共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Thomas E. Currie Andrew Meade Myrtille Guillon Ruth Mace 《Proceedings. Biological sciences / The Royal Society》2013,280(1762)
There is disagreement about the routes taken by populations speaking Bantu languages as they expanded to cover much of sub-Saharan Africa. Here, we build phylogenetic trees of Bantu languages and map them onto geographical space in order to assess the likely pathway of expansion and test between dispersal scenarios. The results clearly support a scenario in which groups first moved south through the rainforest from a homeland somewhere near the Nigeria–Cameroon border. Emerging on the south side of the rainforest, one branch moved south and west. Another branch moved towards the Great Lakes, eventually giving rise to the monophyletic clade of East Bantu languages that inhabit East and Southeastern Africa. These phylogenies also reveal information about more general processes involved in the diversification of human populations into distinct ethnolinguistic groups. Our study reveals that Bantu languages show a latitudinal gradient in covering greater areas with increasing distance from the equator. Analyses suggest that this pattern reflects a true ecological relationship rather than merely being an artefact of shared history. The study shows how a phylogeographic approach can address questions relating to the specific histories of certain groups, as well as general cultural evolutionary processes. 相似文献
3.
Lindenfors P Dalèn L Angerbjörn A 《Evolution; international journal of organic evolution》2003,57(8):1952-1956
Abstract. In several carnivores a newly fertilized egg enters diapause instead of being directly implanted into the uterus, a phenomenon called delayed implantation. Several hypotheses have been forwarded to explain the utility of this prolonged gestation period, but all of these depend on several independent origins of the character. Here, we conduct a phylogenetic reconstruction of the evolution of delayed implantation in the Carnivora that reveals one basal origin, with additional transitions all having occurred within the Mustelidae. Hence, previous hypotheses relating to its evolution become untestable. Further analyses revealed that the presence or absence of delayed implantation is unrelated to the timing of mating season and birth season. Instead, mustelids with direct implantation are smaller than those with delayed implantation. We therefore suggest that delayed implantation has been selected against in small species due to the relatively higher fecundity costs of a prolonged gestation period. 相似文献
4.
- Plant trait-based functional spectra are crucial to assess ecosystem functions and services. Whilst most research has focused on aboveground vegetative traits (leaf economic spectrum, LES), contrasting evidence on any coordination between the LES and root economic spectrum (RES) has been reported. Studying spectra variation along environmental gradients and accounting for species' phylogenetic relatedness may help to elucidate the strength of coordination between above- and belowground trait variation.
- We focused on leaf and root traits of 39 species sampled in three distinct habitats (front, back and slack) along a shoreline–inland gradient on coastal dunes. We tested, within a phylogenetic comparative framework, for the presence of the LES and RES, for any coordination between these spectra, and explored their relation to variation in ecological strategies along this gradient.
- In each habitat, three-quarters of trait variation is captured in two-dimensional spectra, with species' phylogenetic relatedness moderately influencing coordination and trade-off between traits. Along the shoreline–inland gradient, aboveground traits support the LES in all habitats. Belowground traits are consistent with the RES in the back-habitat only, where the environmental constraints are weaker, and a coordination between leaf and root traits was also found, supporting the whole-plant spectrum (PES).
- This study confirms the complexity when seeking any correlation between the LES and RES in ecosystems characterized by multiple environmental pressures, such as those investigated here. Changes in traits adopted to resist environmental constraints are similar among species, independent of their evolutionary relatedness, thus explaining the low phylogenetic contribution in support of our results.
5.
José Alexandre Felizola Diniz Filho Fabricio Villalobos Luis Mauricio Bini 《Genetics and molecular biology》2015,38(3):396-400
Eigenfunction analyses have been widely used to model patterns of autocorrelation in time, space and phylogeny. In a phylogenetic context, Diniz-Filho et al. (1998) proposed what they called Phylogenetic Eigenvector Regression (PVR), in which pairwise phylogenetic distances among species are submitted to a Principal Coordinate Analysis, and eigenvectors are then used as explanatory variables in regression, correlation or ANOVAs. More recently, a new approach called Phylogenetic Eigenvector Mapping (PEM) was proposed, with the main advantage of explicitly incorporating a model-based warping in phylogenetic distance in which an Ornstein-Uhlenbeck (O-U) process is fitted to data before eigenvector extraction. Here we compared PVR and PEM in respect to estimated phylogenetic signal, correlated evolution under alternative evolutionary models and phylogenetic imputation, using simulated data. Despite similarity between the two approaches, PEM has a slightly higher prediction ability and is more general than the original PVR. Even so, in a conceptual sense, PEM may provide a technique in the best of both worlds, combining the flexibility of data-driven and empirical eigenfunction analyses and the sounding insights provided by evolutionary models well known in comparative analyses. 相似文献
6.
S. T. Friedman S. A. Price A. S. Hoey P. C. Wainwright 《Journal of evolutionary biology》2016,29(5):965-978
Morphological convergence plays a central role in the study of evolution. Often induced by shared ecological specialization, homoplasy hints at underlying selective pressures and adaptive constraints that deterministically shape the diversification of life. Although midwater zooplanktivory has arisen in adult surgeonfishes (family Acanthuridae) at least four independent times, it represents a clearly specialized state, requiring the capacity to swiftly swim in midwater locating and sucking small prey items. Whereas this diet has commonly been associated with specific functional adaptations in fishes, acanthurids present an interesting case study as all nonplanktivorous species feed by grazing on benthic algae and detritus, requiring a vastly different functional morphology that emphasizes biting behaviours. We examined the feeding morphology in 30 acanthurid species and, combined with a pre‐existing phylogenetic tree, compared the fit of evolutionary models across two diet regimes: zooplanktivores and nonzooplanktivorous grazers. Accounting for phylogenetic relationships, the best‐fitting model indicates that zooplanktivorous species are converging on a separate adaptive peak from their grazing relatives. Driving this bimodal landscape, zooplanktivorous acanthurids tend to develop a slender body, reduced facial features, smaller teeth and weakened jaw adductor muscles. However, despite these phenotypic changes, model fitting suggests that lineages have not yet reached the adaptive peak associated with plankton feeding even though some transitions appear to be over 10 million years old. These findings demonstrate that the selective demands of pelagic feeding promote repeated – albeit very gradual – ecomorphological convergence within surgeonfishes, while allowing local divergences between closely related species, contributing to the overall diversity of the clade. 相似文献
7.
Sarah L. Hoffmann Thaddaeus J. Buser Marianne E. Porter 《Journal of morphology》2020,281(11):1501-1516
Sharks vary greatly in morphology, physiology, and ecology. Differences in whole body shape, swimming style, and physiological parameters have previously been linked to varied habitat uses. Pectoral fin morphology has been used to taxonomically classify species and hypotheses on the functional differences in shape are noted throughout the literature; however, there are limited comparative datasets that quantify external and skeletal morphology. Further, fins were previously categorized into two discrete groups based on the amount of skeletal support present: (a) aplesodic, where less than half of the fin is supported and (b) plesodic where greater than half of the fin is supported. These discrete classifications have been used to phylogenetically place species, though the methodology of classification is infrequently described. In this study, we sampled fins from 18 species, 6 families, and 3 orders, which were also grouped into five ecomorphotype classifications. We examined the external morphology, extent of skeletal support, and cross-sectional shape of individual cartilaginous elements. Using phylogenetic comparative methods, we show that fin shape does not differ significantly between ecomorphotypes, suggesting there may be some mechanical constraint. However, we find that the internal anatomy of the fin does vary significantly between ecomorphotypes, especially the extent and distribution of calcification of skeletal support, suggesting that the superficial similarity of fin shapes across ecomorphotypes may belie differences in function. Finally, we find that a number of morphological variables such as number of radials, radial calcification and shape, and fin taper all correlate with the extent of skeletal support. Within these morphospaces, we also describe that some orders/families tend to occupy certain areas with limited overlap. While we demonstrate that there is some mechanical constraint limiting external variations in shark pectoral fin morphology, there are compounding differences in skeletal anatomy that occur within ecomorphotypes which we propose may affect function. 相似文献
8.
DANIELA M. PEREZ MICHAEL S. ROSENBERG MARCIO R. PIE 《Biological journal of the Linnean Society. Linnean Society of London》2012,106(2):307-315
Male fiddler crabs are commonly recognized by the presence of a single massive claw used in a variety of contexts, including territorial defence, agonistic interactions, and courtship behaviour. The most common behavioural context involving these enlarged chelipeds is their use in waving displays, which are remarkably diverse among species. Although the waving display is one of the most obvious behavioural features of male fiddler crabs, little is known about their main evolutionary trends during the diversification of the genus. The present study employed phylogenetic comparative methods to investigate the evolution of waving behaviour in a sample of 19 species of Uca from Central and North America. Digital recordings were used to quantify the temporal dynamics of waving behaviour in each species. Multivariate ordination methods were used to assess whether different elements of the display showed distinct evolutionary dynamics, particularly with respect to body size and the environment where species are most commonly found. Most of the interspecific variation in displays involves differences in the overall waving velocity, with no correspondence to their local environments, nor their body size. Interestingly, despite the strong concentration of variance in the first two ordination axes, there was no statistically significant evidence for phylogenetic signals in their respective scores. These results suggest that the overall structure of waving displays is evolutionarily labile, at the same time as being concentrated in a few particular axes of variation, possibly indicating evolution along lines of least resistance. The approach employed in the present study highlights the utility of phylogenetic comparative methods for elucidating the evolution of complex behavioural characteristics, such as the waving display in male fiddler crabs. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 307–315. 相似文献
9.
Thais Vasconcelos 《American journal of botany》2023,110(2):e16127
Lineage-specific traits determine how plants interact with their surrounding environment. Unrelated species may evolve similar phenotypic characteristics to tolerate, persist in, and invade environments with certain characteristics, resulting in some traits becoming relatively more common in certain types of habitats. Analyses of these general patterns of geographical trait distribution have led to the proposal of general principles to explain how plants diversify in space over time. Trait–environment correlation analyses quantify to what extent unrelated lineages have similar evolutionary responses to a given type of habitat. In this synthesis, I give a short historical overview on trait–environment correlation analyses, from some key observations from classic naturalists to modern approaches using trait evolution models, large phylogenies, and massive data sets of traits and distributions. I discuss some limitations of modern approaches, including the need for more realistic models, the lack of data from tropical areas, and the necessary focus on trait scoring that goes beyond macromorphology. Overcoming these limitations will allow the field to explore new questions related to trait lability and niche evolution and to better identify generalities and exceptions in how plants diversify in space over time. 相似文献
10.
生物多样性是生态学的核心问题。传统的多样性指数仅包含物种数和相对多度的信息,这类基于分类学的多样性指数并不能很好地帮助理解群落构建和生态系统功能。不同物种对群落构建和生态系统功能所起到的作用类型和贡献也不完全相同,且物种在生态过程中的作用和贡献往往与性状密切相关,因此功能多样性已经成为反映物种群落构建、干扰以及环境因素对群落影响的重要指标。同时,由于亲缘关系相近的物种往往具有相似的性状,系统发育多样性也可以作为功能多样性的一个替代。功能多样性和系统发育多样性各自具有优缺点,但二者均比分类多样性更能揭示群落和生态系统的构建、维持与功能。 相似文献
11.
Selective pressures favor morphologies that are adapted to distinct ecologies, resulting in trait partitioning among ecomorphotypes. However, the effects of these selective pressures vary across taxa, especially because morphology is also influenced by factors such as phylogeny, body size, and functional trade-offs. In this study, we examine how these factors impact functional diversification in mammals. It has been proposed that trait partitioning among mammalian ecomorphotypes is less pronounced at small body sizes due to biomechanical, energetic, and environmental factors that favor a “generalist” body plan, whereas larger taxa exhibit more substantial functional adaptations. We title this the Divergence Hypothesis (DH) because it predicts greater morphological divergence among ecomorphotypes at larger body sizes. We test DH by using phylogenetic comparative methods to examine the postcranial skeletons of 129 species of taxonomically diverse, small-to-medium-sized (<15 kg) mammals, which we categorize as either “tree-dwellers” or “ground-dwellers.” In some analyses, the morphologies of ground-dwellers and tree-dwellers suggest greater between-group differentiation at larger sizes, providing some evidence for DH. However, this trend is neither particularly strong nor supported by all analyses. Instead, a more pronounced pattern emerges that is distinct from the predictions of DH: within-group phenotypic disparity increases with body size in both ground-dwellers and tree-dwellers, driven by morphological outliers among “medium”-sized mammals. Thus, evolutionary increases in body size are more closely linked to increases in within-locomotor-group disparity than to increases in between-group disparity. We discuss biomechanical and ecological factors that may drive these evolutionary patterns, and we emphasize the significant evolutionary influences of ecology and body size on phenotypic diversity. 相似文献
12.
Brett C. Gonzalez Katrine Worsaae Diego Fontaneto Alejandro Martínez 《Zoologica scripta》2018,47(1):106-121
This study addresses whether cave dwelling annelids exhibited similar reductive and constructive traits equally as strong as those of arthropods and vertebrates inhabiting caves. Known as troglomorphism, these adaptations bring about striking morphologies across invertebrates and vertebrates from both aquatic and terrestrial cave habitats, and include varying degrees of eye and pigmentation loss, as well as hypertrophy of body appendages and sensorial structures. Employing phylogenetic comparative methods and ancestral character reconstructions on a worldwide data set of a group of annelids, the scale worms (Aphroditiformia), we investigate the behavioural and morphological traits of species living in marine caves in comparison with those species living outside caves. Our work demonstrated that cave scale worms respond similar to arthropods in cave environments, showing a significant elongation of sensory parapodial cirri, while lacking eyes and pigmentation. However, whereas elongation of sensory appendages likely occurred in correlation to cave colonization, eyes were plausibly lost in correlation with specialization and colonization of deep‐sea habitats. 相似文献
13.
Norberto P. Giannini Pablo A. Goloboff 《Evolution; international journal of organic evolution》2010,64(7):1885-1898
A new phylogenetic comparative method is proposed, based on mapping two continuous characters on a tree to generate data pairs for regression or correlation analysis, which resolves problems of multiple character reconstructions, phylogenetic dependence, and asynchronous responses (evolutionary lags). Data pairs are formed in two ways (tree‐down and tree‐up) by matching corresponding changes, Δx and Δy. Delayed responses (Δy occurring later in the tree than Δx) are penalized by weighting pairs using nodal or branch‐length distance between Δx and Δy; immediate (same‐node) responses are given maximum weight. All combinations of character reconstructions (or a random sample thereof) are used to find the observed range of the weighted coefficient of correlation r (or weighted slope b). This range is used as test statistic, and the null distribution is generated by randomly reallocating changes (Δx and Δy) in the topology. Unlike randomization of terminal values, this procedure complies with Generalized Monte Carlo requirements while saving considerable computation time. Phylogenetic dependence is avoided by randomization without data transformations, yielding acceptable type‐I error rates and statistical power. We show that ignoring delayed responses can lead to falsely nonsignificant results. Issues that arise from considering delayed responses based on optimization are discussed. 相似文献
14.
15.
16.
Phylogenetic comparative methods (PCMs) can be used to study evolutionary relationships and trade-offs among species traits. Analysts using PCM may want to (1) include latent variables, (2) estimate complex trait interdependencies, (3) predict missing trait values, (4) condition predicted traits upon phylogenetic correlations and (5) estimate relationships as slope parameters that can be compared with alternative regression methods. The Comprehensive R Archive Network (CRAN) includes well-documented software for phylogenetic linear models (phylolm), phylogenetic path analysis (phylopath), phylogenetic trait imputation (Rphylopars) and structural equation models (sem), but none of these can simultaneously accomplish all five analytical goals. We therefore introduce a new package phylosem for phylogenetic structural equation models (PSEM) and summarize features and interface. We also describe new analytical options, where users can specify any combination of Ornstein-Uhlenbeck, Pagel's-δ and Pagel's-λ transformations for species covariance. For the first time, we show that PSEM exactly reproduces estimates (and standard errors) for simplified cases that are feasible in sem, phylopath, phylolm and Rphylopars and demonstrate the approach by replicating a well-known case study involving trade-offs in plant energy budgets. 相似文献
17.
Ashton KG 《Journal of evolutionary biology》2004,17(5):1157-1161
Phylogenetic comparative methods have become a standard statistical approach for analysing interspecific data, under the assumption that traits of species are more similar than expected by chance (i.e. phylogenetic signal is present). Here I test for phylogenetic signal in intraspecific body size datasets to evaluate whether intraspecific datasets may require phylogenetic analysis. I also compare amounts of phylogenetic signal in intraspecific and interspecific body size datasets. Some intraspecific body size datasets contain significant phylogenetic signal. Detection of significant phylogenetic signal was dependant upon the number of populations (n) and the amount of phylogenetic signal (K) for a given dataset. Amounts of phylogenetic signal do not differ between intraspecific and interspecific datasets. Further, relationships between significance of phylogenetic signal and sample size and amount of phylogenetic signal are similar for intraspecific and interspecific datasets. Thus, intraspecific body size datasets are similar to interspecific body size datasets with respect to phylogenetic signal. Whether these results are general for all characters requires further study. 相似文献
18.
James P. Herrera 《Evolution; international journal of organic evolution》2017,71(12):2845-2857
Biodiversity arises from the balance between speciation and extinction. Fossils record the origins and disappearance of organisms, and the branching patterns of molecular phylogenies allow estimation of speciation and extinction rates, but the patterns of diversification are frequently incongruent between these two data sources. I tested two hypotheses about the diversification of primates based on ~600 fossil species and 90% complete phylogenies of living species: (1) diversification rates increased through time; (2) a significant extinction event occurred in the Oligocene. Consistent with the first hypothesis, analyses of phylogenies supported increasing speciation rates and negligible extinction rates. In contrast, fossils showed that while speciation rates increased, speciation and extinction rates tended to be nearly equal, resulting in zero net diversification. Partially supporting the second hypothesis, the fossil data recorded a clear pattern of diversity decline in the Oligocene, although diversification rates were near zero. The phylogeny supported increased extinction ~34 Ma, but also elevated extinction ~10 Ma, coinciding with diversity declines in some fossil clades. The results demonstrated that estimates of speciation and extinction ignoring fossils are insufficient to infer diversification and information on extinct lineages should be incorporated into phylogenetic analyses. 相似文献
19.
Evolutionary theory predicts that selection in distinct microhabitats generates correlations between morphological and ecological traits, and may increase both phenotypic and taxonomic diversity. However, some microhabitats exert unique selective pressures that act as a restraining force on macroevolutionary patterns of diversification. In this study, we use phylogenetic comparative methods to investigate the evolutionary outcomes of inhabiting the arboreal microhabitat in salamanders. We find that arboreality has independently evolved at least five times in Caudata and has arisen primarily from terrestrial ancestors. However, the rate of transition from arboreality back to terrestriality is 24 times higher than the converse. This suggests that macroevolutionary trends in microhabitat use tend toward terrestriality over arboreality, which influences the extent to which use of the arboreal microhabitat proliferates. Morphologically, we find no evidence for an arboreal phenotype in overall body proportions or in foot shape, as variation in both traits overlaps broadly with species that utilize different microhabitats. However, both body shape and foot shape display reduced rates of phenotypic evolution in arboreal taxa, and evidence of morphological convergence among arboreal lineages is observed. Taken together, these patterns suggest that arboreality has played a unique role in the evolution of this family, providing neither an evolutionary opportunity, nor an evolutionary dead end. 相似文献
20.
Santiago Benitez-Vieyra Juan Fornoni Jessica Pérez-Alquicira Karina Boege César A. Domínguez 《Proceedings. Biological sciences / The Royal Society》2014,281(1782)
Within-individual variation in floral advertising and reward traits is a feature experienced by pollinators that visit different flowers of the same plant. Pollinators can use advertising traits to gather information about the quality and amount of rewards, leading to the evolution of signal–reward correlations. As long as plants differ in the reliability of their signals and pollinators base their foraging decisions on this information, natural selection should act on within-individual correlations between signals and rewards. Because birds and bees differ in their cognitive capabilities, and use different floral traits as signals, we tested the occurrence of adaptive divergence of the within-individual signal–reward correlations among Salvia species that are pollinated either by bees or by hummingbirds. They are expected to use different floral advertising traits: frontal traits in the case of bees and side traits in the case of hummingbirds. We confirmed this expectation as bee- and hummingbird-pollinated species differed in which specific traits are predominantly associated with nectar reward at the within-individual level. Our findings highlight the adaptive value of within-individual variation and covariation patterns, commonly disregarded as ‘environmental noise’, and are consistent with the hypothesis that pollinator-mediated selection affects the correlation pattern among floral traits. 相似文献