首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current research on the environmental sustainability of bioenergy has largely focused on the potential of bioenergy crops to sequester carbon and mitigate greenhouse gas emissions and possible impacts on water quality and quantity. A key assumption in these studies is that bioenergy crops will be grown in a manner similar to current agricultural crops such as corn and hence would affect the environment similarly. In this study, we investigate an alternative cropping system where bioenergy crops are grown in buffer strips adjacent to current agricultural crops such that nutrients present in runoff and leachate from the traditional row‐crops are reused by the bioenergy crops (switchgrass, miscanthus and native prairie grasses) in the buffer strips, thus providing environmental services and meeting economic needs of farmers. The process‐based biogeochemical model Denitrification‐Decomposition (DNDC) was used to simulate crop yield, nitrous oxide production and nitrate concentrations in leachate for a typical agricultural field in Illinois. Model parameters have been developed for the first time for miscanthus and switchgrass in DNDC. Results from model simulations indicated that growing bioenergy crops in buffer strips mitigated nutrient runoff, reduced nitrate concentrations in leachate by 60–70% and resulted in a reduction of 50–90% in nitrous oxide emissions compared with traditional cropping systems. While all the bioenergy crop buffers had significant positive environmental benefits, switchgrass performed the best with respect to minimizing nutrient runoff and nitrous oxide emissions, while miscanthus had the highest yield. Overall, our model results indicated that the bioenergy crops grown in these buffer strips achieved yields that are comparable to those obtained for traditional agricultural systems while simultaneously providing environmental services and could be used to design sustainable agricultural landscapes.  相似文献   

2.
Bioenergy crop production is rapidly expanding in Europe, and the potential emissions of biogenic volatile organic compounds (BVOCs) might change the chemical composition of the atmosphere, influencing in turn air quality and regional climate. The environmental impacts of bioenergy crops on air chemistry are difficult to assess due to a lack of accurate field observations. Therefore, we studied BVOC fluxes from a bioenergy maize field in North‐Eastern Germany throughout the entire reproductive growth stage of the plants. Combining automated large chambers and proton transfer reaction mass spectrometry (PTR‐MS), we successfully measured fluxes of the highly reactive hydrocarbons monoterpenes (MTs) and sesquiterpenes (SQTs), together with several other BVOCs, including alcohols, aldehydes, ketones, benzenoids, and fatty acid derivatives. Emissions of MTs and SQTs were relatively high (17.0% and 3.6% of total mean molar BVOC emission, respectively) compared to methanol emissions (17.6%). Seasonal MT and SQT fluxes were clearly associated with the flowering phase, originating mainly from the flowering tissues as shown in additional laboratory experiments. From the observations of CO2 net ecosystem exchange and evapotranspiration rates, we could exclude heat and drought stress‐induced BVOC emissions. Standard emission factors calculated for all compounds, chemical groups, and growth stages, showed that the temperature dependency of volatile terpenoid fluxes decreased distinctively with proceeding development stage. The results indicate that emissions from large‐scale bioenergy maize fields should be better differentiated and considered in regional estimates of aerosol formation. For the implementation of such relation into biogeochemical modelling, it should be considered that not only seasonal weather development but also phenological growth stages are determining the BVOC patterns and emission potentials.  相似文献   

3.
Perennial grasses are promising feedstocks for bioenergy production in the Midwestern USA. Few experiments have addressed how drought influences their carbon fluxes and storage. This study provides a direct comparison of ecosystem‐scale measurements of carbon fluxes associated with miscanthus (Miscanthus × giganteus), switchgrass (Panicum virgatum), restored native prairie and maize (Zea mays)/soybean (Glycine max) ecosystems. The main objective of this study was to assess the influence of a naturally occurring drought during 2012 on key components of the carbon cycle and plant development relative to non‐extreme years. The perennials reached full maturity 3–5 years after establishment. Miscanthus had the highest gross primary production (GPP) and lowest net ecosystem exchange (NEE) in 2012 followed by similar values for switchgrass and prairie, and the row crops had the lowest GPP and highest NEE. A post‐drought effect was observed for miscanthus. Over the duration of the experiment, perennial ecosystems were carbon sinks, as indicated by negative net ecosystem carbon balance (NECB), while maize/soybean was a net carbon source. Our observations suggest that perennial ecosystems, and in particular miscanthus, can provide a high yield and a large potential for CO2 fixation even during drought, although drought may negatively influence carbon uptake in the following year, questioning the long‐term consequence of its maintained productivity.  相似文献   

4.
The mandate by the Energy Independence and Security Act of 2007 to increase renewable fuel production in the USA has resulted in extensive research into the sustainability of perennial bioenergy crops such as switchgrass (Panicum virgatum) and miscanthus (Miscanthus× giganteus). Perennial grassland crops have been shown to support greater aboveground biodiversity and ecosystem function than annual crops. However, management considerations, such as what crop to plant or whether to use fertilizer, may alter belowground diversity and ecosystem functioning associated with these grasslands as well. In this study, we compared crop type (switchgrass or miscanthus) and nitrogen fertilization effects on arbuscular mycorrhizal fungal (AMF) and soil nematode abundance, activity, and diversity in a long‐term experiment. We quantified AMF root colonization, AMF extra‐radical hyphal length, soil glomalin concentrations, AMF richness and diversity, plant‐parasitic nematode abundance, and nematode family richness and diversity in each treatment. Mycorrhizal activity and diversity were higher with switchgrass than with miscanthus, leading to higher potential soil carbon contributions via increased hyphal growth and glomalin production. Plant‐parasitic nematode (PPN) abundance was 2.3 ×  higher in miscanthus plots compared to switchgrass, mostly due to increases in dagger nematodes (Xiphinema). The higher PPN abundance in miscanthus may be a consequence of lower AMF in this species, as AMF can provide protection against PPN through a variety of mechanisms. Nitrogen fertilization had minor negative effects on AMF and nematode diversity associated with these crops. Overall, we found that crop type and fertilizer application associated with perennial bioenergy cropping systems can have detectable effects on the diversity and composition of soil communities, which may have important consequences for the ecosystem services provided by these systems.  相似文献   

5.
Perennial grasses have been proposed as viable bioenergy crops because of their potential to yield harvestable biomass on marginal lands annually without displacing food and to contribute to greenhouse gas (GHG) reduction by storing carbon in soil. Switchgrass, miscanthus, and restored native prairie are among the crops being considered in the corn and agricultural regions of the Midwest and eastern United States. In this study, we used an extensive dataset of site observations for each of these crops to evaluate and improve the DayCent biogeochemical model and make predictions about how both yield and GHG fluxes would respond to different management practices compared to a traditional corn‐soy rotation. Using this model‐data integration approach, we found 30–75% improvement in our predictions over previous studies and a subsequent evaluation with a synthesis of sites across the region revealed good model‐data agreement of harvested yields (r2 > 0.62 for all crops). We found that replacement of corn‐soy rotations would result in a net GHG reduction of 0.5, 1.0, and 2.0 Mg C ha?1 yr?1 with average annual yields of 3.6, 9.2, and 17.2 Mg of dry biomass per year for native prairie, switchgrass, and miscanthus respectively. Both the yield and GHG balance of switchgrass and miscanthus were affected by harvest date with highest yields occurring near onset of senescence and highest GHG reductions occurring in early spring before the new crops emergence. Addition of a moderate length rotation (10–15 years) caused less than a 15% change to yield and GHG balance. For policy incentives aimed at GHG reduction through onsite management practices and improvement of soil quality, post‐senescence harvests are a more effective means than maximizing yield potential.  相似文献   

6.
综述了国内外生物源挥发性有机化合物 (Biologicalvolatileorganiccompounds, BVOCs) 研究现状及未来的研究方向, 侧重介绍了陆地生态系统中植物排放BVOCs的种类、生物学功能及其对大气化学过程的影响。BVOCs按其化学结构以及在大气中的滞留时间可以分为 4类 :异戊二烯、单萜、其它活性BVOCs和其它次活性BVOCs。不同的植物类群排放不同的BVOCs种类并具有不同的排放特性, 环境条件对植物不同BVOCs的排放影响也不同。BVOCs作为有机物质被排放到体外, 从植物能量代谢的角度来讲要消耗一部分植物光合作用产物从而降低植物的生产力, 因此推测植物排放BVOCs具有一定的生理学或者生态学的功能。其中比较成熟的假说是抗热胁迫假说, 其次是抗氧化假说, 也有一些其它假说例如促氮同化假说等。但这些假说都还缺乏直接的有力证据, 有待更多的研究来支持。BVOCs被排放到大气中对大气化学过程的影响更是科学家关注的问题, BVOCs对大气的影响一方面是在大气对流层中促进臭氧 (O3 ) 的形成, 造成环境污染, 另一方面BVOCs通过对大气中的OH自由基和臭氧等氧化物浓度的调整而影响到大气中甲烷等温室气体的平衡, 对大气温室效应具有间接的贡献。我国在BVOCs的研究上也做了大量的工作, 包括分析鉴定了一些植物排放的BVOCs, 探讨了环境因子对植物BVOCs排放速率的影响, 从不同尺度估测了BVOCs的排放量等等。今后对BVOCs的研究将会集中在以下几个方面 :1) 进一步研究不同植物类群释放的BVOCs种类及其它们在大气中的理化性质 ;2 ) 继续探讨植物排放BVOCs的合成与代谢途径及其生物学功能 ;3) 研究BVOCs对大气化学过程的作用, 以及区域植被变化对BVOCs排放格局进而对区域乃至全球环境变化的影响 ;4 ) 加强对一些研究比较薄弱的生态系统例如在热带地区所进行的BVOCs研究工作 ;5 ) 进一步建立和完善BVOCs排放的理论模型, 以模拟不同陆地生态系统BVOCs排放的时空动态。  相似文献   

7.
A global energy crop productivity model that provides geospatially explicit quantitative details on biomass potential and factors affecting sustainability would be useful, but does not exist now. This study describes a modeling platform capable of meeting many challenges associated with global‐scale agro‐ecosystem modeling. We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized natural resources datasets, (ii) global field‐trial data and crop management practices, (iii) simulation units and management scenarios, (iv) model calibration and validation, (v) high‐performance computing (HPC) simulation, and (vi) simulation output processing and analysis. The HPC‐Environmental Policy Integrated Climate (HPC‐EPIC) model simulated a perennial bioenergy crop, switchgrass (Panicum virgatum L.), estimating feedstock production potentials and effects across the globe. This modeling platform can assess soil C sequestration, net greenhouse gas (GHG) emissions, nonpoint source pollution (e.g., nutrient and pesticide loss), and energy exchange with the atmosphere. It can be expanded to include additional bioenergy crops (e.g., miscanthus, energy cane, and agave) and food crops under different management scenarios. The platform and switchgrass field‐trial dataset are available to support global analysis of biomass feedstock production potential and corresponding metrics of sustainability.  相似文献   

8.
The extensive land use conversion expected to occur to meet demands for bioenergy feedstock production will likely have widespread impacts on agroecosystem biodiversity and ecosystem services, including carbon sequestration. Although arthropod detritivores are known to contribute to litter decomposition and thus energy flow and nutrient cycling in many plant communities, their importance in bioenergy feedstock communities has not yet been assessed. We undertook an experimental study quantifying rates of litter mass loss and nutrient cycling in the presence and absence of these organisms in three bioenergy feedstock crops—miscanthus (Miscanthus x giganteus), switchgrass (Panicum virgatum), and a planted prairie community. Overall arthropod abundance and litter decomposition rates were similar in all three communities. Despite effective reduction of arthropods in experimental plots via insecticide application, litter decomposition rates, inorganic nitrogen leaching, and carbon–nitrogen ratios did not differ significantly between control (with arthropods) and treatment (without arthropods) plots in any of the three community types. Our findings suggest that changes in arthropod faunal composition associated with widespread adoption of bioenergy feedstock crops may not be associated with profoundly altered arthropod‐mediated litter decomposition and nutrient release.  相似文献   

9.
We evaluated the biogeochemical cycling and relative greenhouse gas (GHG) mitigation potential of proposed biofuel feedstock crops by modeling growth dynamics of Miscanthus × giganteus Greef et Deuter (miscanthus), Panicum virgatum L. (switchgrass), Zea mays L. (corn), and a mixed prairie community under identical field conditions. DAYCENT model simulations for miscanthus were parameterized with data from trial plots in Europe and Illinois, USA. Switchgrass, corn, and prairie ecosystems were simulated using parameters published in the literature. A previously unknown source of nitrogen (N) was necessary to balance the plant nutrient budget in miscanthus crops, leading us to hypothesize that miscanthus growth depends on N-fixation. We tested for nitrogenase activity by acetylene reduction of whole rhizomes and bacteria isolated from the rhizosphere and miscanthus tissue. Our results supported the hypothesis that biological N-fixation contributed to the N demand of miscanthus, a highly productive perennial grass. Corn agro-ecosystems emit 956 to 1899 g CO2eq m−2y−1 greater GHGs (including CO2, N2O, CH4) to the atmosphere than the other biofuel crop alternatives because of greater N2O emissions from fertilizer additions. Of the feedstock crops evaluated in this study, miscanthus would result in the greatest GHG reduction.  相似文献   

10.
This study integrates a biophysical model with a county‐specific economic analysis of breakeven prices of bioenergy crop production to assess the biophysical and economic potential of biofuel production in the Midwestern United States. The bioenergy crops considered in this study include a genotype of Miscanthus, Miscanthus×giganteus, and the Cave‐in‐Rock breed of switchgrass (Panicum virgatum). The estimated average peak biomass yield for miscanthus in the Midwestern states ranges between 7 and 48 metric tons dry matter per hectare per year ( t DM ha?1 yr?1), while that for switchgrass is between 10 and 16 t DM ha?1 yr?1. With the exception of Minnesota and Wisconsin, where miscanthus yields are likely to be low due to cold soil temperatures, the yield of miscanthus is on average more than two times higher than yield of switchgrass. We find that the breakeven price, which includes the cost of producing the crop and the opportunity cost of land, of producing miscanthus ranges from $53 t?1 DM in Missouri to $153 t?1 DM in Minnesota in the low‐cost scenario. Corresponding costs for switchgrass are $88 t?1 DM in Missouri to $144 t?1 DM in Minnesota. In the high‐cost scenario, the lowest cost for miscanthus is $85 t?1 DM and for switchgrass is $118 t?1 DM, both in Missouri. These two scenarios differ in their assumptions about ease of establishing the perennial crops, nutrient requirements and harvesting costs and losses. The differences in the breakeven prices across states and across crops are mainly driven by bioenergy and row crop yields per hectare. Our results suggest that while high yields per unit of land of bioenergy crops are critical for the competitiveness of bioenergy feedstocks, the yields of the row crops they seek to displace are also an important consideration. Even high yielding crops, such as miscanthus, are likely to be economically attractive only in some locations in the Midwest given the high yields of corn and soybean in the region.  相似文献   

11.
12.
Because soil microbes drive many of the processes underpinning ecosystem services provided by soils, understanding how cropping systems affect soil microbial communities is important for productive and sustainable management. We characterized and compared soil microbial communities under restored prairie and three potential cellulosic biomass crops (corn, switchgrass, and mixed prairie grasses) in two spatial experimental designs – side‐by‐side plots where plant communities were in their second year since establishment (i.e., intensive sites) and regionally distributed fields where plant communities had been in place for at least 10 years (i.e., extensive sites). We assessed microbial community structure and composition using lipid analysis, pyrosequencing of rRNA genes (targeting fungi, bacteria, archaea, and lower eukaryotes), and targeted metagenomics of nifH genes. For the more recently established intensive sites, soil type was more important than plant community in determining microbial community structure, while plant community was the more important driver of soil microbial communities for the older extensive sites where microbial communities under corn were clearly differentiated from those under switchgrass and restored prairie. Bacterial and fungal biomasses, especially biomass of arbuscular mycorrhizal fungi, were higher under perennial grasses and restored prairie, suggesting a more active carbon pool and greater microbial processing potential, which should be beneficial for plant acquisition and ecosystem retention of carbon, water, and nutrients.  相似文献   

13.
Considerable amounts and varieties of biogenic volatile organic compounds (BVOCs) are exchanged between vegetation and the surrounding air. These BVOCs play key ecological and atmospheric roles that must be adequately represented for accurately modeling the coupled biosphere–atmosphere–climate earth system. One key uncertainty in existing models is the response of BVOC fluxes to an important global change process: drought. We describe the diurnal and seasonal variation in isoprene, monoterpene, and methanol fluxes from a temperate forest ecosystem before, during, and after an extreme 2012 drought event in the Ozark region of the central USA. BVOC fluxes were dominated by isoprene, which attained high emission rates of up to 35.4 mg m?2 h?1 at midday. Methanol fluxes were characterized by net deposition in the morning, changing to a net emission flux through the rest of the daylight hours. Net flux of CO2 reached its seasonal maximum approximately a month earlier than isoprenoid fluxes, which highlights the differential response of photosynthesis and isoprenoid emissions to progressing drought conditions. Nevertheless, both processes were strongly suppressed under extreme drought, although isoprene fluxes remained relatively high compared to reported fluxes from other ecosystems. Methanol exchange was less affected by drought throughout the season, confirming the complex processes driving biogenic methanol fluxes. The fraction of daytime (7–17 h) assimilated carbon released back to the atmosphere combining the three BVOCs measured was 2% of gross primary productivity (GPP) and 4.9% of net ecosystem exchange (NEE) on average for our whole measurement campaign, while exceeding 5% of GPP and 10% of NEE just before the strongest drought phase. The megan v2.1 model correctly predicted diurnal variations in fluxes driven mainly by light and temperature, although further research is needed to address model BVOC fluxes during drought events.  相似文献   

14.
Biomass from dedicated crops is expected to contribute significantly to the replacement of fossil resources. However, sustainable bioenergy cropping systems must provide high biomass production and low environmental impacts. This study aimed at quantifying biomass production, nutrient removal, expected ethanol production, and greenhouse gas (GHG) balance of six bioenergy crops: Miscanthus × giganteus, switchgrass, fescue, alfalfa, triticale, and fiber sorghum. Biomass production and N, P, K balances (input‐output) were measured during 4 years in a long‐term experiment, which included two nitrogen fertilization treatments. These results were used to calculate a posteriori ‘optimized’ fertilization practices, which would ensure a sustainable production with a nil balance of nutrients. A modified version of the cost/benefit approach proposed by Crutzen et al. (2008), comparing the GHG emissions resulting from N‐P‐K fertilization of bioenergy crops and the GHG emissions saved by replacing fossil fuel, was applied to these ‘optimized’ situations. Biomass production varied among crops between 10.0 (fescue) and 26.9 t DM ha?1 yr?1 (miscanthus harvested early) and the expected ethanol production between 1.3 (alfalfa) and 6.1 t ha?1 yr?1 (miscanthus harvested early). The cost/benefit ratio ranged from 0.10 (miscanthus harvested late) to 0.71 (fescue); it was closely correlated with the N/C ratio of the harvested biomass, except for alfalfa. The amount of saved CO2 emissions varied from 1.0 (fescue) to 8.6 t CO2eq ha?1 yr?1 (miscanthus harvested early or late). Due to its high biomass production, miscanthus was able to combine a high production of ethanol and a large saving of CO2 emissions. Miscanthus and switchgrass harvested late gave the best compromise between low N‐P‐K requirements, high GHG saving per unit of biomass, and high productivity per hectare.  相似文献   

15.
Perennial bioenergy crops accumulate carbon (C) in soils through minimally disturbing management practices and large root inputs, but the mechanisms of microbial control over C dynamics under bioenergy crops have not been clarified. Root‐derived C inputs affect both soil microbial contribution to and degradation of soil organic matter resulting in differing soil organic carbon (SOC) concentrations, storage, and stabilities under different vegetation regimes. Here, we measured biomarker amino sugars and neutral sugars and used diffuse reflectance mid‐infrared Fourier transform spectroscopy (DRIFTS) to explore microbial C contributions, degradation ability, and SOC stability, respectively, under four potential bioenergy crops, Mgiganteus (Miscanthus × giganteus), switchgrass (Panicum virgatum L.), a mixed prairie, and a maize (Zea mays L.)–maize–soybean (Glycine max(L.) Merr.) (MMS) rotation over six growing seasons. Our results showed that SOC concentration (g/kg) increased by 10.6% in mixed prairie over the duration of this experiment and SOC storage (Mg/ha) increased by 17.0% and 15.6% in switchgrass and mixed prairie, respectively. Conversion of row crops to perennial grasses maintained SOC stability and increased bacterial residue contribution to SOC in Mgiganteus and switchgrass by 20.0% and 15.0%, respectively, after 6 years. Degradation of microbe‐derived labile SOC was increased in Mgiganteus, and degradation of both labile and stable SOC increased in MMS rotation. These results demonstrate that microbial communities under perennial grasses maintained SOC quality, while SOC quantity increased under switchgrass and mixed prairie. Annual MMS rotation displayed decreases in aspects of SOC quality without changes in SOC quantity. These findings have implications for understanding microbial control over soil C quantity and quality under land‐use shift from annual to perennial bioenergy cropping systems.  相似文献   

16.
Boreal and subarctic peatlands have been extensively studied for their major role in the global carbon balance. However, study efforts have so far neglected the contribution of these ecosystems to the non-methane biogenic volatile organic compound (BVOC) emissions, which are important in the atmospheric chemistry and feedbacks on climate change. We aimed at estimating the BVOC emissions from a subarctic peatland in northern Finland. Furthermore, our aim was to assess how these emissions are affected by enhanced UV-B radiation, the amount of which has increased especially at high latitudes as a result of stratospheric ozone depletion. The contribution of BVOC emissions to the total net carbon exchange and correlations between the emission of different BVOCs and net ecosystem CO2 exchange, CH4 emission, total green leaf area, and abiotic factors were also studied. The UV-B exposure, simulating a 20% depletion of stratospheric ozone, was started in 2003, and measurements were performed during the growing seasons of 2006 and 2008. The subarctic peatland proved to be a small source of BVOCs and the dominant moss, Warnstorfia exannulata, emitted a diverse compound spectrum. The water table level exerted a major influence on the BVOC emissions surpassing the effect of enhanced UV-B. In fact, no overall UV-B effect was established on the BVOC emissions, apart from toluene and 1-octene, emissions of which were doubled and tripled by enhanced UV-B in 2008, respectively. The contribution of BVOCs to the total net carbon exchange was below 1%.  相似文献   

17.
BVOCs: plant defense against climate warming?   总被引:11,自引:0,他引:11  
Plants emit a substantial amount of biogenic volatile organic compounds (BVOCs) into the atmosphere. These BVOCs represent a large carbon loss and can be up to approximately 10% of that fixed by photosynthesis under stressful conditions and up to 100gCm(-2) per year in some tropical ecosystems. Among a variety of proven and unproven BVOC functions in plants and roles in atmospheric processes, recent data intriguingly link emission of these compounds to climate. Ongoing research demonstrates that BVOCs could protect plants against high temperatures. BVOC emissions are probably increasing with warming and with other factors associated to global change, including changes in land cover. These increases in BVOC emissions could contribute in a significant way (via negative and positive feedback) to the complex processes associated with global warming.  相似文献   

18.
Biogenic volatile organic compounds (BVOC) emissions from bioenergy crops may differ from those of conventional crops. We compared emission rates of isoprene and a number of monoterpenes from the lignocellulosic bioenergy crops short‐rotation coppice (SRC) willow and Miscanthus, with the conventional crops wheat and oilseed rape. BVOC emission rates were measured via dynamic vegetation enclosure and GC‐MS analysis approximately monthly between April 2010 and August 2012 at a location in England and from SRC willow at two locations in Scotland. The largest BVOC emission rates were measured from willow in England and varied between years. Isoprene emission rates varied between μg g?1 h?1. Of the monoterpenes detected from willow, α‐pinene emission rates were highest (μg g?1 h?1), followed by μg g?1 h?1 for δ‐3‐carene, μg g?1 h?1 for β‐pinene and μg g?1 h?1 for limonene. BVOC emission rates measured in Scotland were much lower. Low emission rates of isoprene and α‐pinene were measured from Miscanthus in 2010 (μg g?1 h?1 and μg g?1 h?1, respectively) but were not detected in subsequent years. Emission rates from wheat of isoprene were negligible but relatively high for monoterpenes (μg g?1 h?1 and μg g?1 h?1 for α‐pinene and limonene, respectively). No significant emission rates of BVOCs were measured from oilseed rape. The measured emission rates followed a clear seasonal trend. Crude extrapolations based solely on data gathered here indicate that isoprene emissions from willow could correspond to 0.004–0.03% (UK) and 0.76–5.5% (Europe) of current global isoprene if 50% of all land potentially available for bioenergy crops is planted with willow.  相似文献   

19.
Biogenic volatile organic compounds (BVOCs) are major precursors of both ozone and secondary organic aerosols (SOA) in the troposphere and represent a non‐negligible portion of the carbon fixed by primary producers, but long‐term ecosystem‐scale measurements of their exchanges with the atmosphere are lacking. In this study, the fluxes of 46 ions corresponding to 36 BVOCs were continuously monitored along with the exchanges of mass (carbon dioxide and water vapor) and energy (sensible and latent heat) for an entire year in a poplar (Populus) short‐rotation crop (SRC), using the eddy covariance methodology. BVOC emissions mainly consisted of isoprene, acetic acid, and methanol. Total net BVOC emissions were 19.20 kg C ha?1 yr?1, which represented 0.63% of the net ecosystem exchange (NEE), resulting from ?23.59 Mg C ha?1 yr?1 fixed as CO2 and 20.55 Mg C ha?1 yr?1 respired as CO2 from the ecosystem. Isoprene emissions represented 0.293% of NEE, being emitted at a ratio of 1 : 1709 mol isoprene per mol of CO2 fixed. Based on annual ecosystem‐scale measurements, this study quantified for the first time that BVOC carbon emissions were lower than previously estimated in other studies (0.5–2% of NEE) on poplar trees. Furthermore, the seasonal and diurnal emission patterns of isoprene, methanol, and other BVOCs provided a better interpretation of the relationships with ecosystem CO2 and water vapor fluxes, with air temperature, vapor pressure deficit, and photosynthetic photon flux density.  相似文献   

20.
Emissions of biogenic volatile organic compounds (BVOCs) have been earlier shown to be highly temperature sensitive in subarctic ecosystems. As these ecosystems experience rapidly advancing pronounced climate warming, we aimed to investigate how warming affects the BVOC emissions in the long term (up to 13 treatment years). We also aimed to assess whether the increased litterfall resulting from the vegetation changes in the warming subarctic would affect the emissions. The study was conducted in a field experiment with factorial open‐top chamber warming and annual litter addition treatments on subarctic heath in Abisko, northern Sweden. After 11 and 13 treatment years, BVOCs were sampled from plant communities in the experimental plots using a push–pull enclosure technique and collection into adsorbent cartridges during the growing season and analyzed with gas chromatography–mass spectrometry. Plant species coverage in the plots was analyzed by the point intercept method. Warming by 2 °C caused a 2‐fold increase in monoterpene and 5‐fold increase in sesquiterpene emissions, averaged over all measurements. When the momentary effect of temperature was diminished by standardization of emissions to a fixed temperature, warming still had a significant effect suggesting that emissions were also indirectly increased. This indirect increase appeared to result from increased plant coverage and changes in vegetation composition. The litter addition treatment also caused significant increases in the emission rates of some BVOC groups, especially when combined with warming. The combined treatment had both the largest vegetation changes and the highest BVOC emissions. The increased emissions under litter addition were probably a result of a changed vegetation composition due to alleviated nutrient limitation and stimulated microbial production of BVOCs. We suggest that the changes in the subarctic vegetation composition induced by climate warming will be the major factor indirectly affecting the BVOC emission potentials and composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号