首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Withania somnifera, sterol molecules of immense medicinal value are diversified by means of glycosylation. Identifying sterol glycosyltransferases provides an imperative insight of diverse sterol modifications, thereby helping to comprehend the underlying plant mechanisms. In the present study, one of the W. somnifera sterol glycosyltransferase-4 (Ws-Sgtl4) gene was transformed into the W. somnifera leaf explant through Agrobacterium rhizogene. Transformed W. Somnifera Ws-Sgtl4 leaf explants were subjected to hairy root induction and analyzed for biomass accumulation. The analysis of Ws-Sgtl4 gene expression was performed at different time exposures with the application of salicylic acid and methyl jasmonate. The elicitation of W. somnifera hairy root expressing the Ws-Sgtl4 gene was also evaluated for the enhancement if any, in the total withanolide yield as well as the withanolides-A contents. The results suggested that Ws-Sgtl4 gene expression enhanced the production of total withanolide yield and withanolides-A in the hairy root culture of W. somnifera in the response to the elicitors.  相似文献   

2.
3.
This is the first report on Agrobacterium rhizogenes-mediated transformation of Withania somnifera for expression of a foreign gene in hairy roots. We transformed leaf and shoot tip explants using binary vector having gusA as a reporter gene and nptII as a selectable marker gene. To improve the transformation efficiency, acetosyringone (AS) was added in three stages, Agrobacterium liquid culture, Agrobacterium infection and co-culture of explants with Agrobacterium. The addition of 75 μM AS to Agrobacterium liquid culture was found to be optimum for induction of vir genes. Moreover, the gusA gene expression in hairy roots was found to be best when the leaves and shoot tips were sonicated for 10 and 20s, respectively. Based on transformation efficiency, the Agrobacterium infection for 60 and 120 min was found to be suitable for leaves and shoot tips, respectively. Amongst the various culture media tested, MS basal medium was found to be best in hairy roots. The transformation efficiency of the improved protocol was recorded 66.5 and 59.5?% in the case of leaf and shoot tip explants, respectively. When compared with other protocols the transformation efficiency of this improved protocol was found to be 2.5 fold higher for leaves and 3.7 fold more for shoot tips. Southern blot analyses confirmed 1–2 copies of the gusA transgene in the lines W1-W4, while 1–4 transgene copies were detected in the line W5 generated by the improved protocol. Thus, we have established a robust and efficient A. rhizogenes mediated expression of transgene (s) in hairy roots of W. somnifera.  相似文献   

4.
The biosynthetic potential for six lignans accumulation in two lines of Taxus x media hairy roots was investigated. The cultures of KT and ATMA hairy root lines were supplemented with precursors: coniferyl alcohol (CA 1, 10 or 100 µM) and/or l-phenylalanine (100 µM PHEN) and/or methyl jasmonate (100 µM MeJa). Moreover the two-phase in vitro cultures supported with perfluorodecalin (PFD) as a gas carrier and in situ extrahent were used. The hairy root lines differed in lignan production profiles. In the control untreated cultures KT roots did not accumulate secoisolariciresinol and lariciresinol while ATMA roots did not accumulate matairesinol. In ATMA roots the treatment with CA (1 or 10 µM) resulted in the production of lariciresinol and secoisolariciresinol whereas solely lariciresinol was present after 100 µM CA application. Elicitation with 1 µM CA and MeJa yielded with hydroxymatairesinol aglyca and lariciresinol glucosides with their highest content 37.88 and 3.19 µg/g DW, respectively. The stimulatory effect of simultaneous treatment with 1 µM CA, PHEN and MeJa on lignan production was observed when the cultures were supplemented with PFD-aerated or degassed. In ATMA root cultures these applied conditions were the most favourable for matairesinol content which amounted to 199.86 and 160.25 µg/g DW in PFD-aerated and PFD-degassed supported cultures, respectively. In KT root cultures solely, hydroxymatairesinol and coniferin/CA content was enhanced with their highest yield 59.29 and 134.60 µg/g DW in PFD-aerated and PFD-degassed cultures, respectively.  相似文献   

5.
Resveratrol is a polyphenolic compound produced in very low levels in grapes. To achieve high yield of resveratrol in wild grape, three Agrobacterium rhizogenes strains, Ar318, ArA4 and LBA9402, were used to induce hairy roots following infection of internodes, nodes or petioles of in vitro grown Vitis vinifera subsp. sylvesteris accessions W2 and W16, and cultivar Rasha. The effects of inoculation time, age of explants, bacterial concentration and co-cultivation times were examined on the efficiency of the production of hairy roots. Strains Ar318, ArA4 and LBA9402 all induced hairy roots in the tested genotypes, but the efficiency of ArA4 strain was higher than the other strains. The highest hairy root production was with using internodes as explants. The transformation of hairy roots lines was confirmed by PCR detection of rolB gene. Half Murashige and Skoog (MS) medium was better for biomass production compared with MS medium. HPLC analysis of resveratrol production in the hairy root cultures showed that all the genotypes produced higher amounts of resveratrol than control roots. The highest amount of resveratrol was produced from W16 internode cultures, which was 31-fold higher than that of control root. Furthermore, TLC analysis showed that treatments of hairy roots with sodium acetate and jasmonate elevated resveratrol levels both in hairy root tissue and excreted into the half MS medium. These results demonstrate that endogenous and exogenous factors can affect resveratrol production in hairy root culture of grape, and this strategy could be used to increase low resveratrol production in grapes.  相似文献   

6.
In the present investigation, metabolites of Streptomyces sp. MTN14 and Trichoderma harzianum ThU significantly enhanced biomass yield (3.58 and 3.48 fold respectively) in comparison to the control plants. The secondary metabolites treatments also showed significant augmentation (0.75–2.25 fold) in withanolide A, a plant secondary metabolite. Lignin deposition, total phenolic and flavonoid content in W. somnifera were maximally induced in treatment having T. harzianum metabolites. Also, Trichoderma and Streptomyces metabolites were found much better in invoking in planta contents and antioxidants compared with their live culture treatments. Therefore, identification of new molecular effectors from metabolites of efficient microbes may be used as biopesticide and biofertilizer for commercial production of W. somnifera globally.  相似文献   

7.
Polyacetylenes are a group of fatty-acid derived specialized metabolites with several C–C-triple bonds and derived compounds which are widely distributed in the plant kingdom, but are especially abundant and structurally diverse in the Asteraceae family. Despite their interesting structural and biological properties, the biosynthesis of polyacetylenes is only poorly understood. We have used three species of the Asteraceae (Carthamus tinctorius, Tagetes patula, and Arctium lappa) to compare their suitability for studies of polyacetylene biosynthesis when used after cultivation on soil or as tissue culture. The polyacetylene profiles detected in different plant parts together with information from the literature indicate that C. tinctorius seedlings and flowers as well as T. patula roots and flower buds are major sites of polyacetylene biosynthesis. Highest levels of polyacetylenes were detected in T. patula [about 30 µmol/g dry weight (d.w.) thiophenes in roots] while A. lappa contained less than 1 µmol/g d.w.. Methyljasmonate (MeJ)-induced T. patula hairy root cultures proved to be an excellent source of butenynyl-bithiophene (200 µmol/g d.w., 43 mg/g d.w.) while T. patula flower buds could serve as a source of pentenynyl-bithiophene and α-terthienyl (5–10 µmol/g d.w.) and C. tinctorius flowers or seedlings as a source of polyacetylenic C13 hydrocarbons, the biosynthetic precursors of thiophenes (5–10 µmol/g d.w.). Upon addition of elicitors to tissue cultures, highest elicitation factors (between four and seven) were reached for 1,11-tridecadiene-3,5,7,9-tetrayne in C. tinctorius cell suspension cultures with 40 µM MeJ and α-terthienyl in T. patula hairy root cultures with 100 µM MeJ.  相似文献   

8.
Markedly increased withanolide content was found in transformed roots (TR) of Withania somnifera germplasm grown in low mineral minimal media and withanolides showed high antioxidant potential when analysed using acidic potassium permanganate chemiluminescence. Transformation frequency of explants infected with Agrobacterium rhizogenes strain A4 varied between the three germplasms tested with the highest observed as 75?±?0.9. Transformed root production was explant specific with leaves being the most productive among the different explants used. Withanolides, namely withaferin A, withanolide A, withanolide B and 12-deoxywithastramonolide were detected in TR cultures and differences in their content were found between germplasms. The highest concentrations of secondary metabolites were found in 4-week-old cultures and concentrations declined by the 8th and 12th week of culture. In 4-week-old cultures, the biomass of TR cultures was 4.5 fold higher than their respective non-transformed roots (NTR). Withaferin A was found in TR at levels that were 28–34 times higher than that found in NTR. A rapid method for the determination of the antioxidant potential of W. somnifera TR extracts was developed using post-column acidic potassium permanganate chemiluminescence (APPC) detection. The APPC chromatographic peaks for extract constituents showed strong alignment with those found for ultraviolet absorbance detection. The methods developed in this study for TR culture establishment and the use of a fast and sensitive way for the qualitative and quantitative determination of the antioxidant activity of their metabolites provides a new platform that will have use for similar studies in other species.  相似文献   

9.
Effects of isoflavones on plant salt tolerance were investigated in soybean (Glycine max L. Merr. cultivar N23674) and tobacco (Nicotiana tabacum L.). Leaf area, fresh weight, net photosynthetic rate (Pn), and transpiration rate (Tr) of soybean N23674 plants treated with 80 mM NaCl were significantly reduced, while a gene (GmIFS1) encoding for 2-hydroxyisoflavone synthase was highly induced, and isoflavone contents significantly increased in leaves and seeds. To test the impact of isoflavones to salt tolerance, transgenic soybean cotyledon hairy roots expressing GmIFS1 (hrGmIFS1) were produced. Salt stress slightly increased isoflavone content in hairy roots of the transgenic control harboring the empty vector but substantially reduced the maximum root length, root fresh weight, and relative water content (RWC). The isoflavone content in hrGmIFS1 roots, however, was significantly higher, and the above-mentioned root growth parameters decreased much less. The GmIFS1 gene was also transformed into tobacco plants; plant height and leaf fresh weight of transgenic GmIFS1 tobacco plants were much greater than control plants after being treated with 85 mM NaCl. Leaf antioxidant capacity of transgenic tobacco was significantly higher than the control plants. Our results suggest that salt stress-induced GmIFS1 expression increased isoflavone accumulation in soybean and improved salt tolerance in transgenic soybean hairy roots and tobacco plants.  相似文献   

10.
The flowers of Pyrethrum (Chrysanthemum cinerariaefolium) are known to contain Pyrethrins that are naturally occurring potential insecticide. Hairy roots were induced from leaves of C. cinerariaefolium using Agrobacterium rhizogenes strain A4. The root clones were characterized in to four groups i.e. thick, unbranched (D2 and D5), thin, highly branched (D3), thick, branched (B2) and thick, highly branched (D1, D6). Six established hairy root clones showed the presence of pyrethrin and were selected for elicitation studies. Growth kinetics studies revealed highest growth index in hairy root clone D1 (592.0) followed by D6 and D3 on dry weight basis after 40 days of culture. The maximum pyrethrin content was found in the clone D3 (7.2 mg/g dw) which is comparable to the flowers obtained from the variety “Avadh”. Hairy root clone D2 (5.2 mg/g dw) and D6 (1.3 mg/g dw) contained pyrethrin but in less amount as compared to clone D3. The PCR analysis showed the presence of rol B and rol C genes in all the six hairy root clones while rol A was detected only in D2 clone. The methanolic extract of D3 clone showed antifungal activities against phytopathogenic fungal strains which were found maximum against Curvuleria andropogonis followed by Colletotrichum acutatum and Rhizoctonia solani. Hairy root clones D2, D3 and D6 were elicited with culture filtrate of endophytic fungus (Fusarium oxysporum) and bacteria (Bacillus subtilis). The culture filtrate (4.0?%v/v) of both the fungal and bacterial origin was found to be effective in enhancing the pyrethrin content in all the tested hairy root clones. Clone D3 showed maximum pyrethrin content on elicitation with F. oxysporum (9.7 mg/g dw) and B. subtilis (9.7 mg/g dw) culture filtrate, which is 32?% higher than the non elicited D3 hairy roots (7.2 mg/g dw). F. oxysporum also enhanced the hairy root growth resulting into the higher biomass yield of D3 (50?%) and D2 (76?%) in comparison to control non elicited hairy root clones of D3 and D2, respectively leading to higher pyrethrin yield.  相似文献   

11.
Plant infection with Agrobacterium rhizogenes leads to the development of a hairy root disease notable for the rapid agravitropic growth of roots on hormone-free nutrient media. In order to look into the interaction of A. rhizogenes with plants and assess opportunities of practical application of hairy root culture, new approaches to their production are elaborated. A method of bacterium-free and plasmid-free production of genetically modified roots (hairy roots) by means of biolistic transformation of leaf explants with a DNA fragment (size of 5461 bp) consisting of genes rolA, rolB, rolC, and rolD are proposed. In most cases, such transformation resulted in the emergence of only adventitious roots with transient expression of rol-genes, and the growth of such roots on hormone-free media ceased in 2–3 months in contrast to genuine hairy roots capable of unrestricted growth. Molecular analysis of different systems of target genes’ expression showed an important role of transgene rolC and host gene of cyclin-dependent protein kinase CDKB1-1 in the maintenance of rapid growth of hairy roots in vitro (in isolated cultures).  相似文献   

12.
Piriformospora indica, a root endophytic fungus, has been reported to promote growth of many plants under normal condition and allow the plants to survive under stress conditions. However, its impact on an important medicinal plant Aloe vera L. has not been well studied. Therefore, this study was undertaken to investigate the effect of P. indica on salinity stress tolerance of A. vera plant. P. indica inoculated and non-inoculated A. vera plantlets were subjected to four levels of salinity treatment- 0, 100, 200 and 300 mM NaCl. The salinity stress decreased the ability of the fungus to colonize roots of A. vera but the interaction of A. vera with P. indica resulted in an overall increase in plant biomass and greater shoot and root length as well as number of shoots and roots. The photosynthetic pigment (Chl a, Chl b and total Chl) and gel content were significantly higher for the fungus inoculated A. vera plantlets, at respective salinity concentrations. Furthermore, the inoculated plantlets had higher phenol, flavonoid, flavonol, aloin contents and radical scavenging activity at all salinity concentrations. The higher phenolic and flavonoid content may help the plants ameliorate oxidative stress resulting from high salinity.  相似文献   

13.
The present research investigates the effect of Piriformospora indica, an endophytic fungus, on production of protoberberine alkaloids in in vitro cell suspension cultures of Tinospora cordifolia. Although T. cordifolia produces a number of protoberberine alkaloids, the simultaneous production of jatrorrhizine and palmatine in cell suspension cultures of T. cordifolia was observed for the first time with the use of P. indica as biotic elicitor. The cells in suspension cultures were elicitated with P. indica on 14th day of culture initiation and the production of the alkaloids on 16th day was monitored. The autoclaved as well as filter sterilized cultures of P. indica were used in addition to the use of fungal cell extract. The elicitor effect of P. indica was analyzed and compared with other abiotic elicitor (methyl jasmonate) and biotic elicitors (chitin and chitosan). The culture filtrate of P. indica in the filter sterilized (5.0% v/v) form gave better response with enhanced 4.2-fold production of jatrorrhizine (10.72 mg/g DW) and 4.0-fold production of palmatine (4.39 mg/g DW). The production of these compounds was at par with that achieved in methyl jasmonate (at 250 µM) treated cell suspension cultures.  相似文献   

14.
15.
Glycyrrhiza glabra is one of the most important and well-known medicinal plants which produces various triterpene saponins such as glycyrrhizin. Beta-amyrin 11-oxidase (CYP88D6) plays a key role in engineering pathway of glycyrrhizin production and converts an intermediated beta-amyrin compound to glycyrrhizin. In this study, pBI121GUS-9:CYP88D6 construct was transferred to G. glabra using Agrobacterium rhizogene ATCC 15834. The quantitation of transgene was measured in putative transgenic hairy roots using qRT-PCR. The amount of glycyrrhizin production was measured by HPLC in transgenic hairy root lines. Gene expression analysis demonstrated that CYP88D6 was over-expressed only in one of transgenic hairy root lines and was reduced in two others. Beta-amyrin 24-hydroxylase (CYP93E6) was significantly expressed in one of the control hairy root lines. The amount of glycyrrhizin metabolite in over-expressed line was more than or similar to that of control hairy root lines. According to the obtained results, it would be recommended that multi-genes of glycyrrhizin biosynthetic pathway be transferred simultaneously to the hairy root in order to increase glycyrrhizin content.  相似文献   

16.
A highly stable and productive hairy root culture from peanut cultivar Tainan9 (T9-K599) was established using Agrobacterium rhizogenes strain K599 (NCPPB 2659)-mediated transformation. Valuable phenolic compounds with antioxidant activity and stilbene compounds were produced and secreted into the culture medium after elicitation with 100 µM methyl jasmonate (MeJA) and 6.87 mM cyclodextrin (CD). The antioxidant activity of the culture medium was increased to the highest Trolox equivalent antioxidant capacity (TEAC) value (28.30?±?2.70 mM Trolox/g DW) in the group treated with CD. The group co-treated with MeJA and CD exhibited the highest phenolic content, with a gallic acid equivalent (GAE) value of 10.80?±?1.00 µg gallic acid/g DW. The CuZn-SOD (CuZn superoxide dismutase) and APX (ascorbate peroxidase) antioxidant enzyme gene were up-regulated in the treatment with CD alone while the CuZn-SOD, GPX (glutathione peroxidase) and APX gene expression were down-regulated in the co-treatment with MeJA plus CD. The stilbene compounds resveratrol, trans-arachidin-1 and trans-arachidin-3 were detected by analysing the culture medium treated with CD alone and after co-treatment with MeJA and CD via HPLC. The LC-MS/MS results confirmed the presence of resveratrol, trans-arachidin-1, trans-arachidin-3, 4-Isopentadienyl-3,5,3′,4′-tetrahydroxystilbene (IPP), trans-3′-Isopentadienyl-3,5,4′-trihydroxystilbene (IPD) and arahypin-7. The results indicate that elicited peanut hairy roots can produce beneficial stilbene compounds that have antioxidant properties and anti-inflammatory activity. This peanut hairy root system could be applied as an experimental model to enhance the production of stilbene and other polyphenolic bioactive compounds.  相似文献   

17.
Serendipita indica is an axenically cultivable fungus, which colonizes a broad range of plant species including the model plant Arabidopsis thaliana. Root colonization by this endophyte leads to enhanced plant fitness and performance and promotes resistance against different biotic and abiotic stresses. The involvement of MPK6 in this mutualistic interaction had been previously shown with an mpk6 A. thaliana mutant, which failed to respond to S. indica colonization. Here, we demonstrate that mpk6 roots are significantly less colonized by S. indica compared to wild-type roots and the foliar application of plant hormones, ethylene, or jasmonic acid, restores the colonization rate at least to the wild-type level. Further, hormone-treated mpk6 plants show typical S. indica-induced growth promotion effects. Moreover, expression levels of several genes related to plant defense and hormone signaling are significantly changed at different colonization phases. Our results demonstrate that the successful root colonization by S. indica depends on efficient suppression of plant immune responses. In A. thaliana, this process relies on intact hormone signaling in which MPK6 seems to play a pivotal role.  相似文献   

18.
The beneficial root-colonizing fungus Piriformospora indica stimulates root development of Chinese cabbage (Brassica campestris subsp. Chinensis) and this is accompanied by the up-regulation of a τ-class glutathione (GSH)-S-transferase gene (BcGSTU) (Lee et al. 2011) in the roots. BcGSTU expression is further promoted by osmotic (salt and PEG) and heat stress. Ectopic expression of BcGSTU in Arabidopsis under the control of the 35S promoter results in the promotion of root and shoot growth as well as better performance of the plants under abiotic (150 mM NaCl, PEG, 42?°C) and biotic (Alternaria brassicae infection) stresses. Higher levels of glutathione, auxin and stress-related (salicylic and jasmonic acid) phytohormones as well as changes in the gene expression profile result in better performance of the BcGSTU expressors upon exposure to stress. Simultaneously the plants are primed against upcoming stresses. We propose that BcGSTU is a target of P. indica in Chinese cabbage roots because the enzyme participates in balancing growth and stress responses, depending on the equilibrium of the symbiotic interaction. A comparable function of BcGST in transgenic Arabidopsis makes the enzyme a valuable tool for agricultural applications.  相似文献   

19.
To evaluate the ability of Arabidopsis thaliana hairy roots to produce heterologous proteins, hypocotyls were transformed with Rhizobium rhizogenes harbouring a green fluorescent protein gene (gfp) fused to a plant signal peptide sequence. Hairy root transgenic lines were generated from wild-type or mutant genotypes. A line secreted GFP at 130 mg/l of culture medium. Unlike as was previously found with turnip hairy roots, a His-tag was still attached to approximately 50?% of the protein. Control of the pH and addition of a protease inhibitor to the culture medium resulted in up to 87?% of the GFP retaining the His-tag. A. thaliana hairy roots expressing the human serpina1 (α-1-antitrypsin) gene secreted the protein, which was visible on a PAGE gel. Protein activity in the culture medium was demonstrated using an elastase inhibition assay. A. thaliana hairy roots can now be considered for the production of heterologous proteins, making it possible to mine the numerous genetic resources for enhancing protein production and quality.  相似文献   

20.
Proteins with glycine-rich repeats have been identified in plants, mammalians, fungi, and bacteria. Plant glycine-rich proteins have been associated to stress response. Previously, we reported that the Arabidopsis thaliana AtGRDP2 gene, which encodes a protein with a glycine-rich domain, plays a role in growth and development of A. thaliana and Lactuca sativa. In this study, we generated composite Phaseolus vulgaris plants that overexpress the AtGRDP2 gene in hairy roots generated by Agrobacterium rhizogenes. We observed that hairy roots harboring the AtGRDP2 gene developed more abundant and faster-growing roots than control hairy roots generated with the wild type A. rhizogenes. In addition, composite common bean plants overexpressing the AtGRDP2 gene in roots were more tolerant to salt stress showing increments in their fresh and dry weight. Our data further support the role of plant GRDP genes in development and stress response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号