首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The conservation of biodiversity is dependent on protecting ecosystem‐level processes. We investigated the effects of fragment size and habitat edge on the relative functioning of three ecological processes – decomposition, predation and regeneration of trees – in small Afromontane forests in KwaZulu‐Natal, South Africa. Ten sampling stations were placed in each of four forest categories: the interior of three large indigenous forest fragments (100 m from the edge), the edges of these large fragments, 10 small indigenous fragments (<1 ha) and 10 small exotic woodlands (<0.5 ha). Fragment size and edge effects did not affect the abundance of the amphipod Talitriator africana, a litter decomposer, and overall dung beetle abundance and species richness significantly. Bird egg predation was marginally greater at large patch edges compared with the other forest categories, while seed predation did not differ among forest categories. Tree seedling assemblage composition did not differ significantly among large patch interiors and edges, and small indigenous fragments. Sapling and canopy assemblage composition each differed significantly among these three indigenous forest categories. Thus, while tree recruitment was not negatively affected by patch size or distance from the edge, conditions in small fragments and at edges appear to affect the composition of advanced tree regeneration. These ecological processes in Afromontane forests appear to be resilient to fragmentation effects. We speculate that this is because the organisms in these forests have evolved under fragmented conditions. Repeated extreme changes in climate and vegetation over the Pleistocene have acted as significant distribution and ecological extinction filters on these southern hemisphere forest biota, resulting in fauna and flora that are potentially resilient to contemporary fragmentation effects. We argue that because small patches and habitat edges appear to be ecologically viable they should be included in future conservation decisions.  相似文献   

2.
Recent studies have suggested that tropical forests may not be resilient against climate change in the long term, primarily owing to predicted reductions in rainfall and forest productivity, increased tree mortality, and declining forest biomass carbon sinks. These changes will be caused by drought‐induced water stress and ecosystem disturbances. Several recent studies have reported that climate change has increased tree mortality in temperate and boreal forests, or both mortality and recruitment rates in tropical forests. However, no study has yet examined these changes in the subtropical forests that account for the majority of China's forested land. In this study, we describe how the monsoon evergreen broad‐leaved forest has responded to global warming and drought stress using 32 years of data from forest observation plots. Due to an imbalance in mortality and recruitment, and changes in diameter growth rates between larger and smaller trees and among different functional groups, the average DBH of trees and forest biomass have decreased. Sap flow measurements also showed that larger trees were more stressed than smaller trees by the warming and drying environment. As a result, the monsoon evergreen broad‐leaved forest community is undergoing a transition from a forest dominated by a cohort of fewer and larger individuals to a forest dominated by a cohort of more and smaller individuals, with a different species composition, suggesting that subtropical forests are threatened by their lack of resilience against long‐term climate change.  相似文献   

3.
Abstract Aim Tropical rain forests are often regarded as pristine and undisturbed by humans. In Central Africa, community‐wide disturbances by natural causes are rare and therefore current theory predicts that natural gap phase dynamics structure tree species composition and diversity. However, the dominant tree species in many African forests recruit poorly, despite the presence of gaps. To explain this, we studied the disturbance history of a species‐rich and structurally complex rain forest. Location Lowland rain forest in Southern Cameroon. Methods We identified the recruitment conditions of trees in different diameter classes in 16 ha of species‐rich and structurally complex ‘old growth’ rain forest. For the identification of recruitment preference we used independent data on the species composition along a disturbance gradient, ranging from shifting cultivation fields (representing large‐scale disturbance), to canopy gaps and old growth forest. Results In nine of sixteen 1‐ha forest plots the older trees preferred shifting cultivation fields for recruitment while younger trees preferred gaps and closed forest conditions. This indicates that these nine sites once experienced large‐scale disturbances. Three lines of evidence suggest that historical agricultural use is the most likely disturbance factor: (1) size of disturbed and undisturbed patches, (2) distribution of charcoal and (3) historical accounts of human population densities. Main conclusions Present‐day tree species composition of a structurally complex and species‐rich Central African rain forest still echoes historical disturbances, most probably caused by human land use between three to four centuries ago. Human impact on African rain forest is therefore, contrary to common belief, an issue not of the last decades only. Insights in historical use will help to get a more balanced view of the ‘pristine rain forest’, acknowledging that the dualism between ‘old growth’ and ‘secondary’ forest may be less clear than previously thought.  相似文献   

4.
To quantify and assess the processes underlying community assembly and driving tree species abundance distributions(SADs) with spatial scale variation in two typical subtropical secondary forests in Dashanchong state‐owned forest farm, two 1‐ha permanent study plots (100‐m × 100‐m) were established. We selected four diversity indices including species richness, Shannon–Wiener, Simpson and Pielou, and relative importance values to quantify community assembly and biodiversity. Empirical cumulative distribution and species accumulation curves were utilized to describe the SADs of two forests communities trees. Three types of models, including statistic model (lognormal and logseries model), niche model (broken‐stick, niche preemption, and Zipf‐Mandelbrodt model), and neutral theory model, were estimated by the fitted SADs. Simulation effects were tested by Akaike's information criterion (AIC) and Kolmogorov–Smirnov test. Results found that the Fagaceae and Anacardiaceae families were their respective dominance family in the evergreen broad‐leaved and deciduous mixed communities. According to original data and random sampling predictions, the SADs were hump‐shaped for intermediate abundance classes, peaking between 8 and 32 in the evergreen broad‐leaved community, but this maximum increased with size of total sampled area size in the deciduous mixed community. All niche models could only explain SADs patterns at smaller spatial scales. However, both the neutral theory and purely statistical models were suitable for explaining the SADs for secondary forest communities when the sampling plot exceeded 40 m. The results showed the SADs indicated a clear directional trend toward convergence and similar predominating ecological processes in two typical subtropical secondary forests. The neutral process gradually replaced the niche process in importance and become the main mechanism for determining SADs of forest trees as the sampling scale expanded. Thus, we can preliminarily conclude that neutral processes had a major effect on biodiversity patterns in these two subtropical secondary forests but exclude possible contributions of other processes.  相似文献   

5.
亚热带常绿阔叶林和暖温带落叶阔叶林叶片热值比较研究   总被引:3,自引:0,他引:3  
田苗  宋广艳  赵宁  何念鹏  侯继华 《生态学报》2015,35(23):7709-7717
植物干重热值(GCV)是衡量植物生命活动及组成成分的重要指标之一,反映了植物光合作用中固定太阳辐射的能力。利用氧弹量热仪测定了亚热带和暖温带两个典型森林生态系统常见的276种常见植物叶片的干重热值,探讨了亚热带和暖温带植物热值分布特征,以及不同生活型、乔木类型间植物热值的变化规律。实验结果发现:亚热带常绿阔叶林和暖温带落叶阔叶林叶片热值的平均值分别为17.83 k J/g(n=191)和17.21k J/g(n=85),整体表现为亚热带植物暖温带植物。不同地带性植被的植物叶片热值在不同生活型间表现出相似的规律,其中亚热带常绿阔叶林表现为:乔木(19.09 k J/g)灌木(17.87 k J/g)草本(16.65 k J/g);暖温带落叶阔叶林表现为:乔木(18.41 k J/g)灌木(17.94 k J/g)草本(16.53 k J/g);不同乔木类型间均呈现常绿乔木落叶乔木、针叶乔木阔叶乔木的趋势。落叶阔叶乔木表现为亚热带暖温带,而常绿针叶乔木则呈现亚热带暖温带的趋势。此外,我们对于两个分布区域内的4种针叶树种叶片热值进行了比较,发现华北落叶松(19.32 k J/g,暖温带)杉木(19.40 k J/g,亚热带)马尾松(19.82 k J/g,亚热带)油松(20.95 k J/g,暖温带)。亚热带常绿阔叶林和暖温带落叶阔叶林植物热值的特征及其变化规律,为森林生态系统的能量流动提供了理论基础。  相似文献   

6.
Closed‐canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species‐conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree‐species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0–100‐m transect from edge to forest interior) on the liana community and liana–host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana‐infested trees, and determinants of the rates of tree infestation within five forest fragments (23–58 ha in area) and five nearby intact‐forest sites. Fragmented forests experienced considerable disturbance‐induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small‐sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lianas. However, large lianas were associated with low‐disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative to intact forests. Consequently, effective control of lianas in forest fragments requires management practices which directly focus on minimizing forest edge disturbance.  相似文献   

7.
Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. Although both scaling theory and competition theory make predictions about the relative composition and spatial patterns of large-diameter trees compared to smaller diameter trees, these predictions are rarely tested. We established a 25.6 ha permanent plot within which we tagged and mapped all trees ≥1 cm dbh, all snags ≥10 cm dbh, and all shrub patches ≥2 m(2). We sampled downed woody debris, litter, and duff with line intercept transects. Aboveground live biomass of the 23 woody species was 507.9 Mg/ha, of which 503.8 Mg/ha was trees (SD?=?114.3 Mg/ha) and 4.1 Mg/ha was shrubs. Aboveground live and dead biomass was 652.0 Mg/ha. Large-diameter trees comprised 1.4% of individuals but 49.4% of biomass, with biomass dominated by Abies concolor and Pinus lambertiana (93.0% of tree biomass). The large-diameter component dominated the biomass of snags (59.5%) and contributed significantly to that of woody debris (36.6%). Traditional scaling theory was not a good model for either the relationship between tree radii and tree abundance or tree biomass. Spatial patterning of large-diameter trees of the three most abundant species differed from that of small-diameter conspecifics. For A. concolor and P. lambertiana, as well as all trees pooled, large-diameter and small-diameter trees were spatially segregated through inter-tree distances <10 m. Competition alone was insufficient to explain the spatial patterns of large-diameter trees and spatial relationships between large-diameter and small-diameter trees. Long-term observations may reveal regulation of forest biomass and spatial structure by fire, wind, pathogens, and insects in Sierra Nevada mixed-conifer forests. Sustaining ecosystem functions such as carbon storage or provision of specialist species habitat will likely require different management strategies when the functions are performed primarily by a few large trees as opposed to many smaller trees.  相似文献   

8.
9.
Simulating Stationary Size Distribution of Trees in Rain Forests   总被引:5,自引:0,他引:5  
KOHYAMA  T. 《Annals of botany》1991,68(2):173-180
A simple dynamic model of the distribution of tree size (trunkdiameter) in natural rain forests is presented. Based on dataof permanent plot measurements in a tropical rain forest anda warm-temperate rain forest, the cumulative basal area densityof trees larger than a given tree, at any particular time, isused to express the effect of suppression, or one-sided competition,on the growth rate of that tree. It also shows that increasingthe basal area density of all trees in the stand depresses therate of recruitment from the pool of seedlings. Mortality istreated as independent of the cumulative basal area. Simulationwith the model, applying the one-dimensional drift-diffusionequation, reproduces the observed course of reforestation afterclear-felling and leads to convergence to a unique stationarysize distribution by 200 years. This concuts with the size distributionobserved in primary forest stands. The present model representsan extension of density-dependent population growth models tosize-structured tree populations. Competition, cumulative basal area, density dependence, equilibrium, population, simulation, size distribution, tropical rain forest, warm—temperate rain forest  相似文献   

10.
Though a number of studies have focused on the factors that shape the structure and dynamics of temperate forests, little is known about whether these factors vary with spatial scale. In this study we investigated compositional and structural patterns of forests across three spatial scales (plot, local assemblages and regions) in northeast China and asked whether climatic variables shape these patterns. Using a systematic sampling design, we measured diameter at breast height (DBH) and height of trees, and recorded the abundances, percent of cover and heights of shrubs and herbs in 141 plots from 10 nature reserves. We found that summer temperature accounted for most of the variation in species composition, both within and among forest types. DBH, tree height and total basal area all increased significantly with summer temperature while stem density decreased. The DBH frequency distribution depended strongly on temperature (especially winter temperature) and varied among spatial scales, and it tended to be more left‐skewed as temperature increased. Taking together, our results suggest that a warming climate could lead to an increase in tree growth and the changes in size structure of temperate forests in northeast China. In particular, the proportion of large trees will in all likelihood increase while that of smaller trees will decrease. Shifts in forest structure in a warmed world will undoubtedly influence forest management practices, ecosystem dynamics, and species conservation.  相似文献   

11.
Question: How do the diversity, size structure, and spatial pattern of woody species in a temperate (Mediterranean climate) forest compare to temperate and tropical forests? Location: Mixed evergreen coastal forest in the Santa Cruz Mountains, California, USA. Methods: We mapped, tagged, identified, and measured all woody stems (≥1 cm diameter) in a 6‐ha forest plot, following Center for Tropical Forest Science protocols. We compared patterns to those found in 14 tropical and 12 temperate forest plots. Results: The forest is dominated by Douglas‐fir (Pseudotsuga menziesii) and three species of Fagaceae (Quercus agrifolia, Q. parvula var. shrevei, and Lithocarpus densiflorus), and includes 31 woody species and 8180 individuals. Much of the diversity was in small‐diameter shrubs, treelets, and vines that have not been included in most other temperate forest plots because stems <5‐cm diameter had been excluded from study. The density of woody stems (1363 stems ha?1) was lower than that in all but one tropical plot. The density of large trees (diameter ≥30 cm) and basal area were higher than in any tropical plot. Stem density and basal area were similar to most other temperate plots, but were less than in low‐diversity conifer forests. Rare species were strongly aggregated, with the degree of aggregation decreasing with abundance so that the most common species were significantly more regular than random. Conclusions: The patterns raise questions about differences in structure and dynamics between tropical and temperate forests; these need to be confirmed with additional temperate zone mapped plots that include small‐diameter individuals.  相似文献   

12.
Functional diversity indicators are increasingly used to monitor forest function recovery because they connect biodiversity to ecosystem functions. However, identifying which functions deviate from a reference forest has not received much attention, despite its potential to inform restoration interventions. In this study, we used functional groups to assess the recovery of ecosystem functions in regenerating coastal dune forests. We surveyed birds and trees in forest of different ages and a reference old‐growth forest in KwaZulu‐Natal, South Africa. We classified species into functional groups for each taxa based on functional traits or a priori defined categories (i.e. guilds) and quantified the number of species within functional groups as a proxy of function stability. Bird species density followed an asymptotic trajectory, reaching old‐growth forest values after 25 years. Insectivores and granivores showed saturating trajectories, whereas small frugivores and generalists increased linearly. With the exception of large frugivores, relative abundances of bird functional groups progressed towards old‐growth forest values as the forest aged. Tree species density increased linearly with forest age. In contrast to old‐growth forests, large‐canopy trees and understory shrubs were under‐represented, while mid‐canopy trees dominated regenerating forests. Our result suggests that most bird, but not tree, functions may have been restored. The trend in large frugivore numbers may warrant further investigation, as their low numbers may have hampered the recovery of tree functions. We conclude that functional group trajectories can track functions that deviate from a benchmark, and may therefore direct adaptive actions to recover the stability of regenerating forest.  相似文献   

13.
植物叶片的非结构性碳水化合物(non-structural carbohydrates,NSC)不仅为植物的代谢过程提供重要能量,还能一定程度上反映植物对外界环境的适应策略。以温带针阔混交林(长白山)、温带阔叶林(东灵山)、亚热带常绿阔叶林(神农架)和热带雨林(尖峰岭)4种森林类型的树种为研究对象,利用蒽酮比色法测定了163种常见乔木叶片可溶性糖、淀粉和NSC(可溶性糖+淀粉)含量,探讨了不同森林类型植物叶片NSC的差异及其地带性变化规律。结果显示:(1)从森林类型上看,植物叶片NSC含量从北到南递减,即温带针阔混交林(170.79 mg/g)>温带阔叶林(100.27 mg/g)>亚热带常绿阔叶林(91.24 mg/g)>热带雨林(80.13 mg/g)。(2)从生活型上看,无论是落叶树还是阔叶树,其叶片可溶性糖、淀粉和NSC含量均表现为:温带针阔混交林>温带阔叶林>亚热带常绿阔叶林>热带雨林;北方森林叶片可溶性糖、淀粉和NSC含量均表现为落叶树种>常绿树种,或阔叶树种>针叶树种。(3)森林植物叶片NSC含量、可溶性糖与淀粉含量比值与年均温和年均降水量均呈显著负相关。研究表明,森林植物叶片可溶性糖、淀粉和NSC含量以及可溶性糖与淀粉含量比值均具有明显的从北到南递减的地带性规律;其NSC含量以及可溶性糖与淀粉含量比值与温度和水分均呈显著负相关的变化规律可能是植物对外界环境适应的重要机制之一。该研究结果不仅为阐明中国主要森林树种碳代谢和生长适应对策提供了数据基础,而且为理解区域尺度森林植被对未来气候变化的响应机理提供新的视角。  相似文献   

14.
Tropical forests are seriously threatened by fragmentation and habitat loss. The impact of fragment size and forest configuration on the composition of seed rain is insufficiently studied. For the present study, seed rain composition of small and large forest fragments (8–388 ha) was assessed in order to identify variations in seed abundance, species richness, seed size and dispersal mode. Seed rain was documented during a 1‐year period in three large and four small Atlantic Forest fragments that are isolated by a sugarcane matrix. Total seed rain included 20,518 seeds of 149 species of trees, shrubs, palms, lianas and herbs. Most species and seeds were animal‐dispersed. A significant difference in the proportion of seeds and species within different categories of seed size was found between small and large fragments. Small fragments received significantly more very small‐sized seeds (<0.3 cm) and less large‐seeded species (>1.5 cm) that were generally very rare, with only one species in small and eight in large fragments. We found a negative correlation between the inflow of small‐sized seeds and the percentage of forest cover. Species richness was lower in small than in large fragments, but the difference was not very pronounced. Given our results, we propose changing plant species pools through logging, tree mortality and a high inflow of pioneer species and lianas, especially in small forest fragments and areas with low forest cover. Connecting forest fragments through corridors and reforestation with local large‐seeded tree species may facilitate the maintenance of species diversity.  相似文献   

15.
Oak (Quercus spp.) and hornbeam (Carpinus spp.) are one of dominant tree species in East Asian temperate broad leaf deciduous forests and many insect species, including more than 65% of Lepidoptera species, feed on these trees. We sampled lepidopteran caterpillars from two 0.1 ha plots in a temperate forest to investigate the role of dominant trees (oaks and hornbeams) in herbivore community. In total, we identified 738 caterpillars from 223 Lepidopteran species on 34 tree species. Most caterpillar species were from species-rich families such as Geometridae 25% (56 spp.), Noctuidae, and Tortricidae. After excluding dominant trees, plant-herbivore network analyses showed increased network specialization and nestedness and decreased generality and vulnerability. These results suggest that oaks and hornbeams support a large Lepidopteran herbivore community, and co-occurring plant species support diverse but specific herbivores. Geographical distribution and plant community are closely related to diversity of the herbivore community. Future work is needed to investigate the likelihood that specialist herbivores become relatively more abundant in the forest as oaks are succeeded by hornbeams.  相似文献   

16.
Ice storms cause periodic disturbance to temperate forests of eastern North America. They are the primary agents of disturbance in some eastern forests. In this paper, a forest gap model is employed to explore consequences of ice storms for the long‐term dynamics of Tsuga canadensis‐northem hardwoods forests. The gap model LINKAGES was modified to simulate periodic ice storm disturbance in the Adirondack Mountains of New York. To adapt the gap model for this purpose, field data on ice storm disturbance are used to develop a polytomous logistic regression model of tree damage. The logistic regression model was then incorporated into the modified forest gap model, LINK ADIR, to determine the type of damage sustained by each simulated tree. The logistic regression model predicts high probabilities of bent boles or severe bole damage (leaning, snapping, or uprooting) in small‐diameter trees, and increasing probability of canopy damage as tree size increases. Canopy damage is most likely on gentle slopes; the probability of severe bole damage increases with increasing slope angle. In the LINKADIR simulations, tree damage type determines the probability of mortality; trees with severe bole damage are assigned the highest mortality rate. LINKADIR predicts Tsuga canadensis dominance in mesophytic old‐growth forests not disturbed by ice storms. When ice storms are simulated, the model predicts Acer saccharum‐dominated forests with higher species richness. These results suggest that ice storms may function as intermediate disturbances that enhance species richness in forested Adirondack landscapes.  相似文献   

17.
Carrie L. Woods 《Biotropica》2017,49(4):452-460
Epiphytes are integral to tropical forests yet little is understood about how succession proceeds in these communities. As trees increase in size they create microhabitats for late‐colonizing species in both small and large branches while maintaining small tree microhabitats for early colonizing species in the small and young branches. Thus, epiphyte succession may follow different models depending on the scale: at the scale of the entire tree, epiphytes may follow a species accumulation model where species are continuously added to the tree as trees increase in size but at the scale of one zone on a branch (e.g., inner crown: 0–2 m from the trunk), they may follow the replacement model of succession seen in terrestrial ecosystems. Assuming tree size as an indicator of tree age, I surveyed 61 Virola koschnyi trees of varying size (2.5–103.3 cm diameter at breast height) in lowland wet tropical forest in Costa Rica to examine how epiphyte communities change through succession. Epiphyte communities in small trees were nested subsets of those in large trees and epiphyte communities became more similar to the largest trees as trees increased in size. Furthermore, epiphyte species in small trees were replaced by mid‐ and late‐successional species in the oldest parts of the tree crown but dispersed toward the younger branches as trees increased in size. Thus, epiphyte succession followed a replacement model in particular zones within treecrowns but a species accumulation model at the scale of the entire tree crown.  相似文献   

18.
We have assessed the effects of habitat fragmentation on understory tree communities in mesic temperate forests of the Tokachi plain of northern Japan. Tree community composition was analyzed across 13 forest fragments of various sizes ranging from 0.30 to 8.51 ha. The community composition varied along the edge-to-interior gradient: there was a lower abundance of shade-tolerant shrubs in forest edges than in forest interiors, while saplings of dominant canopy trees and pioneer trees were more abundant near the edges. The edge influence extended approximately 56 m into the forest interiors. Even the interior area of small fragments were likely to be affected not only by the nearest edge but also by more distant edges. Consequently, most areas in fragments smaller than 2 ha were covered by these “edge-type” communities. These results indicate that it is of primary importance to conserve and restore forests with an area at least larger than several hectares to sustain forest-interior tree communities.  相似文献   

19.
Africa has been called the ‘odd man out’ because the hectare‐scale tree diversity of African equatorial forests is lower than that of forests in other parts of the tropics. Low diversity has been attributed to the smaller area of the African forest and a history of drought, fire and contraction. Several facts shed doubt on this interpretation. The current area of the central African forest is roughly 2 million km2. Even during periods of Pleistocene contraction, numerous moist refugia remained, including 6 posited for Gabon, a country the size of the U. S. state of Colorado. The gamma‐diversity of Gabon is high, implying higher alpha diversities. Finally, tree diversities on small islands in the Solomons and Fiji archipelagos are twice those prevalent in Gabonese forests, suggesting that historical contractions may not have been sufficient to reduce diversity to its current level. To place the African situation in perspective, we compared tree stands in Gabon and the Peruvian Amazon. Peruvian forests contained a mean of 618 trees ≥ 10 cm dbh per ha vs 377 for Gabon, or 64% more. Peruvian forests contained relatively more small trees (≥ 10, <20 cm dbh) and many fewer large trees (≥ 20 cm dbh) than Gabonese forests. These structural differences were consistent across 10 Gabonese and 10 Peruvian sites and transcended local gradients in climate and geology, suggesting that they are intrinsic to the two continents. Tree species diversity in Perú is concentrated in the small tree class (≥ 10, <20 cm dbh), whereas it is highest in the larger tree classes in Gabon. Alpha diversity is apparently lower relative to gamma diversity in Africa than it is in Amazonian Perú , implying higher beta diversity. The densities of small plants (<1 m tall) are similar in Gabonese and Peruvian forests; the observed structural differences develop later at the sapling and small tree stages. Explaining the low hectare‐scale diversity of African forests thus reduces to understanding why the density and diversity of small trees is so anomalously low.  相似文献   

20.
Many studies have dealt with the habitat requirements of cavity‐nesting birds, but there is no meta‐analysis on the subject and individual study results remain vague or contradictory. We conducted a meta‐analysis to increase the available evidence for nest‐site selection of cavity‐nesting birds. Literature was searched in Web of Science and Google Scholar and included studies that provide data on the habitat requirements of cavity‐nesting birds in temperate and boreal forests of varying naturalness. To compare nest and non‐nest‐tree characteristics, the following data were collected from the literature: diameter at breast height (DBH) and its standard deviation (SD), sample size of trees with and without active nest, amount of nest and available trees described as dead or with a broken crown, and amount of nest and available trees that were lacking these characteristics. Further collected data included bird species nesting in the cavities and nest‐building type (nonexcavator/excavator), forest type (coniferous/deciduous/mixed), biome (temperate/boreal), and naturalness (managed/natural). From these data, three effect sizes were calculated that describe potential nest trees in terms of DBH, vital status (dead/alive), and crown status (broken/intact). These tree characteristics can be easily recognized by foresters. The results show that on average large‐diameter trees, dead trees, and trees with broken crowns were selected for nesting. The magnitude of this effect varied depending primarily on bird species and the explanatory variables forest type and naturalness. Biome had lowest influence (indicated by ΔAIC). We conclude that diameter at breast height, vitality, and crown status can be used as tree characteristics for the selection of trees that should be retained in selectively harvested forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号