首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Miscanthus × giganteus is an energy crop with many attributes that make it a potential biofuel feedstock. This study examined the chemical composition of M. × giganteus stems cut at different dates throughout the spring harvest window (January, February and March) and either left in a swath or left flat in a thin layer on the ground and compared the composition to that of the standing crop collected on the same date in April (control). The research then examined the effect of cutting date on the chemical composition of whole plant M. × giganteus biomass (leaf and stem). The parameters examined in both parts of this experiment were lower heating value on a wet basis (LHVWB), ash, chlorine, potassium, nitrogen, sulphur, carbon and hydrogen content. The range of values recorded for the parameters from both aspects of this trial were LHVWB 4.84–11.87 MJ kg?1; ash 1.44–1.97%; Cl 0.07–0.23%; K 0.15–0.32%; N 0.28–0.39%; S 0.13–0.19%; C 46.75–50.00%; H 5.76–6.09%. The length of time that the M. × giganteus remained in the field after cutting affected the LHVWB (increased with time) of the stem biomass material. Cutting the biomass and leaving it in the field lowered the ash, Cl and C content of the stem material compared to that of the control which was cut and collected on the same date. No differences were observed for the other parameters. Date of harvest affected the LHVWB, Cl and C content which all improved with later cutting dates. Thus, combustion quality can be improved by delaying the harvest date or by cutting the crop and leaving it in the field for a period prior to collection. Choosing the correct combination of time and harvest method can therefore improve biomass fuel quality.  相似文献   

2.
Many characteristics make Miscanthus × giganteus an appealing bioenergy feedstock in temperate North America, but the degree to which this plant species interacts with nitrogen‐fixing bacteria remains understudied. Demonstration of associative nitrogen fixation in Miscanthus would support management with minimal fertilizer inputs that is demanded of long‐term biofuel sustainability. As a first step, we investigate the role of biological nitrogen fixation in nutrition of immature Miscanthus and temporal dynamics of plant‐associated nitrogen fixers. The contribution of biological nitrogen fixation to plant nitrogen acquisition in first year Miscanthus × giganteus was estimated using a yield‐dependent 15N isotope dilution model. Temporal changes in plant‐associated diazotroph relative abundance and community composition were analyzed with quantitative PCR and terminal restriction fragment length polymorphism of the nifH gene in rhizome and rhizosphere DNA extracts. We estimate 16% of new plant nitrogen was derived by nitrogen fixation during the growing season, despite non‐limiting soil nitrogen. Diazotroph communities from rhizome and rhizosphere changed with plant development and endophytic nitrogen fixers had significantly higher relative abundance and altered community composition at sampling dates in July and August. This study provides evidence for a small, but measurable, benefit of associative nitrogen fixation to first year Miscanthus × giganteus that underscores the potential and need for selection of breeding lines that maximize this trait.  相似文献   

3.
This article identifies marginal land technically available for the production of energy crops in China, compares three models of yield prediction for Miscanthus × giganteus, Panicum virgatum L. (switchgrass), and Jatropha, and estimates their spatially specific yields and technical potential for 2017. Geographic Information System (GIS) analysis of land use maps estimated that 185 Mha of marginal land was technically available for energy crops in China without using areas currently used for food production. Modeled yields were projected for Miscanthus × giganteus, a GIS‐based Environmental Policy Integrated Climate model for switchgrass and Global Agro‐Ecological Zone model for Jatropha. GIS analysis and MiscanFor estimated more than 120 Mha marginal land was technically available for Miscanthus with a total potential of 1,761 dry weight metric million tonne (DW Mt)/year. A total of 284 DW Mt/year of switchgrass could be obtained from 30 Mha marginal land, with an average yield of 9.5 DW t ha?1 year?1. More than 35 Mha marginal land was technically available for Jatropha, delivering 9.7 Mt/year of Jatropha seed. The total technical potential from available marginal land was calculated as 31.7 EJ/year for Miscanthus, 5.1 EJ/year for switchgrass, and 0.13 EJ/year for Jatropha. A total technical bioenergy potential of 34.4 EJ/year was calculated by identifying best suited crop for each 1 km2 grid cell based on the highest energy value among the three crops. The results indicate that the technical potential per hectare of Jatropha is unable to compete with that of the other two crops in each grid cell. This modeling study provides planners with spatial overviews that demonstrate the potential of these crops and where biomass production could be potentially distributed in China which needs field trials to test model assumptions and build experience necessary to translate into practicality.  相似文献   

4.
To meet US renewable fuel mandates, perennial grasses have been identified as important potential feedstocks for processing into biofuels. Triploid Miscanthus × giganteus, a sterile, rhizomatous grass, has proven to be a high‐yielding biomass crop over the past few decades in the European Union and, more recently, in the United States. However, high establishment costs from rhizomes are a limitation to more widespread plantings without government subsidies. A recently developed tetraploid cultivar of M. × giganteus producing viable seeds (seeded miscanthus) shows promise in producing high yields with reduced establishment costs. Field experiments were conducted in Urbana, Illinois from 2011 to 2013 to optimize seeded miscanthus establishment by comparing seeding rates (10, 20, and 40 seeds m?2) and planting methods (drilling seeds at 38 and 76 cm row spacing vs. hydroseeding with and without premoistened seeds) under irrigated and rainfed conditions. Drought conditions in 2011 and 2012 coincided with stand establishment failure under rainfed conditions, suggesting that seeded miscanthus may not establish well in water‐stressed environments. In irrigated plots, hydroseeding without premoistening was significantly better than hydroseeding with premoistening, drilling at 38 cm and drilling at 76 cm with respect to plant number (18%, 54%, and 59% higher, respectively), plant frequency (13%, 30%, and 40% better, respectively), and the rate of canopy closure (18%, 33%, and 43% faster, respectively) when averaged across seeding rates. However, differences in second‐year biomass yields among treatments were less pronounced, as plant size partially compensated for plant density. Both hydroseeding and drilling at rates of 20 or 40 seeds m?2 appear to be viable planting options for establishing seeded miscanthus provided sufficient soil moisture, but additional strategies are required for this new biomass production system under rainfed conditions.  相似文献   

5.
Bacterial assemblages, especially diazotroph assemblages residing in the rhizomes and the rhizosphere soil of Miscanthus × giganteus, contribute to plant growth and nitrogen use efficiency. However, the composition of these microbial communities has not been adequately explored nor have the potential ecological drivers for these communities been sufficiently studied. This knowledge is needed for understanding and potentially improving M× giganteus – microbe interactions, and further enhancing sustainability of M. × giganteus production. In this study, cultivated M× giganteus from four sites in Illinois, Kentucky, Nebraska, and New Jersey were collected to examine the relative influences of soil conditions and plant compartments on assembly of the M. × giganteus‐associated microbiome. Automated ribosomal intergenic spacer (ARISA) and terminal restriction fragment length polymorphism (T‐RFLP) targeting the nifH gene were applied to examine the total bacterial communities and diazotroph assemblages that reside in the rhizomes and the rhizosphere. Distinct microbial assemblages were detected in the endophytic and rhizosphere compartments. Site soil conditions had strong correlation with both total bacterial and diazotroph assemblages, but in different ways. Nitrogen treatments showed no significant effect on the composition of diazotroph assemblages in most sites. Endophytic compartments of different M. × giganteus plants tended to harbor similar microbial communities across all sites, whereas the rhizosphere soil of different plant tended to harbor diverse microbial assemblages that were distinct among sites. These observations offer insight into better understanding of the associative interactions between M× giganteus and diazotrophs, and how this relationship is influenced by agronomic and edaphic factors.  相似文献   

6.
Energy crops are currently promoted as potential sources of alternative energy that can help mitigate the climate change caused by greenhouse gases (GHGs). The perennial crop Miscanthus × giganteus is considered promising due to its high potential for biomass production under conditions of low input. However, to assess its potential for GHG mitigation, a better quantification of the crop's contribution to soil organic matter recycling under various management systems is needed. The aim of this work was to study the effect of abscised leaves on carbon (C) and nitrogen (N) recycling in a Miscanthus plantation. The dynamics of senescent leaf fall, the rate of leaf decomposition (using a litter bag approach) and the leaf accumulation at the soil surface were tracked over two 1‐year periods under field conditions in Northern France. The fallen leaves represented an average yearly input of 1.40 Mg C ha?1 and 16 kg N ha?1. The abscised leaves lost approximately 54% of their initial mass in 1 year due to decomposition; the remaining mass, accumulated as a mulch layer at the soil surface, was equivalent to 7 Mg dry matter (DM) ha?1 5 years after planting. Based on the estimated annual leaf‐C recycling rate and a stabilization rate of 35% of the added C, the annual contribution of the senescent leaves to the soil C was estimated to be approximately 0.50 Mg C ha?1yr?1 or 10 Mg C ha?1 total over the 20‐year lifespan of a Miscanthus crop. This finding suggested that for Miscanthus, the abscised leaves contribute more to the soil C accumulation than do the rhizomes or roots. In contrast, the recycling of the leaf N to the soil was less than for the other N fluxes, particularly for those involving the transfer of N from the tops of the plant to the rhizome.  相似文献   

7.
The US Department of Energy has mandated the production of 16 billion gallons (60.6 billion liters) of renewable biofuel from cellulosic feedstocks by 2022. The perennial grass, Miscanthus × giganteus, is a potential candidate for cellulosic biofuel production because of high productivity with minimal inputs. This study determined the effect of three different spring fertilizer treatments (0, 60, and 120 kg N ha?1 yr?1 as urea) on biomass production, soil organic matter (SOM), and inorganic N leaching in Illinois, Kentucky, Nebraska, New Jersey, and Virginia, along with N2O and CO2 emissions at the IL site. There were no significant yield responses to fertilizer treatments, except at the IL site in 2012 (yields in 2012, year 4, varied from 10 to 23.7 Mg ha?1 across all sites). Potentially mineralizable N increased across all fertilizer treatments and sites in the 0–10 cm soil depth. An increase in permanganate oxidizable carbon (POX‐C, labile C) in surface soils occurred at the IL and NJ sites, which were regularly tilled before planting. Decreases in POX‐C were observed in the 0 – 10 cm soil depth at the KY and NE sites where highly managed turfgrass was grown prior to planting. Growing M. × giganteus altered SOM composition in only 4 years of production by increasing the amount of potentially mineralizable N at every site, regardless of fertilization amount. Nitrogen applications increased N leaching and N2O emission without increasing biomass production. This suggests that for the initial period (4 years) of M. × giganteus production, N application has a detrimental environmental impact without any yield benefits and thus should not be recommended. Further research is needed to define a time when N application to M. × giganteus results in increased biomass production.  相似文献   

8.
Miscanthus × giganteus (Mxg) is an important bioenergy feedstock crop, however, genetic diversity among legacy cultivars may be severely constrained. Only one introduction from Japan to Denmark of this sterile, triploid, vegetatively propagated crop was recorded in the 1930s. We sought to determine if the Mxg cultivars in North America were all synonyms, and if they were derived from the European introduction. We used 64 nuclear and five chloroplast simple sequence repeat (SSR) markers to estimate genetic similarity for 27 Mxg accessions from North America, and compared them with six accessions from Europe, including the species’ type‐specimen. A subset of accessions was also evaluated by restriction‐site associated DNA sequencing (RAD‐seq). In addition, we assessed the potential of new crosses to increase Mxg genetic diversity by comparing eight new triploid Mxg progeny grown from seed, along with samples of the parental species M. sacchariflorus and M. sinensis. Estimates of genotyping error rates were essential for distinguishing between experimental error and true genotypic differences among accessions. Given differences in estimated error rates and costs per marker for SSRs and RAD‐seq, the former is currently more cost‐effective for determining if two accessions are genetically identical. We concluded that all of the Mxg legacy cultivars were derived via vegetative propagation from a single genet. In contrast with the Mxg legacy cultivars, genetic similarity to the type‐specimen of eight new triploid Mxg progeny ranged from 0.46 to 0.56. Though genetic diversity among the Mxg legacy cultivars is critically low, new crosses can provide much‐needed variation to growers.  相似文献   

9.
Nitrogen (N) addition typically increases overall plant growth, but the nature of this response depends upon patterns of plant nitrogen allocation that vary throughout the growing season and depend upon canopy position. In this study seasonal variations in leaf traits were investigated across a canopy profile in Miscanthus (Miscanthus × giganteus) under two N treatments (0 and 224 kg ha?1) to determine whether the growth response of Miscanthus to N fertilization was related to the response of photosynthetic capacity and nitrogen allocation. Miscanthus yielded 24.1 Mg ha?1 in fertilized plots, a 40% increase compared to control plots. Photosynthetic properties, such as net photosynthesis (A), maximum rate of rubisco carboxylation (Vcmax), stomatal conductance (gs) and PSII efficiency (Fv'/Fm'), all decreased significantly from the top of the canopy to the bottom, but were not affected by N fertilization. N fertilization increased specific leaf area (SLA) and leaf area index (LAI). Leaf N concentration in different canopy layers was increased by N fertilization and the distribution of N concentration within canopy followed irradiance gradients. These results show that the positive effect of N fertilization on the yield of Miscanthus was unrelated to changes in photosynthetic rates but was achieved mainly by increased canopy leaf area. Vertical measurements through the canopy demonstrated that Miscanthus adapted to the light environment by adjusting leaf morphological and biochemical properties independent of nitrogen treatments. GPP estimated using big leaf and multilayer models varied considerably, suggesting a multilayer model in which Vcmax changes both through time and canopy layer could be adopted into agricultural models to more accurately predict biomass production in biomass crop ecosystems.  相似文献   

10.
Miscanthus × giganteus is a C4 perennial grass that shows great potential as a high‐yielding biomass crop. Scant research has been published that reports M. × giganteus growth and biomass yields in different environments in the United States. This study investigated the establishment success, plant growth, and dry biomass yield of M. × giganteus during its first three seasons at four locations (Urbana, IL; Lexington, KY; Mead, NE; Adelphia, NJ) in the United States. Three nitrogen rates (0, 60, and 120 kg ha?1) were applied at each location each year. Good survival of M. × giganteus during its first winter was observed at KY, NE, and NJ (79–100%), and poor survival at IL (25%), due to late planting and cold winter temperatures. Site soil conditions, and growing‐season precipitation and temperature had the greatest impact on dry biomass yield between season 2 (2009) and season 3 (2010). Ideal 2010 weather conditions at NE resulted in significant yield increases (< 0.0001) of 15.6–27.4 Mg ha?1 from 2009 to 2010. Small yield increases in KY of 17.1 Mg ha?1 in 2009 to 19.0 Mg ha?1 in 2010 could be attributed to excessive spring rain and hot dry conditions late in the growing season. Average M. ×giganteus biomass yields in NJ decreased from 16.9 to 9.7 Mg ha?1 between 2009 and 2010 and were related to hot dry weather, and poor soil conditions. Season 3 yields were positively correlated with end‐of‐season plant height () and tiller density (). Nitrogen fertilization had no significant effect on plant height, tiller density, or dry biomass yield at any of the sites during 2009 or 2010.  相似文献   

11.
Spatially explicit farm‐gate production costs and the economic potential of three types of energy crops grown on available marginal land in China for 2017 and 2040 were investigated using a spatial accounting method and construction of cost–supply curves. The average farm‐gate cost from all available marginal land was calculated as 32.9 CNY/GJ for Miscanthus Mode, 27.5 CNY/GJ for Switchgrass Mode, 32.4 CNY/GJ for Miscanthus & Switchgrass Mode, and 909 CNY/GJ for Jatropha Mode in 2017. The costs of Miscanthus and switchgrass were predicted to decrease by approximately 11%‐15%, whereas the cost of Jatropha was expected to increase by 5% in 2040. The cost of Jatropha varies significantly from 193 to 9,477 CNY/GJ across regions because of the huge differences in yield across regions. The economic potential of the marginal land was calculated as 28.7 EJ/year at a cost of less than 25 CNY/GJ for Miscanthus Mode, 4.0 EJ/year at a cost of less than 30 CNY/GJ for Switchgrass Mode, 29.6 EJ/year at a cost of less than 25 CNY/GJ for Miscanthus & Switchgrass Mode, and 0.1 EJ/year at a cost of less than 500 CNY/GJ for Jatropha Mode in 2017. It is not feasible to develop Jatropha production on marginal land based on existing technologies, given its high production costs. Therefore, the Miscanthus & Switchgrass Mode is the most economical way, because it achieves the highest economic potential compared with other modes. The sensitivity analysis showed that the farm‐gate costs of Miscanthus and switchgrass are most sensitive to uncertainties associated with yield reduction and harvesting costs, while, for Jatropha, the unpredictable yield has the greatest impact on its farm‐gate cost. This study can help policymakers and industrial stakeholders make strategic and tactical bioenergy development plans in China (exchange rate in 2017: 1€ = 7.63¥; all the joules in this paper are higher heat value).  相似文献   

12.
In Ireland, Miscanthus × giganteus has the potential to become a major feedstock for bioenergy production. However, under current climatic conditions, Ireland is situated on the margin of the geographical range where Miscanthus production is economically feasible. It is therefore important to optimize the yield and other ecosystem services such as carbon sequestration delivered by the crop. A survey of commercial Miscanthus fields showed a large number of areas with no Miscanthus crop cover. These patches can potentially lead to reduced crop yields and soil carbon sequestration and have a significant negative impact on the economic viability of the crop. The aim of this research is to assess patchiness on a field scale and to analyse the impacts on crop yield and soil carbon sequestration. Analysis of aerial photography images was carried out on six commercial Miscanthus plantations in south east Ireland. The analysis showed an average of 372.5 patches per hectare, covering an average of 13.7% of the field area. Using net present value models and a financial balance approach it was shown that patchiness has a significant impact on payback time for initial investments and might reduce gross margins by more than 50%. Total and Miscanthus‐derived soil organic carbon was measured in open patches and adjacent plots of high crop density showing significantly lower Miscanthus‐derived carbon stocks in open patches compared to high crop‐density patches (0.47Mg C ha?1 ± 0.42 SD and 0.91Mg C ha?1 ± 0.55 SD). Using geographic information system (GIS) it was shown that on a field scale Miscanthus‐derived carbon stocks were reduced by 7.38% ± 7.25 SD. However, total soil organic carbon stocks were not significantly different between open patches and high crop density plots indicating no impact on the overall carbon sequestration on a field scale over 3–4 years since establishment for these Miscanthus sites.  相似文献   

13.
Miscanthus is a rhizomatous C4 grass of great interest as a biofuel crop because it has the potential to produce high yields over a wide geographical area with low agricultural inputs on marginal land less suitable for food production. At the moment, a clonal interspecific hybrid Miscanthus × giganteus is the most widely cultivated and studied in Europe and the United States, but breeding programmes are developing newer more productive varieties. Here, we quantified the physiological processes relating to whole season yield in a replicated plot trial in Wales, UK. Light capture and conversion efficiency were parameterized for four carefully selected genotypes (M. sinensis, M. sacchariflorus and Miscanthus × giganteus). Differences in the canopy architecture in mature stands as measured by the extinction coefficient (k) were small (0.55–0.65). Sensitivity analysis on a mathematical model of Miscanthus was performed to quantify the accumulative intercepted photosynthetically active radiation (iPAR) in the growing season using (i) k, (ii) variation in the thermal responses of leaf expansion rate, (iii) base temperature for degree days and (iv) date start of canopy expansion. A 10% increase in k or leaf area per degree day both had a minimal effect on iPAR (3%). Decreasing base temperature from 10 to 9 °C gave an 8% increase in iPAR. If the starting date for canopy expansion was the same as shoot emergence date, then the iPAR increases by 12.5%. In M. × giganteus, the whole season above ground and total (including below ground) radiation‐use efficiency (RUE) ranged from 45% to 37% higher than the noninterspecific hybrid genotypes. The greater yields in the interspecific hybrid M. × giganteus are explained by the higher RUE and not by differences in iPAR or partitioning effects. Studying the mechanisms underlying this complex trait could have wide benefits for both fuel and food production.  相似文献   

14.
Miscanthus × giganteus is often regarded as one of the most promising crops to produce sustainable bioenergy. This perennial crop, renowned for its high productivity associated with low input requirements, in particular regarding fertilizers, is thought to have low environmental impacts, but few data are available to confirm this. Our study aimed at assessing nitrate leaching from Miscanthus × giganteus crops in farmers' fields, thus including a wide range of soil and cropping system conditions. We focused on the first years of growth after planting as experimental studies have suggested that Miscanthus × giganteus, once established, results in low nitrate leaching. We combined on‐farm measurements and modeling to estimate drainage, leached nitrogen, and nitrate concentration in drainage water in 38 fields located in Center‐East France during two winters (November 2010 to March 2011, November 2011 to March 2012). Nitrate leaching and nitrate concentration in drainage water were on average very low. Nitrate leaching averaged 6 kg N ha?1 whereas nitrate concentration averaged 12 mg l?1. These low values are attributable to the low estimates of drainage water (mean = 166 mm) but also to the low soil mineral nitrogen contents measured at the beginning of winter (mean = 37 kg N ha?1). Our results were, however, very variable, mainly due to the crop age: nitrate leaching and nitrate concentration were critically higher during the winter following the first growth year of Miscanthus × giganteus, reflecting the low development of the crop. This variability was also explained by the range of soil and cropping conditions explored in the on‐farm design: shallow and/or sandy soils as well as fields where establishment failed had a higher risk of nitrate leaching.  相似文献   

15.
Miscanthus × giganteus is often regarded as one of the most promising crops to produce bioenergy because it is renowned for its high biomass yields, combined with low input requirements. However, its productivity has been mainly studied in experimental conditions. Our study aimed at characterizing and explaining young M. giganteus yield variability on a farmers’ field network located in the supply area of a cooperative society in east central France. It included the first three growth years of the crop. We defined and calculated a set of indicators of limiting factors that could be involved in yield variations and used the mixed‐model method to identify those explaining most of the yield variation. Commercial yields averaged 8.1 and 12.8 t DM ha?1 for the second and third growth year, respectively. However, these mean results concealed a high variability, ranging from 3 to 19 t DM ha?1. Commercial yields, measured on whole fields, were on average 20% lower than plot yields, measured on a small area (two plots of 25 m2). Yields were found to be much more related to shoot density than to shoot mass, and particularly to the shoot density established at the end of the planting year. We highlighted that planting success was decisive and was built during the whole plantation year. Fields with the lowest yields also had the highest weed cover, which was influenced by the distance between the field and the farmhouse, the preceding crop and the soil type. Our findings show that growing young M. giganteus on farmers’ fields involves limiting factors different from those commonly reported in the literature for experimental conditions and they could be useful to assess the economic and environmental impacts of growing M. giganteus on farmers’ fields. They could also stimulate the discussion about growing bioenergy crops on marginal lands.  相似文献   

16.
The sterile triploid Miscanthus × giganteus is capable of yielding more biomass per unit land area than most other temperate crops. Although the yield potential of M. × giganteus is high, sterility requires all propagation of the plant to be done vegetatively. The traditional rhizome propagation system achieves relatively low multiplication rates, i.e. the number of new plants generated from a single‐parent plant, and requires tillage that leaves soil vulnerable to CO2 and erosion losses. A stem‐based propagation system is used in related crops like sugarcane, and may prove a viable alternative, but the environmental conditions required for shoot initiation from stems of M. × giganteus are unknown. A study was conducted to investigate the effect of temperature, illumination and node position on emergence of M. × giganteus shoots. Stems of M. × giganteus were cut into segments with a single node each, placed in controlled environments under varied soil temperature or light regimes and the number of emerged shoots were evaluated daily for 21 days. At temperatures of 20 and 25 °C, rhizomes produced significantly more shoots than did stem segments (= 0.0105 and 0.0594, respectively), but the difference was not significant at 30 °C, where 63% of stems produced shoots compared to 80% of rhizomes (= 0.2037). There was a strong positive effect (= 0.0086) of soil temperature on emergence in the range of temperatures studied here (15–30 °C). Node positions higher on the stem were less likely to emerge (< 0.0001) with a significant interaction between illumination and node position. Planting the lowest five nodes from stems of M. × giganteus in 30 °C soil in the light resulted in 75% emergence, which represents a potential multiplication rate 10–12 times greater than that of the current rhizome‐based system.  相似文献   

17.
Miscanthus ×giganteus (M×g) is an important bioenergy feedstock crop. However, biomass production of Miscanthus has been largely limited to one sterile triploid cultivar, M×g ‘1993‐1780’, which we demonstrate can have insufficient overwintering ability in temperate regions with cold winters. Key objectives for Miscanthus breeding include greater biomass yield and better adaptation to different production environments than M×g ‘1993‐1780’. In this study, we evaluated 13 M×g genotypes, including ‘1993‐1780’, in replicated field trials conducted for three years at Urbana, IL; Dixon Springs, IL; and Jonesboro, AR. Entries were phenotyped for first‐winter overwintering ability and plant hardiness (ratio of new tillers to old), yield in years 2 and 3, and first heading date, plant height, and culm number in years 1 and 2. We observed substantial variation for overwintering ability and biomass yield among the M×g genotypes tested and identified ones with better overwintering ability and/or higher biomass yield than ‘1993‐1780’. Most entries at Urbana were damaged during the first winter, whereas few or no entries were damaged at Dixon Springs or Jonesboro. However, M×g ‘Nagara’ was entirely undamaged during the first winter and produced high biomass yields at Urbana (19.7 Mg/ha in year 2 and 20.9 Mg/ha in year 3), whereas M×g ‘1993‐1780’ exhibited an overwintering loss of 29%, had severely damaged survivors (hardiness score of 25%), and reduced biomass yield (8.1 Mg/ha in year 2 and 16.2 Mg/ha in year 3), indicating that M×g ‘Nagara’ could be a better choice in hardiness zone 5 (average annual minimum air temperature of ?23.3 to ?28.9°C) or lower. In Dixon Springs, where M×g ‘1993‐1780’ was undamaged by the first winter, it yielded highest among all the entries (21.6 Mg/ha in year 3), though not significantly higher than M×g ‘Nagara’ (18.2 Mg/ha in year 3).  相似文献   

18.
Miscanthus is a C4 perennial grass originating from East Asia, the yields of which progressively increase in the first years of growth. Several species for bioenergy have been studied since the mid‐1980s in Europe, in particular (Miscanthus × giganteus [M. × giganteus]), due to its high yields. M. × giganteus is mainly cultivated in France and established from rhizomes. Our study aimed to assess, in field conditions, alternative establishment methods combined with an alternative species, Miscanthus sinensis (M. sinensis). We set up a multi‐environment experimental network. On each trial, we tested two treatments with M. × giganteus, established from rhizomes (G_r‐sd) and from plantlets obtained from rhizomes (G_p‐sd), and two treatments with M. sinensis seedlings transplanted in single (S_p‐sd) and double density (S_p‐dd). ANOVA was performed to compare establishment and regrowth rates across treatments, as well as yields across treatments and site‐years. A logistic model was used to describe yield trends and to compare the maximum yield reached and the rate of yield increase of both species. Results showed that miscanthus establishment from plantlets resulted in higher establishment (between 87% and 92%) and regrowth (between 91% and 94%) rates compared to establishment from rhizomes. Treatments with M. × giganteus obtained higher average yields across site‐years than those with M. sinensis, but more variable yields across site‐years. We showed a strong species effect on yields, yield components (shoot weight, shoot density and shoot number per plant) and light interception (through leaf area index). Lastly, to use M. sinensis established from transplanted plantlets as an alternative to M. × giganteus, research would be required on the breeding of M. sinensis sterile seeds to avoid risks of invasiveness.  相似文献   

19.
Perennial grasses are promising candidates for bioenergy crops, but species that can escape cultivation and establish self‐sustaining naturalized populations (feral) may have the potential to become invasive. Fertile Miscanthus × giganteus, known as “PowerCane,” is a new potential biofuel crop. Its parent species are ornamental, non‐native Miscanthus species that establish feral populations and are sometimes invasive in the USA. As a first step toward assessing the potential for “PowerCane” to become invasive, we documented its growth and fecundity relative to one of its parent species (Miscanthus sinensis) in competition with native and invasive grasses in common garden experiments located in Columbus, Ohio and Ames, Iowa, within the targeted range of biofuel cultivation. We conducted a 2‐year experiment to compare growth and reproduction among three Miscanthus biotypes—”PowerCane,” ornamental M. sinensis, and feral M. sinensis—at two locations. Single Miscanthus plants were subjected to competition with a native grass (Panicum virgatum), a weedy grass (Bromus inermis), or no competition. Response variables were aboveground biomass, number of shoots, basal area, and seed set. In Iowa, all Miscanthus plants died after the first winter, which was unusually cold, so no further results are reported from the Iowa site. In Ohio, we found significant differences among biotypes in growth and fecundity, as well as significant effects of competition. Interactions between these treatments were not significant. “PowerCane” performed as well or better than ornamental or feral M. sinensis in vegetative traits, but had much lower seed production, perhaps due to pollen limitation. In general, ornamental M. sinensis performed somewhat better than feral M. sinensis. Our findings suggest that feral populations of “PowerCane” could become established adjacent to biofuel production areas. Fertile Miscanthus × giganteus should be studied further to assess its potential to spread via seed production in large, sexually compatible populations.  相似文献   

20.
Crops grown for bioenergy production are a mandated component of the United States energy portfolio. Giant miscanthus (Miscanthus × giganteus) is a leading bioenergy crop similar in habit to the invasive plant giant reed (Arundo donax). To characterize the environmental tolerance of giant miscanthus, we compared the soil moisture stress tolerance of giant miscanthus and giant reed under glasshouse conditions. We subjected both species to soil moisture conditions of severe drought (?4.2 MPa), mild drought (?0.5 MPa), field‐capacity (control), and flooded soils. These conditions were applied to two cohorts: one in which soil moisture conditions were imposed on newly planted rhizome fragments, and one in which conditions were imposed on established plants after 8 weeks of growth in field‐capacity soil. After 16 weeks, we harvested all plants, measured above‐ and belowground biomass, and evaluated the reproductive viability of rhizome fragments. The total biomass of each species under flooded conditions was not different from the field‐capacity control groups regardless of cohort. However, drought did affect the two cohorts differently. In the cohort treated after 8 weeks of growth, mild and severe drought conditions resulted in 56% and 66% reductions in biomass, averaged over both species, compared with the controls. In the cohort treated for the entire 16 weeks, mild and severe drought conditions resulted in 92% and 94% reductions in biomass. Rhizome fragments from both species and both cohorts showed 100% viability following flooded and control treatments; drought treatments reduced rhizome viability in both species, with a greater impact on giant miscanthus. Although giant miscanthus does not appear to have the potential to escape and establish in relatively dry upland ecosystems, it does show tolerance to flooded conditions similar to giant reed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号