always make longer dives than smaller divers, and (3) an optimal body size exists for each diving depth. These results explain the relatively greater diving ability observed in smaller divers, and suggest that if the vertical distribution of prey in the water column is patchy, there is opportunity for a population of diving animals to occupy habitat niches related to body size.  相似文献   

19.
Semi‐aquatic mammals have secondarily returned to the aquatic environment, although they spend a major part of their life operating in air. Moving both on land, as well as in, and under water is challenging because such species are considered to be imperfectly adapted to both environments. We deployed accelerometers combined with a depth sensor to study the diving behavior of 12 free‐living Eurasian beavers Castor fiber in southeast Norway between 2009 and 2011 to examine the extent to which beavers conformed with mass‐dependent dive capacities, expecting them to be poorer than wholly aquatic species. Dives were generally shallow (<1 m) and of short duration (<30 s), suggesting that the majority of dives were aerobic. Dive parameters such as maximum diving depth, dive duration, and bottom phase duration were related to the effort during different dive phases and the maximum depth reached. During the descent, mean vectorial dynamic body acceleration (VeDBA—a proxy for movement power) was highest near the surface, probably due to increased upthrust linked to fur‐ and lung‐associated air. Inconsistently though, mean VeDBA underwater was highest during the ascent when this air would be expected to help drive the animals back to the surface. Higher movement costs during ascents may arise from transporting materials up, the air bubbling out of the fur, and/or the animals’ exhaling during the bottom phase of the dive. In a manner similar to other homeotherms, beavers extended both dive and bottom phase durations with diving depth. Deeper dives tended to have a longer bottom phase, although its duration was shortened with increased VeDBA during the bottom phase. Water temperature did not affect diving behavior. Overall, the beavers’ dive profile (depth, duration) was similar to other semi‐aquatic freshwater divers. However, beavers dived for only 2.8% of their active time, presumably because they do not rely on diving for food acquisition.  相似文献   

20.
This paper develops and validates a method of using time‐at‐temperature (TAT) histograms from satellite transmitter tags to describe the dive activity patterns and approximate depth distributions of five deep‐diving toothed whale species in the northern Bahamas. TAT histograms represent a bandwidth‐conserving method of recovering a long‐term proxy record of dive activity. However, using temperature to interpret TAT on a scale of approximate depths required the complex estimation of TAT histogram bin boundary depths in a dynamic oceanographic region. Here we evaluated the relative performance of four interpolation methods and a global reanalysis data assimilation model in estimating climatological isotherm depth surfaces within our study area. TAT‐derived approximate time‐at‐depth (TAD) distributions aligned closely with directly observed TAD distributions from a smaller sample of depth‐recording satellite tags deployed on separate individuals of each species. TAT‐derived approximate depth distributions were also consistent with various published accounts for this suite of species. Estimating dive ranges and time budgets are important components of (1) understanding habitat overlap between species, (2) evaluating the potential role of these predators in meso‐ and bathypelagic ecosystems, and (3) assessing vulnerability and exposure to anthropogenic impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号