首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Aim Recent papers have used large palaeolimnological datasets to reveal the biodiversity patterns of aquatic microorganisms. However, scant attention has been paid to the influence of time on these patterns. Where lake surficial sediment samples are used as integrals of diversity, the time interval of each sample varies according to differences in sediment accumulation rates. This paper aims to test the reliability of using lake surface sediments to measure and to compare microbial diversity when the potential influences of the species–time relationships are taken into account. Location Alpine lakes in Europe. Methods We analysed microorganism (siliceous microalgae) assemblages in three European Alpine lakes using short sediment cores (210Pb‐dated) and annual sediment trap samples from 12 UK lakes. The same number of individuals was pooled for each sample 500 times to avoid sampling effort effects and to standardize species diversity estimation. The influence of time on the diversity score was assessed by simulating an increase of time span for surface sediment samples by cumulatively adding in successive sediment core samples (from the most recent to the oldest). We used species richness (S) and the exponential of the bias‐corrected Shannon entropy index (exp(Hb‐c)) to estimate diversity. Results Increasing the time interval represented by a surficial sediment sample did not affect the diversity results. The estimation of diversity was similar for cumulative and non‐cumulative samples. Diversity estimation was only altered in lakes experiencing high community turnover due to strong environmental forcing during the time period spanned by the cumulative sample. Main conclusions The use of surface lake sediments is suitable for estimating the average site diversity of free‐living microorganisms. Diversity is integrated in a single sample and species assemblage composition is derived from microbial communities living in distinct lake microhabitats. Species remains, accumulated in a single sample over several years of environmental variability, represent a diversity integral that captures a spatio‐temporal component equivalent to the γ‐diversity measure.  相似文献   

3.
This study was designed to investigate spatial and temporal variation in Gelidium canariensis populations at two shores in northern Gran Canaria during two years. Spatial scales ranged from some hundred meters (distance between shores), 10 to 30 m (distance between plots) to less than 3 m (distance between quadrats). Gelidium individuals were defined as distinct Gelidium clumps. The results show a significant difference in size of clumps between shores, but not on the smaller spatial scales. No significant temporal variation was found. There was no significant temporal or spatial variation in standing crop or density (counts made in quadrats where Gelidium was present, rather than counts for the total shore). Sporophytic and gametophytic clumps were also distinguished by identifying reproductive structures in the field. The total proportion of sporophytes was larger than the proportion of gametophytes, but at a smaller scale there could be a shift in dominance. The survival rate of clumps was similar between shores with a mean survival rate of 85%, but there was a significant difference in recruitment between shores. The results indicate a stable population structure. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Morphology and phenology influence plant–pollinator network structure, but whether they generate more stable pairwise interactions with higher pollination success remains unknown. Here we evaluate the importance of morphological trait matching, phenological overlap and specialisation for the spatio‐temporal stability (measured as variability) of plant–pollinator interactions and for pollination success, while controlling for species' abundance. To this end, we combined a 6‐year plant–pollinator interaction dataset, with information on species traits, phenologies, specialisation, abundance and pollination success, into structural equation models. Interactions among abundant plants and pollinators with well‐matched traits and phenologies formed the stable and functional backbone of the pollination network, whereas poorly matched interactions were variable in time and had lower pollination success. We conclude that phenological overlap could be more useful for predicting changes in species interactions than species abundances, and that non‐random extinction of species with well‐matched traits could decrease the stability of interactions within communities and reduce their functioning.  相似文献   

5.
6.
1 Pollen beetles Meligethes aeneus are pests of oilseed Brassica crops that are subject to intensive chemical control. Resistance to pyrethroids has been reported. Although this insect is of great economic importance, little is known about its genetic properties and population structure. 2 Amplified fragment length polymorphism (AFLP) analysis with the restriction endonuclease combination EcoRI and PstI was performed on 133 samples of groups of three pollen beetles collected during 2001–04 from five different provinces of Sweden. Both susceptible and resistant insects were studied. Using one primer combination, more than 450 polymorphic DNA fragments were obtained and, in total, four primer combinations were used for analysis. A subsample of 59 single beetles was analysed using one primer combination. 3 AFLP profiles were analysed by similarity measures using the Nei and Li coefficient and Neighbour‐joining dendrograms were generated. The dendrogram built using 133 samples showed three distinct groups, each containing beetles representing one generation. Statistical analysis using analysis of molecular variance of single beetle samples showed no evidence of significant genetic difference between resistant and susceptible beetles. Instead, a clear difference between samples, depending on time of collection and generation, was observed. 4 The expected regional population structure, although statistically significant, explained little of the variation. The levels of genetic variation within populations were very high. There appears to be a high rate of gene flow between pollen beetle populations. The implications of this in the context of insecticide resistance are discussed.  相似文献   

7.
The invertebrate assemblages of the River Lambourn and its tributary, the Winterbourne stream, were investigated as part of a broad ecological study prior to water resource development in the catchment. The longitudinal distribution of the invertebrate fauna within the Winterbourne stream was examined in detail and supporting data for the R. Lambourn revealed that the upstream intermittent section of each water course had an invertebrate assemblage which was distinct from the fauna downstream where flow was permanent. Within the perennial zone taxon richness tended to increase downstream.A one-year programme of monthly quantitative sampling on five distinct biotopes (Ranunculus, Berula, Callitriche, gravel and silt) at two contrasted sites (shaded and unshaded) was undertaken in the lower perennial of the R. Lambourn below the confluence with the Winterbourne. On each study site, the taxon richness, numerical abundance and biomass of invertebrates were significantly higher on the three macrophytes than on gravel and silt. There were also statistically significant seasonal changes in the biomass of invertebrates on each site. Estimates of total biomass of invertebrates per site revealed a late spring peak (May/June) and a late autumn (November/December) peak, neither of which coincided with the summer peak biomass of macrophytes. This suggested that, in the lower perennial, the level of food resources (epiphytic algae in late spring and fallen tree leaves plus decaying macrophytes in autumn) rather than available habitat, were a major influence on population levels for most of the year.Quantitative sampling of each biotope on each site continued in June and December only for a period of 8 years (1971–78), during which time the river experienced a minor drought (1973) and a severe drought (1976). The Chironomidae showed a strong positive response to conditions of low flow in June of 1973 and 1976, when exceptionally high densities of larvae were recorded. Although further between-year differences were recorded in several other major components of the invertebrate fauna, which may have been related to conditions of low discharge, they did not have long-term consequences for the fauna in the lower perennial of the R. Lambourn.In contrast, in the upper perennial, the prolonged drought of 1976 resulted in the loss of wetted perimeter and macrophytes, coupled with deposition of silt, all of which had deleterious effects on the invertebrate assemblages. The following year, despite a normal discharge regime and the removal of silt, some submerged macrophytes were slow to return to their pre-drought condition. In the intermittent section, the drought of 1976 resulted in the total loss of flow for a 16 month period instead of a more typical four month period of water loss.Thus, chalk streams encompass within a single system both stable and extreme hydrological regimes which offer unique opportunities for investigating the processes of community formation and maintenance.  相似文献   

8.
9.
Small‐scale spatial and temporal variability in animal abundance is an intrinsic characteristic of marine ecosystems but remains largely unknown for most animals, including coral reef fishes. In this study, we used a remote autonomous unbaited video system and recorded reef fish assemblages during daylight hours, 10 times a day for 34 consecutive days in a branching coral patch of the lagoon of New Caledonia. In total, 50 031 fish observations belonging to 114 taxa, 66 genera and 31 families were recorded in 256 recorded videos. Carnivores and herbivore‐detritus feeders dominated the trophic structure. We found significant variations in the composition of fish assemblages between times of day. Taxa richness and fish abundance were greater in the early morning and in the late afternoon than during the day. Fourteen taxa displayed well‐defined temporal patterns in abundance with one taxon influenced by time of day, six influenced by tidal state and seven influenced by both time of day and tidal state. None of these 14 taxa were piscivores, 10 were herbivore‐detritus feeders, three were carnivores and one was plankton feeder. Our results suggest a diel migration from feeding grounds to shelter areas and highlight the importance of taking into account small‐scale temporal variability in animal diversity and abundance when studying connectivity between habitats and monitoring communities.  相似文献   

10.
11.
Abstract Spatial and temporal patterns of abundance of animals and plants must be quantified before models to explain distributions can be developed. These patterns also provide essential data for measuring potential effects of environmental disturbances. Studies in many different habitats have shown that most organisms, particularly invertebrates, have highly variable and interactive patterns of abundance, with much variability at the smallest temporal and spatial scales. Intertidal boulder fields in New South Wales, Australia, support a diverse fauna, many species of which are relatively rare. These habitats are commonly found near rock‐platforms and in sheltered estuaries and are subjected to many human disturbances. Although there have been a few studies on the fauna in boulder fields, none has documented variability of the assemblage using multivariate and univariate techniques and most studies have not incorporated different spatial and temporal scales. This study quantifies spatial variation at three scales (metres, tens of metres alongshore and tens of metres upshore) and temporal variation at two scales (3 months and 2 years) of the assemblage of molluscs and echinoderms in a sheltered boulder field subjected to little natural or human disturbance. Multivariate analyses revealed that each site contained a distinct assemblage, mainly due to the relative abundances of a few species. Most species, those generally only found under boulders and common, widespread species, had considerable spatial variability in abundances, with more than 90% measured at the smallest scale, that is metre to metre within a site. Changes in abundances over 3 months or 2 years varied among species and sites in unpredictable ways. These data show that sampling designs to measure impacts on these fauna will need to be complex and must incorporate a number of spatial and temporal scales if they are to be able to detect impact against such a variable background.  相似文献   

12.
13.
Aim To assess the potential impacts of future climate change on spatio‐temporal patterns of freshwater fish beta diversity. Location Adour–Garonne River Basin (France). Methods We first applied an ensemble modelling approach to project annually the future distribution of 18 fish species for the 2010–2100 period on 50 sites. We then explored the spatial and temporal patterns of beta diversity by distinguishing between its two additive components, namely species turnover and nestedness. Results Taxonomic homogenization of fish assemblages was projected to increase linearly over the 21st century, especially in the downstream parts of the river gradient. This homogenization process was almost entirely caused by a decrease in spatial species turnover. When considering the temporal dimension of beta diversity, our results reveal an overall pattern of decreasing beta diversity along the upstream–downstream river gradient. In contrast, when considering the turnover and nestedness components of temporal beta diversity we found significant U‐shaped and hump‐shaped relationships, respectively. Main conclusions Future climate change is projected to modify the taxonomic composition of freshwater fish assemblages by increasing their overall similarity over the Adour–Garonne River Basin. Our findings suggest that the distinction between the nestedness and turnover components of beta diversity is not only crucial for understanding the processes shaping spatial beta‐diversity patterns but also for identifying localities where the rates of species replacement are projected to be greatest. Specifically we recommend that future conservation studies should not only consider the spatial component of beta diversity but also its dynamic caused by climate warming.  相似文献   

14.
Abstract. Patterns of β‐diversity in a highly diverse tropical dry forest tree community are described; the contribution of environmental heterogeneity and distance to β‐diversity was assessed. Significant differences in elevation, insolation, slope and soil water holding capacity (p < 0.01), variables related to water availability, were found among 830 m × 100 m transects laid along contrasting slopes of a system of three parallel microbasins. A gradient in elevation and insolation was found within north‐facing transects, among 10 m × 10 m sites; south‐facing transects showed an elevation gradient while crest transects showed a gradient in water holding capacity. In total 119 species were registered, with 27 to 64 species per transect, and 4 to 16 species per site. A large β‐diversity was found among and within transects; two indices of β‐diversity consistently showed a higher β‐diversity within transects than among them. Among transects, 64% of the variance in species composition could be attributed to the environmental variables; an additional 22% to the spatial distribution of sites. Within transects, 42% of the deviance in β‐diversity values was explained by insolation, and 19% by distance. β‐diversity increased with distance and with difference in insolation among sites; north‐facing transects, those with most contrasting insolation conditions, had the steepest increase in β‐diversity with distance. Such increase was clearly associated with changes in species composition, not with changes in species richness.  相似文献   

15.
Zooplankton samples were collected monthly at three stations in Ogochi Reservoir during 1980, and the temporal and horizontal variations in the density of dominant taxa were evaluated by a standard 2-way ANOVA with random effects. The analysis revealed that horizontal is greater than temporal variation in the warm water season (> 18 °C), whereas temporal variation is greater in the cold water season (< 18 °C). Horizontal heterogeneity of the zooplankton community found in the warm water season seems to be associated with differences in site-specific conditions.  相似文献   

16.
The distribution and relative biomass of cephalopods from pelagic waters off eastern Australia was examined between 1997 and 2004 from stomach contents of swordfish, yellowfin tuna and dolphinfish taken in the domestic longline fishery. A total of 38 taxa from 19 families were identified. Comparison of the species composition of the three predators indicated pronounced differences in cephalopod species composition. In swordfish, species of the family Ommastrephidae, particularly Ommastrephes bartramii (Lesueur 1821) and Nototodarus gouldi (McCoy 1888) dominated, whereas a more diverse mix of species was identified from yellowfin-sampled cephalopods. Todaropsis eblanae (Ball 1841) was the main cephalopod sampled from the surface-dwelling dolphinfish. For swordfish-sampled cephalopods, significant relationships were found between biomass and season, fluorescence and year. In yellowfin tuna, cephalopod biomass was significantly correlated with season, area and sea surface temperature. Significant factors differed between predator-sampler, possibly reflecting the limits of the predator, but could also give insights into individual cephalopod species distributions. However, the increase in cephalopod biomass over summer in both swordfish and yellowfin tuna suggested cephalopod biomass was higher over summer in the region.  相似文献   

17.
The newly introduced mosquito Aedes japonicus has expanded from its original range in Northeastern Asia to 29 US states (including Hawaii) plus Canada and northern Europe. Our objectives were to test an earlier hypothesis of multiple introductions of this species to the Northeastern US and evaluate putative temporal changes in genetic makeup. Using a panel of seven microsatellite loci, we confirmed the existence of two abundant genetic forms in specimens originally collected in 1999–2000 (FST value based on microsatellite data = 0.26) that matches the disjunctive distribution of mitochondrial haplotypes. To examine the distribution of the two genetic ‘types’ across Pennsylvania we created a fine‐scale genetic map of Ae. japonicus using 439 specimens collected from 54 Pennsylvania counties in 2002–2003. We also made direct comparisons between collections in 1999–2000 and new collections made in 2004–2005 obtained from the same areas in the northeastern US. We observed that the strong association between mtDNA haplotype and microsatellite signature seen in 1999–2000 had weakened significantly by 2002 across Pennsylvania, a trend continued to some extent in 2004–2005 in PA, NJ, and NY, indicating that once easily distinguishable separate introductions are merging. The two expanding genetic forms create a complex correlation between spatial and genetic distances. The existence of multiple introductions would be obscured without sampling early and across time with highly polymorphic molecular markers. Our results provide a high‐resolution analysis of the spatial and temporal dynamics of a newly introduced disease vector and argue that successive introductions may be a common pattern for invasive mosquitoes.  相似文献   

18.
19.
Fungal endophytes are micro-organisms that colonize healthy plant tissues without causing disease symptoms. They are described as plant growth and disease resistance promoters and have shown antimicrobial activity. The spatial-temporal distribution of endophytic communities in olive cultivars has been poorly explored. This study aims to investigate the richness and diversity of endophytic fungi in different seasons and sites, within the Alentejo region, Portugal. Additionally, and because the impact of some pathogenic fungi (e.g. Colletotrichum spp.) varies according to olive cultivars; three cultivars, Galega vulgar, Cobrançosa and Azeiteira, were sampled. 1868 fungal isolates were identified as belonging to 26 OTUs; 13 OTUs were identified to the genera level and 13 to species level. Cultivar Galega vulgar and season autumn showed significant higher values in terms of endophytic richness and diversity. At site level, Elvas showed the lowest fungal richness and diversity of fungal endophytes. This study reinforces the importance of exploring the combined spatio-temporal distribution of the endophytic biodiversity in different olive cultivars. Knowledge about endophytic communities may help to better understand their functions in plants hosts, such as their ecological dynamics with pathogenic fungi, which can be explored for their use as biocontrol agents.  相似文献   

20.
广东省不同区域农田土壤酸化时空变化及其影响因素   总被引:1,自引:0,他引:1  
基于广东省1980s、2010年以及2015年3期土壤数据,对全省不同区域农田耕作层土壤pH值的时空变异特征进行分析,并初步探讨了可能导致土壤pH变化的因素.结果表明: 不同时期广东全省土壤pH值空间分布格局变化显著. 全省农田土壤在1980s—2010年间,pH整体下降了0.3,呈酸化趋势,2010—2015年,土壤pH上升了0.09,但不均匀势态有所增强,酸碱分化趋势较明显. 从各区域看,1980s—2010年,各区域土壤均呈现酸化趋势;2010—2015年,珠三角地区农田土壤pH均值上升了0.27,而东、西两翼土壤pH均值分别下降了0.05、0.15,山区土壤pH变化不明显. 分析表明:广东省各地区土壤酸化除受土壤自身及降水等自然因素影响外,酸雨、不合理施肥以及高产作物高复种的种植结构等人为因素也是导致土壤酸化的主要原因;工业化、城市化、矿山开发和测土配方施肥的推广导致局部地区土壤pH值有所上升. 研究结果可为不同区域控制缓解土壤酸化、提高耕地质量提供理论指导.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号