首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acid phosphatase is present in the haemolymph of the fly Calliphora erythrocephala. The activity of this enzyme has been studied during development; it shows a marked increase during hours following pupation. This increase of activity may be related to the histolytic processes which are acting during metamorphosis.  相似文献   

2.
The action of the major protease from the parasitic protozoon Entamoeba histolytica , a cysteine protease of M, 27,000–29,000, on some important proteins of the extracellular matrix has been studied. The isolated protease degraded the extracellular matrix proteins from human tissue collagen type IV and V as well as laminin and fibronectin with different velocities and specificities under native conditions. Whereas the degradation of fibronectin and laminin proceeded rapidly, yielding distinct fragment patterns, the breakdown of the collagen types happened more slowly and incompletely. The digestion of the denatured isolated α2-chain of bovine collagen type I was very fast and unspecific requiring only 1/10 of the enzyme activities as compared with the other substrates mentioned above. Nearly 85% of the overall proteolytic activity of a soluble fraction of E. histolytica was strongly inhibited by antibodies against the purified histolytic protease as well as by cystatin from chicken egg white, a specific protein inhibitor of cysteine proteases. We conclude that the histolytic protease represents by far the highest portion of soluble proteolytic activity in E. histolytica which is sufficient to destroy the extracellular matrix of the host.  相似文献   

3.
Growing of Escherichia coli and Hafnia alvei cells in several cell-free human fluids, such as normal serum, serum from diabetic patients, pleural, ascitic and spinal fluid, revealed that various biochemical changes occurred. Protein profile on SDS-PAGE as well as acid and alkaline phosphohydrolytic enzymes on native gels of cell extracts were affected after culturing of bacteria in the above fluids. Gelatinolytic and hyaluronolytic activity was of interest because both of them are histolytic enzymes. Although there was a potential appearance of gelatinolytic bands on gelatin-SDS-PAGE in cells starved in seawater, none of these activities were expressed in cells grown in human fluids. A hyaluronolytic activity of approximately 45 KDa was present in cells cultured in Mueller Hinton broth. This enzyme was decreased either in cells starved in seawater or in cells grown in human fluids to an almost invisible band on hyaluronan-SDS-PAGE.  相似文献   

4.
Histolysis refers to a widespread disintegration of tissues that is morphologically distinct from apoptosis and often associated with the stimulation of autophagy. Here, we establish that a component of the apoptosome, and pivotal regulator of apoptosis, is also required for histolytic cell death. Using in vivo and ex vivo assays, we demonstrate a global apoptogenic requirement for dark, the fly ortholog of Apaf1, and show that a required focus of dark(-) organismal lethality maps to the central nervous system. We further demonstrate that the Dark protein itself is a caspase substrate and find that alterations of this cleavage site produced the first hypermorphic point mutation within the Apaf1/Ced-4 gene family. In a model of ;autophagic cell death', dark was essential for histolysis but dispensable for characteristic features of the autophagic program, indicating that the induction of autophagy occurs upstream or parallel to histolytic cell death. These results demonstrate that stimulation of autophagy per se is not a ;killing event' and, at the same time, establish that common effector pathways, regulated by the apoptosome, can underlie morphologically distinct forms of programmed cell death.  相似文献   

5.
The action of the major protease from the parasitic protozoon Entamoeba histolytica, a cysteine protease of Mr 27,000-29,000, on some important proteins of the extracellular matrix has been studied. The isolated protease degraded the extracellular matrix proteins from human tissue collagen type IV and V as well as laminin and fibronectin with different velocities and specificities under native conditions. Whereas the degradation of fibronectin and laminin proceeded rapidly, yielding distinct fragment patterns, the breakdown of the collagen types happened more slowly and incompletely. The digestion of the denatured isolated alpha 2-chain of bovine collagen type I was very fast and unspecific requiring only 1/10 of the enzyme activities as compared with the other substrates mentioned above. Nearly 85% of the overall proteolytic activity of a soluble fraction of E. histolytica was strongly inhibited by antibodies against the purified histolytic protease as well as by cystatin from chicken egg white, a specific protein inhibitor of cysteine proteases. We conclude that the histolytic protease represents by far the highest portion of soluble proteolytic activity in E. histolytica which is sufficient to destroy the extracellular matrix of the host.  相似文献   

6.
Cell yield and steroid synthetic responses (to no addition, to ACTH, 3′,5′-AMP, or NADPH) were determined in suspensions of rat adrenocortical cells following systematic manipulation of the conditions of cell dissociation. Preincubation in 0.25% trypsin compared to medium alone, followed by dissociation in a mixture of collagenase and hyaluronidase, improved cell yield and steroid synthetic response. When concentrations of collagenase and hyaluronidase in the dissociation medium were varied, cell yield was found to vary directly as a function of collagenase concentration (r = 0.938, P < 0.005) but was unrelated to hyaluronidase concentration. The steroidogenic response per cell to both 3′,5′-AMP and NADPH stimulation increased with increasing collagenase concentration up to 0.02%. At higher collagenase concentrations, the NADPH response per cell continued to increase while the 3′,5′-AMP response per cell decreased. Hyaluronidase concentration had a minimal systematic effect on steroidogenic response. Systematic manipulation of time in histolytic enzyme and intensity of mechanical agitation also appeared to alter cell suspension characteristics.  相似文献   

7.
The adult hookworm Ancylostoma caninum releases a proteolytic enzyme which is thought to be essential for its adaption to parasitism. The protease was purified from parasite extracts by ion-exchange chromatography followed by gel filtration and hydrophobic interaction chromatography. The purified enzyme exhibited a molecular weight of 37,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and had an NH2-terminal sequence of Arg-His-His-Gln-Pro-Lys-Val-Ala-Leu-Leu-Gly-Ala-His-Gly-Gly-Ile. Using 125I-fibrin as substrate, the enzyme displayed optimal activity at pH 9-11 and was inactivated by dialysis against EDTA. The enzyme degraded [3H]elastin and both elastin and trypsin-labile glycoproteins in a rat vascular smooth muscle extracellular matrix. Antiserum raised to the protease in rabbits cross-reacted with extracts from the infective larval stage of A. caninum, suggesting that the production of the enzyme begins in an earlier developmental stage of the parasite life cycle. The role of the protease in the histolytic and anticlotting processes of the hookworm and its importance in immunity to ancylostomiasis is discussed.  相似文献   

8.
In holometabolous insects, there is a complete body remodeling from larva to adult. We determined in Ceratitis capitata that the transition from pre-pupa to pupa, 40 to 48 h after puparium formation (h APF), is a key moment of metamorphosis; when salivary glands, intestine, fat body, and muscles are in different stages of cell death. At 44-46 h APF, muscles from segments 1-3 (thoracic region) appeared fully disintegrated, whereas posterior muscles just started death processes. To understand some of the biochemical events eventually involved in histolytic processes during early metamorphosis, two cysteine peptidases coined "Metamorphosis Associated Cysteine Peptidase" (MACP-I and MACP-II) were purified to homogeneity from 40-46-h APF insects. Both enzymes were inhibited by Ep-475, a specific inhibitor of papain-like cysteine-peptidases. MACP-I is a single chain protein with an apparent molecular mass of 80 kDa and includes several isoforms with pI values of pH 6.25-6.35, 6.7, and 7.2. The enzyme has an optimum pH of 5.0 and its pH stability ranges from pH 4.0 to 6.0. The molecular weight and N-terminal sequence suggest that MACP-I might be a novel enzyme. MACP-II is an acidic single chain protein with a pI of pH 5.85 and an apparent molecular mass of 30 kDa. The enzyme is labile with a maximum stability in the pH range of 4.0 to 6.0 and an optimum pH among 5.0 to 6.0. MAPCP-II characteristics suggest it is a cathepsin B-like enzyme.  相似文献   

9.
Ionic control of acid phosphatase activity in plant cell walls   总被引:1,自引:1,他引:0  
Abstract. Purified acid phosphatase from sycamore cell walls is not activated by increasing the ionic strength of the reaction mixture. However activation occurs when the enzyme is bound to small cell wall fragments. The apparent activation of the bound enzyme by ions is paralleled by a decline of the substrate concentration C 1/2, that results in half of the maximum rate. Above ionic strengths of about 0.05 the bound and solubilized enzyme forms behave in the same manner. Titration of cell wall fragments at different ionic strengths show that the local pH, inside the cell wall fragments, is lower than the pH in bulk solution. These results are explained in the light of poly-electrolyte theory. The negative charges of the cell walls generate an electrostatic potential that results in the attraction or repulsion of ions. The local concentration of organic phosphate (the substrate of the enzyme) is then lower than its concentration in bulk solution. This concentration difference explains that the value of C 1/2, or of the apparent Km of the bound enzyme, is greater than the true Km of the solubilized enzyme. Increasing the ionic strength tends to equalize bulk and local ion concentrations, and therefore apparently activates the bound enzyme.  相似文献   

10.
Adenosine deaminase is a purine salvage enzyme that catalyzes the deamination of adenosine and deoxyadenosine. Deficiency of the enzyme activity is associated with T-cell and B-cell dysfunction. Mutant adenosine deaminase has been isolated from heterozygous and homozygous deficient lymphoblast cell lines with the aid of an affinity matrix consisting of coformycin (a potent inhibitor of the enzyme) as the affinity ligand, bound to 3,3'-iminobispropylamine-derivatized Sepharose. Routinely, 80-90% of adenosine deaminase in crude cell homogenates could be bound to the material. Adenosine deaminase was specifically eluted by enzyme inhibitors or less efficiently by high substrate concentrations. Protein preparations isolated from several different deficient cell lines were highly purified and exhibited molecular weights identical to wild-type adenosine deaminase. This method produces a protein that is suitable for structural studies.  相似文献   

11.
Two monoclonal antibodies against human myeloperoxidase, designated 3-2H3 and 4-2C11, were produced and characterized. Both bound to the native enzyme, but neither bound to the denatured enzyme or to its two denatured subunits. 4-2C11 bound to the three types of leukocyte myeloperoxidase, I, II, and III, as well as to the four types of myeloid leukemia HL-60 cell myeloperoxidase, IA, IB, II, and III. 3-2H3 did not bind to enzyme IB, but bound to the other types of leukocyte and HL-60 cell enzymes. On incubation with myeloperoxidase III, 4-2C11 inhibited the enzyme activity, but 3-2H3 did not. Both antibodies belong to the IgG1 subclass.  相似文献   

12.
We have studied the binding of CTP: phosphocholine cytidylyltransferase from HeLa cell cytosol to large unilamellar vesicles of egg phosphatidylcholine (PC) or HeLa cell phospholipids that contain various amounts of oleic acid. A fatty acid/phospholipid molar ratio exceeding 10% was required for CTP: phosphocholine cytidylyltransferase binding to liposomes. At a fatty acid/phospholipid molar ratio of 1; 85% of the cytosolic CTP: phosphocholine cytidylyltransferase was bound. The enzyme also bound to liposomes with at least 20 mol% palmitic acid, monoolein, diolein or oleoylacetylglycerol. Oleoyl-CoA did not promote enzyme binding to liposomes. Binding to oleate-PC vesicles was blocked by Triton X-100 but not by 1 M KCl, and was reversed by incubation of the vesicles with bovine serum albumin. Cytidylyltransferase bound to egg PC vesicles that contained 33 mol% oleic acid equally well at 4 degrees C and 37 degrees C. The enzyme also bound to dimyristoyl- and dipalmitoylphosphatidylcholine vesicles containing oleic acid at temperatures below the phase transition for these liposomes. Binding of the cytidylyltransferase to egg PC vesicles containing oleic acid, monoolein, oleoylacetylglycerol or diolein resulted in enzyme activation, as did binding to dipalmitoylPC-oleic acid vesicles. However, binding to egg PC-palmitic acid vesicles did not fully activate the transferase. Various mechanisms for cytidylyltransferase interaction with membranes are discussed.  相似文献   

13.
Cell wall lytic activity was detected in the culture medium and cell wall of 1AM Chlorella ellipsoidea C-87. The enzymes of both fractions had their highest activity at pH 5. The lytic activity bound to the cell wall consisted of a polysaccharide releasing enzyme, an exo-type enzyme releasing disaccharide, and glucosidase; but only the polysaccharide releasing enzyme was solubilized by lithium chloride. A polysaccharide releasing enzyme with a molecular weight around 40 kDa was isolated from the culture medium. Hemicellulose is degraded by the polysaccharide releasing enzyme, and the rigid wall by the exo-type enzyme.  相似文献   

14.
Host invasion and tissue migration of several helminths have been linked to the expression and release of parasite-derived proteases. One of the most remarkable examples of tissue migration is that of larvae of the nematode parasite Strongyloides stercoralis, which can move through tissue at speeds of up to 10 cm per hour. We have shown the Strongyloides L3 larvae secrete a potent histolytic metalloprotease to facilitate their rapid migration. This protease has elastase activity and catalyzes the degradation of a model of dermal extracellular matrix. The importance of this enzyme in the pathogenesis of strongyloidiasis is underscored by the observation that invasion by larvae of skin in vitro is prevented by metalloprotease inhibitors. These results substantiate the role of proteases as virulence factors in strongyloidiasis, as well as other related parasitic infections, and suggest new approaches to therapy.  相似文献   

15.
Manganese oxidation by cell suspensions and cell extracts of a freshwater bacterium, designated strain FMn 1, was investigated. Manganese appeared to be oxidized in the periplasmic space. A conventional, membrane-bound-electron transport system was not utilized. An enzyme or enzyme complex and a cofactor, each of different molecular size, were located in different parts of the cell envelope. Results suggest that the cofactor reacts with manganese in the periplasmic space and that in the presence of oxygen it is reoxidized by the enzyme. The enzyme is probably loosely bound to the membrane. A combination of enzyme and cofactor in a crude preparation exhibited a pH optimum at around 7.0. The enzyme exhibited a temperature optimum at around 30 degrees C. No temperature optimum was found for the cofactor. The enzyme was heat-stable and could oxidize manganese under anaerobic conditions. The enzyme system appears to be different from others so far described.  相似文献   

16.
DNA swivel enzyme activity in a nuclear membrane fraction.   总被引:2,自引:1,他引:1       下载免费PDF全文
DNA swivel (nicking-rejoining) enzyme activity has been studied in various cell fractions of a human lymphoid cell line. Swivel activity is found only in chromatin and in a nuclear membrane fraction containing DNA and possessing endogenous DNA synthesizing activity. Twenty percent of the total swivel activity and less than one percent of the total DNA are in the membrane fraction. The swivel enzyme is more tightly bound to the membrane fraction than to the chromatin fraction. These observations suggest that the swivel enzyme may be a replication factor, specifically bound to replicating DNA in the membrane fraction.  相似文献   

17.
Over 80% of the phenylalanyl-tRNA synthetase activity in Ehrlich ascites cell homogenates was found to be associated with the high speed particulate fraction. This enzyme activity occurred in two principle forms: activity bound to the ribosomes, and activity as part of a complex sedimenting at approximately 25S in a sucrose density gradient. The ribosome-associated enzyme was shown to be bound to the 60S ribosomal subunit. Exposure of the ribosomes to RNA resulted in removal of synthetase activity from the ribosomes and the concomitant appearance of activity in a complex sedimenting at 25S.  相似文献   

18.
Summary Histochemical techniques applied at the ultrastructural level have established the periplasmic space as the site of cell bound alkaline phosphatase activity inAnabaena cylindrica andCoccochloris peniocytis. For localization of activity unfixed cells were reacted with calcium nitrate, which acts as the initial capture reagent. After this deposition, the cells were suspended in 2% lead nitrate to convert the calcium phosphate to more electron dense lead phosphate. The majority of cell bound activity appeared to be associated with layer 3 of the cell wall. InA. cylindrica a secondary site of cell bound activity appeared to be in the sheath. Placement in a phosphate free medium caused a substantial increase in the enzyme activity ofA. cylindrica while the activity present in log phase cells ofC. peniocytis was similar to that found in phosphate starved cells.C. peniocytis also secretes the enzyme into the surrounding medium.  相似文献   

19.
Peroxidase binding to cell-bound Concanavalin A   总被引:1,自引:0,他引:1  
The relationship between the amount of Concanavalin A bound to a cell surface and the amount of peroxidase which binds to the lectin was investigated. It was found that only a few lectin molecules are revealed by the enzyme and that this number is dependent on the cell type.  相似文献   

20.
The activity of alcohol acetyltransferase, bound to the cell membrane and responsible for the formation of acetate esters, was affected by the fatty acid composition of the cell membrane. When saturated fatty acids, which only slightly inhibit alcohol acetyltransferase activity, were in-corporated into the cell membrane, the enzyme activity and ester formation were only slightly affected. On. the other hand, when unsaturated fatty acids, which strongly inhibit the enzyme activity, accumulated in the cell membrane, ester formation was suppressed with inhibition of the enzyme activity. The mechanism of formation of acetate esters by brewers′ yeast was explained by the alcohol acetyltransferase activity under the influence of the fatty acid composition of the cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号