首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The properties of two universal major proteins of cytoplasmic mRNP, p50 and the poly(A)-binding protein (PABP), are summarized. Their roles in formation of polyribosomal and free inactive mRNP are considered, with the focus on the authors' studies of p50. The parts these mRNP proteins play in translation regulation, stability, and localization of mRNA are described, and the possible mechanisms of their function are discussed.  相似文献   

2.
Poly(ADP-ribose) polymerase and poly(ADP-ribose) glycohydrolase activities were both investigated in chicken erythroblasts transformed by Avian Erythroblastosis Virus. Respectively 21% and 58% of these activities were found to be present in the post-mitochondrial supernatant (PMS). Fractionation of the PMS on sucrose gradients and poly(A+) mRNA detection by hybridization to [3H] poly(U) show that cytoplasmic poly(ADP-ribose) polymerase is exclusively localized in free mRNP. The glycohydrolase activity sedimented mostly in the 6 S region but 1/3 of the activity was in the free mRNP zone. Seven poly(ADP-ribose) protein acceptors were identified in the PMS in the Mr 21000–120000 range. The Mr 120000 protein corresponds to automodified poly(ADP-ribose) polymerase. A Mr 21000 protein acceptor is abundant in PMS and a Mr 34000 is exclusively associated with ribosomes and ribosomal subunits. The existence of both poly(ADP-ribose) polymerase and glycohydrolase activities in free mRNP argues in favour of a role of poly(ADP-ribosylation) in mRNP metabolism. A possible involvement of this post translational modification in the mechanisms of repression-derepression of mRNA is discussed.Abbreviations ADP-ribose adenosine (5) diphospho(5)--D ribose - poly(ADP-ribose) polymer of ADP-ribose - mRNP messenger ribonucleoprotein particles - PMSF phenylmethylsulfonyl fluoride - LDS lithium dodecyl sulfate - TCA trichloroacetic acid  相似文献   

3.
4.
5.
6.
Localized translation of axonal mRNAs contributes to developmental and regenerative axon growth. Although untranslated regions (UTRs) of many different axonal mRNAs appear to drive their localization, there has been no consensus RNA structure responsible for this localization. We recently showed that limited expression of ZBP1 protein restricts axonal localization of both β‐actin and GAP‐43 mRNAs. β‐actin 3′UTR has a defined element for interaction with ZBP1, but GAP‐43 mRNA shows no homology to this RNA sequence. Here, we show that an AU‐rich regulatory element (ARE) in GAP‐43′s 3′UTR is necessary and sufficient for its axonal localization. Axonal GAP‐43 mRNA levels increase after in vivo injury, and GAP‐43 mRNA shows an increased half‐life in regenerating axons. GAP‐43 mRNA interacts with both HuD and ZBP1, and HuD and ZBP1 co‐immunoprecipitate in an RNA‐dependent fashion. Reporter mRNA with the GAP‐43 ARE competes with endogenous β‐actin mRNA for axonal localization and decreases axon length and branching similar to the β‐actin 3′UTR competing with endogenous GAP‐43 mRNA. Conversely, over‐expressing GAP‐43 coding sequence with its 3′UTR ARE increases axonal elongation and this effect is lost when just the ARE is deleted from GAP‐43′s 3′UTR.

  相似文献   


7.
The localization and local translation of mRNAs constitute an important mechanism to promote the correct subcellular targeting of proteins. mRNA localization is mediated by the active transport of mRNPs, large assemblies consisting of mRNAs and associated factors such as RNA-binding proteins. Molecular motors move mRNPs along the actin or microtubule cytoskeleton for short-distance or long-distance trafficking, respectively. In filamentous fungi, microtubule-based long-distance transport of vesicles, which are involved in membrane and cell wall expansion, supports efficient hyphal growth. Recently, we discovered that the microtubule-mediated transport of mRNAs is essential for the fast polar growth of infectious filaments in the corn pathogen Ustilago maydis. Combining in vivo UV cross-linking and RNA live imaging revealed that the RNA-binding protein Rrm4, which constitutes an integral part of the mRNP transport machinery, mediates the transport of distinct mRNAs encoding polarity factors, protein synthesis factors, and mitochondrial proteins. Moreover, our results indicate that microtubule-dependent mRNA transport is evolutionarily conserved from fungi to higher eukaryotes. This raises the exciting possibility of U. maydis as a model system to uncover basic concepts of long-distance mRNA transport.In order to compartmentalize functions, eukaryotic cells need to sort their proteins to distinct subcellular sites. A widespread mechanism for the spatiotemporal regulation of protein expression is localized translation, i.e., the concerted action of mRNA localization and confined translation. Thereby, the correct subcellular localization of translation products is promoted, and the deleterious mislocalization of proteins is prevented (5, 37).Most commonly, mRNA localization is mediated by active transport along the actin or microtubule cytoskeleton for short-distance or long-distance mRNA transport, respectively. Transported mRNAs contain specific cis-acting sequences that function as zipcodes to determine the correct subcellular destination. These RNA elements are recognized by RNA-binding proteins that combine with accessory factors to form higher-order ribonucleoprotein complexes, designated mRNPs (40, 82). Adaptor proteins are thought to connect mRNPs to molecular motors that actively transport them along the cytoskeleton to their final destination (88, 92). Commonly, premature translation is inhibited during mRNP transport by specific inhibitors. Upon arrival mRNAs are offloaded and kept in place by anchoring factors. The local phosphorylation of RNA-binding proteins then triggers unloading and the release of translational inhibitor (39, 68). When the formation of transport-competent mRNPs fails, mRNAs are translated at wrong locations, leading to the mislocalization of the encoded proteins. An example of the importance of mRNA localization is the local synthesis of morphogens during oogenesis and embryogenesis in Drosophila melanogaster, which determines the two main body axes of developing embryos (55, 59).In fungi, actin-dependent transport was quite extensively studied for Saccharomyces cerevisiae and was recently discovered in filaments of Candida albicans (25, 65, 68). Examples of long-distance mRNA transport along microtubules have so far been reported only for the corn pathogen Ustilago maydis. Study of the role of RNA-binding proteins during filamentous growth and pathogenic development revealed that microtubule-dependent mRNP transport is essential for the fast polar growth of infectious hyphae (6, 7, 26, 45). In this review we will introduce the basic aspects of short- and long-distance mRNA transports in fungal and animal models. In addition, we will shortly address polar growth and microtubule-dependent transport in filamentous fungi. This will be the foundation to present recent advances in the microtubule-dependent transport of mRNAs in U. maydis.  相似文献   

8.
The properties of two universal major proteins of cytoplasmic mRNP, p50 and the poly(A)-binding protein (PABP), are summarized. Their roles in formation of polyribosomal and free inactive mRNP are considered, with the focus on the authors' studies of p50. The parts these mRNP proteins play in translation regulation, stability, and localization of mRNA are described, and the the possible mechanisms of their function are discussed.  相似文献   

9.
The function of proteins that interact with mRNA   总被引:4,自引:0,他引:4  
Specific proteins are associated with mRNA in the cytoplasm of eukaryotic cells. The complement of associated proteins depends upon whether the mRNA is an integral component of the polysomal complex being translated, or, alternatively, whether it is part of the non-translated free mRNP fraction. By subjecting cells to ultraviolet irradiation in vivo to cross-link proteins to mRNA, mRNP proteins have been shown to be associated with specific regions of the mRNA molecule. Examination of mRNP complexes containing a unique mRNA has suggested that not all mRNA contain the same family of associated RNA binding proteins. The function of mRNA associated proteins may include a role in providing stability for mRNA, and/or in modulating translation. With the recent demonstrations that both free and polysomal mRNPs are associated with the cytoskeletal framework, specific mRNP proteins may play a role in determining the subcellular localization of specific mRNPs.  相似文献   

10.
Extracts prepared from dry pea (Pisum sativum, L; cv oberon) primary axes translate efficiently their endogenous messengers in an in vitro protein synthesizing system. The native long-lived messengers are biologically fully active and direct the synthesis of a whole range of polypeptides with MW ranging up to 130,000. About 0.5% of the total in vitro synthesized polypeptides are recovered in the immunoprecipitate obtained with pea lectin antiserum. Since about one-fourth of the radioactivity in the immunoprecipitate comigrates with authentic pea lectin it is concluded that about 0.1% of the long-lived messengers code for the lectin.Abbreviations mRNA messenger RNA - mRNP messenger ribonucleoprotein - SDS sodium dodecyl sulphate - HEPES N-2-hydroxyethylpiperazine-N-ethanesulphonic acid - S.A specific activity  相似文献   

11.
12.
Free cytoplasmic globin mRNA containing mRNP-particles were isolated from rabbit reticulocytes by zonal sucrose gradient centrifugation and their properties were compared with mRNP particles isolated in the same way from EDTA-dissociated reticulocyte polyribosomes. The average poly(A)-length of 9S mRNA from free cytoplasmic mRNP was 17–20 nucleotides being about two times shorter than the average poly(A)-length of polysomal 9S mRNA. The protein composition of the free cytoplasmic mRNP particles disclosed the absence of the 76,000 dalton protein which is associated with the 3poly(A)-segment of polysomal globin mRNA. It was concluded that free cytoplasmic mRNP-particles from rabbit reticulocytes can be classified as old mRNP in a post-translational phase. Free cytoplasmic mRNPs were translated in heterologous cell-free systems as well as in Xenopus laevis oocytes. Addition of hemin stimulated the synthesis of -globin in all systems, while the presence of the cap analogue m7G(5)p inhibited translation of free cytoplasmic mRNA completely. The latter finding suggested that free cytoplasmic mRNA has a 5 terminal cap. Shortening of the poly(A)-segment with concomitant loss of the 76,000 dalton protein may lead to less efficient translation of free cytoplasmic mRNP.  相似文献   

13.
Information has been collected to stimulate interest regarding the nature and the possible role of mRNP protein phosphorylation in a cytoplasmic control mechanism for protein synthesis. It does not imply a direct relationship between mRNP protein and initiation factors. These proteins have some properties in common (e.g. molecular weight, phosphorylation, protein kinase, mRNA binding activity). We emphasize that some free mRNP may be translatable after modification of their protein by interference factors belonging to other cellular compartments. Thus, some mRNP proteins might possess initiation factor or protein synthetic activity if we accept Spirin's theory, i.e., Eukaryotic messenger RNA and informosomes omnia mea mecum porto  相似文献   

14.
mRNA localization has an essential role in localizing cytoplasmic determinants, controlling the direction of protein secretion, and allowing the local control of protein synthesis in neurons. In neuronal dendrites, the localization and translocation of mRNA is considered as one of the molecular bases of synaptic plasticity. Recent imaging and functional studies revealed that several RNA-binding proteins form a large messenger ribonucleoprotein (mRNP) complex that is involved in transport and translation of mRNA in dendrites. However, the mechanism of mRNA translocation into dendritic spines is unknown. Here, we show that an actin-based motor, myosin-Va, plays a significant role in mRNP transport in neuronal dendrites and spines. Myosin-Va was Ca2+-dependently associated with TLS, an RNA-binding protein, and its target RNA Nd1-L, an actin stabilizer. A dominant-negative mutant or RNAi of myosin-Va in neurons suppressed TLS accumulation in spines and further impaired TLS dynamics upon activation of mGluRs. The TLS translocation into spines was impeded also in neurons prepared from myosin-Va-null dilute-lethal (dl) mice, which exhibit neurological defects. Our results demonstrate that myosin-Va facilitates the transport of TLS-containing mRNP complexes in spines and may function in synaptic plasticity through Ca2+ signaling.  相似文献   

15.
Multiple mechanisms are in place to regulate adequate synthesis of proteins, ranging from ways to ensure sequence fidelity, polypeptide folding and protein modification, to control of amounts and subcellular localization of the molecules. Some of these mechanisms act at the level of mRNA export and mRNA targeting. mRNA nuclear export consists of three coupled consecutive steps: (1) the packaging into messenger ribonucleoprotein (mRNP); (2) the transport through the nuclear pore complexes (NPCs); and (3) the directional release into the cytoplasm (for a review see refs. 1-2). The subsequent targeting of mRNA to particular subcellular locations is common in asymmetric cell division in many eukaryotes (for a review see refs. 3-5) and ensures that proteins are produced at the desired place. Recent studies in Saccharomyces cerevisiae suggest that Karyopherin Kap104p plays a role not only in mRNA export but also in bud-localized protein synthesis.6 In this report, we reflect on the possible mechanisms by which Kap104p links these events and hypothesize on a possible function of the localized protein synthesis.  相似文献   

16.
Extracts from the primary axes of dry pea (Pisum sativum L.) seeds are able to perform an initiation-dependent translation of exogenous mRNA. SDS polyacrylamide gel electrophoresis of the products synthesized under direction of alfalfa mosaic virus RNA (AMV-RNA) and tobacco mosaic virus RNA (TMV-RNA) shows that the fidelity of translation in this pea system is at least as high as in a wheat embryo cell-free protein synthesizing system. The endogenous messengers are also efficiently translated in extracts from the primary axes of pea seeds. The direct translation of these messengers in a homologous cell-free system may be of interest for a study of the products coded for by the long-lived messengers present in this plant.Abbreviations HEPES N-2-hydroxyethylpiperazine-N-ethanesulfonic acid - SDS sodium dodecyl sulphate - mRNP messenger ribonucleoprotein - AMV-RNA alfalfa mosaic virus RNA - TMV-RNA tobacco mosaic virus RNA - ATA aurin tricarboxylic acid - TCA trichloroacetic acid - S.A. specific activity  相似文献   

17.
mRNA localization by active transport is a regulated process that requires association of mRNPs with protein motors for transport along either the microtubule or the actin cytoskeleton. oskar mRNA localization at the posterior pole of the Drosophila oocyte requires a specific mRNA sequence, termed the SOLE, which comprises nucleotides of both exon 1 and exon 2 and is assembled upon splicing. The SOLE folds into a stem–loop structure. Both SOLE RNA and the exon junction complex (EJC) are required for oskar mRNA transport along the microtubules by kinesin. The SOLE RNA likely constitutes a recognition element for a yet unknown protein, which either belongs to the EJC or functions as a bridge between the EJC and the mRNA. Here, we determine the solution structure of the SOLE RNA by Nuclear Magnetic Resonance spectroscopy. We show that the SOLE forms a continuous helical structure, including a few noncanonical base pairs, capped by a pentanucleotide loop. The helix displays a widened major groove, which could accommodate a protein partner. In addition, the apical helical segment undergoes complex dynamics, with potential functional significance.  相似文献   

18.
19.
20.
Lin S  Xiao R  Sun P  Xu X  Fu XD 《Molecular cell》2005,20(3):413-425
SR proteins are a family of sequence-specific RNA binding proteins originally discovered as essential factors for pre-mRNA splicing and recently implicated in mRNA transport, stability, and translation. Here, we used a genetic complementation system derived from conditional knockout mice to address the function and regulation of SR proteins in vivo. We demonstrate that ASF/SF2 and SC35 are each required for cell viability, but, surprisingly, the effector RS domain of ASF/SF2 is dispensable for cell survival in MEFs. Although shuttling SR proteins have been implicated in mRNA export, prevention of ASF/SF2 from shuttling had little impact on mRNA export. We found that shuttling and nonshuttling SR proteins are segregated in an orderly fashion during mRNP maturation, indicating distinct recycling pathways for different SR proteins. We further showed that this process is regulated by differential dephosphorylation of the RS domain, thus revealing a sorting mechanism for mRNP transition from splicing to export.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号