首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species-rich Hieracium subgen. Pilosella is well-known for a high degree of endemism and infra-specific differentiation including many subspecies (“microspecies”) of very restricted distribution. In Hieracium subgen. Pilosella floral scents of 27 predominantly Bavarian species, mostly of Hieracium calodon, H. zizianum and H. densiflorum, are investigated here. Floral scent compositions were studied by GC-MS analysis of dynamic headspace samples. Altogether, 56 floral scent compounds were identified, mainly benzenoids, fatty acid derivatives, monoterpenes, homoterpenes and sesquiterpenes. The chemical patterns were found to be taxon-specific and are thus of taxonomical value. The data support some rearrangements at subspecific level, such as the inclusion of H. bauhini subsp. hispidissimum in H. densiflorum. These rearrangements are supported by morphological data. The traditional species concepts, however, are mostly corroborated by our scent data.  相似文献   

2.
The Hieracium and Pilosella (Lactuceae, Asteraceae) genera of closely related hawkweeds contain species with two different modes of gametophytic apomixis (asexual seed formation). Both genera contain polyploid species, and in wild populations, sexual and apomictic species co-exist. Apomixis is known to co-exist with sexuality in apomictic Pilosella individuals, however, apomictic Hieracium have been regarded as obligate apomicts. Here, a developmental analysis of apomixis within 16 Hieracium species revealed meiosis and megaspore tetrad formation in 1 to 7% of ovules, for the first time indicating residual sexuality in this genus. Molecular markers linked to the two independent, dominant loci LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP) controlling apomixis in Pilosella piloselloides subsp. praealta were screened across 20 phenotyped Hieracium individuals from natural populations, and 65 phenotyped Pilosella individuals from natural and experimental cross populations, to examine their conservation, inheritance and association with reproductive modes. All of the tested LOA and LOP-linked markers were absent in the 20 Hieracium samples irrespective of their reproductive mode. Within Pilosella, LOA and LOP-linked markers were essentially absent within the sexual plants, although they were not conserved in all apomictic individuals. Both loci appeared to be inherited independently, and evidence for additional genetic factors influencing quantitative expression of LOA and LOP was obtained. Collectively, these data suggest independent evolution of apomixis in Hieracium and Pilosella and are discussed with respect to current knowledge of the evolution of apomixis.  相似文献   

3.
Two pollen stainability tests (Alexander’s stain and acetocarmine) were used to detect differences in pollen viability of the sexual, apomictic and sterile plants of Hieracium subgen. Pilosella. In sexual taxa (Hieracium bauhini and H. densiflorum), the average stainability was 93.7–98.4%. Similarly high stainability (92.2–97.2%) was found in the apomictic Hieracium pilosellinum and in the majority of the apomictic populations (or plants) of the pentaploid and hexaploid H. bauhini. In some apomictic plants of Hieracium bauhini the average pollen stainability was 49.0–75.4%. The lowest pollen stainability was found in the sterile plants, i.e. the triploid H. pistoriense (33.6%) and the pentaploid H. brachiatum (29.6%).  相似文献   

4.
Five species are recognized inHieracium subgen.Pilosella sect.Pilosellina Fries. Four are diploid (2x, 2n = 18), one (H. pilosella L.) is highly variable morphologically and cytologically (from 2x to 10x), in its mode of reproduction (self-incompatibility, agamospermy, amphimixis, apo-amphimixis) and in its hybridization pattern. A part of this huge agamic complex was analysed by comparing sexual 4x and apomictic 5x plants (crossing and germination experiments, measurements of vegetative reproduction by stolons etc.). In the experimental garden apomictic 5x produced more stolons than the sexual 4x plants and the total length of the stolons per rosette was greater. However, in nature, the competitive potential of the sexual plants seems to be higher, presumably as a result of the higher mortality of ramets in 5x. Sexual 4x plants often grow in dense and grazed grass vegetation, whereas 5x apomicts often occur in dunes with patchy vegetation. Apomicts produce more capitula per rosette, and sexual rosettes form only about 60% of the number of viable achenes as compared to apomictic ones. Therefore, apomicts appear to be characterized by a greater colonizing ability than sexual plants. Apomictic plants produce equal numbers of viable achenes under conditions of both open pollination and isolation. Sexual plants do not form any viable achenes after isolation and produce a somewhat lower percentage of achenes after open pollination than do apomictics. 5xreproduce exclusively apomictically. Apo-amphimixis was never observed in pentaploids and only very rarely in tetraploids. Addition hybrids are very rare. The cross sexual 4x × apomictic 5x failed in 70% of the attempts, but the recombination of genomes carrying genes for apomixis is possible and results in apomictic 4x and sexual 5x, both with a reduced number of viable achenes. In nature sexual and apomictic plants may occur in close proximity. In such cases the germination rate of the achenes of 4x and 5x is lower; this may indicate that apomictic plants fertilize sexual plants in nature (unidirectional gene-flow). 5x plants form euploid gametes carrying two or three genomes. The results of the crossing experiments can be explained in terms ofNogler's theory of monogenic inheritance of apospory.Variation and evolution inHieracium subg.Pilosella sect.Pilosellina I.  相似文献   

5.
6.
The presence of autogamy inHieracium subgen.Pilosella is reported for diploidH. lactucella and tetraploidH. pilosella. Self-compatibility is induced under the influence of pollen from another species (mentor effects).  相似文献   

7.
The present paper reviews mechanisms producing complicated patterns of variation withinHieracium subgen.Pilosella. The taxonomic complexity of this subgenus is due to highly variable basic species and intermediate (hybridogenous) species. The most important sources of variation are polyploidy, hybridization and (mostly) facultative apomixis of the aposporous type. The combination of hybridization, apomixis and clonal growth leads to the maintenance of various hybrids having originated from backcrossing and hybridization among more than two species, which is possible because of the fertile pollen of apomictic hybrids. Ever since Mendel’s experiments, some of F1 hybrids have been found to be highly variable, probably reflecting the high heterozygosity of some of the basic species. Variable progeny can also result from unreduced gametes, or the rare parthenogenetic development of reduced gametes. While these processes were detected in experiments, their role within field populations remains unknown. However, multiple origins of intermediate species, and introgression within basic species are highly likely to result in high levels of variation. While few population level studies have been undertaken in Europe, several such studies have been carried out on adventive populations in New Zealand, and these show a different pattern. Aneuploid plants, rare in Europe, are common in New Zealand, and there is frequently more than one ploidy level within a population.  相似文献   

8.
9.
DNA fingerprinting has proved useful for the analysis of genotypic distribution and estimation of genetic relatedness in apomictic plant groups likeRubus, Amelanchier, Hieracium andTaraxacum. Speciation through interspectific hybridization has been demonstrated in one case involving apomicticRubus species. The application of molecular markers to progeny derived from experimental cross-pollinations has yielded information on levels of apomixis as well as on its inheritance and regulation in e.g.Rubus, Poa, Pennisetum andTripsacum.  相似文献   

10.
The foliar indumentum of 94 taxa of Rubus has been surveyed by scanning electron microscopy. The analysed species belonged to five subgenera. Rubus subgen. Rubus with its three sections and 21 series was the most numerously represented. In all studied species, indumentum was present, but the species differed more or less from each other with respect to the density of the indumentum on the abaxial leaf surface. Three main hair types were present: simple eglandular (unbranched) trichomes, branched eglandular trichomes, and very short secretory uni‐seriate trichomes; subtypes were distinguished according to trichome size. Apart from investigating separate traits, we described character patterns for the best represented and homogeneous series: Discolores, Subthyrsoidei, Rhamnifolii and Rubus. Other large groups (Sylvatici, Glandulosi and Micantes) were more diverse.  相似文献   

11.
12.
13.
In apomictic Hieracium subgenus Pilosella species, embryo sacs develop in ovules without meiosis. Embryo and endosperm formation then occur without fertilization, producing seeds with a maternal genotype encased in a fruit (achene). Genetic analyses in H. praealtum indicate a dominant locus (LOA) controls meiotic avoidance, and another dominant locus (LOP) controls both fertilization-independent embryogenesis and endosperm formation. While cytologically examining developmental events in ovules of progeny from crosses between different wild-type and mutant Hieracium apomicts, and a sexual Hieracium species, we identified two plants, AutE196 and AutE24, which have lost the capacity for meiotic avoidance and fertilization-independent embryo formation. AutE196 and AutE24 exhibit autonomous endosperm formation and set parthenocarpic, seedless achenes at a penetrance of 18 %. Viable seed form after pollination. Cytological examination of 102 progeny from a backcross of AutE196 with sexual H. pilosella showed that autonomous endosperm formation is a heritable, dominant, qualitative trait, detected in 51 % of progeny. Variation in quantitative trait penetrance indicates other factors influence its expression. The correlation between autonomous endosperm development and mature parthenocarpic achene formation suggests the former is sufficient to trigger fruit maturation in Hieracium. The developmental component of autonomous endosperm formation is therefore genetically separable from those controlling meiotic avoidance and autonomous embryogenesis in Hieracium and has been denoted as AutE. We postulate that tight linkage of AutE and genes controlling autonomous embryogenesis at the LOP locus in H. praealtum may explain why inheritance of autonomous seed formation is typically observed as a single component.  相似文献   

14.

Background  

Hieracium s.str. is a complex species-rich group of perennial herbs composed of few sexual diploids and numerous apomictic polyploids. The existence of reticulation and the near-continuity of morphological characters across taxa seriously affect species determination, making Hieracium one of the best examples of a 'botanist's nightmare'. Consequently, its species relationships have not previously been addressed by molecular methods. Concentrating on the supposed major evolutionary units, we used nuclear ribosomal (ETS) and chloroplast (trnT - trnL) sequences in order to disentangle the phylogenetic relationships and to infer the origins of the polyploids.  相似文献   

15.
The DNA ploidy level of 673 accessions belonging to 238 species of Hieracium have been analyzed by flow cytometry. 222 of the species were of Scandinavian origin as members of the exclusively apomictic H. sectt. Bifida, Hieracium, Oreadea, Tridentata and Vulgata. For the overwhelming majority of the species, the ploidy level (or chromosme number) has never been investigated before. Approximately 50% of the Scandinavian species, previously believed to be exclusively triploid, were found to be tetraploid. In addition, two pentaploid samples, viz. H. intermarginatum Johanss. & Sam. from Sweden and H. cf. plumbeum Blytt & Fr. from Germany, were found. Although two or more accessions from geographically remote sites were analyzed for approximately 50% of the Scandinavian species, only 2 (<2%) taxonomically undisputed species were found to consist of plants with more than one ploidy level. An intriguing pattern was revealed among Scandinavian members of H. sectt. Bifida and Vulgata when ploidy level and morphometric variation was compared, viz. the most typical or extreme representatives of these sections were found to be exclusively triploid whereas tetraploids dominate among species with intermediate morphology and among species morphologically intermediate between these sections and H. sect. Hieracium. This pattern may indicate that the tetraploids, which tend to have mainly northern distributions, have originated as the result of rare sexual hybridizations between triploid members of different sections, plausibly during or after the northward migration of the parental linages after the last glaciation. The results are believed to be highly relevant for understanding the processes of evolution and speciation within the predominantly apomictic genus Hieracium, but it is emphazised that additional data from e.g. molecular markers and pollen viability analysis are needed before any trustworthy conclusions can be made as far as evolutionary processes are concerned.  相似文献   

16.
Tucker MR  Paech NA  Willemse MT  Koltunow AM 《Planta》2001,212(4):487-498
Callose accumulates in the walls of cells undergoing megasporogenesis during embryo sac formation in angiosperm ovules. Deficiencies in callose deposition have been observed in apomictic plants and causal linkages between altered callose deposition and apomictic initiation proposed. In apomictic Hieracium, embryo sacs initiate by sexual and apomictic processes within an ovule, but sexual development terminates in successful apomicts. Callose deposition and the events that lead to sexual termination were examined in different Hieracium apomicts that form initials pre- and post-meiosis. In apomictic plants, callose was not detected in initial cell walls and deficiencies in callose deposition were not observed in cells undergoing megasporogenesis. Multiple initial formation pre-meiosis resulted in physical distortion of cells undergoing megasporogenesis, persistence of callose and termination of the sexual pathway. In apomictic plants, callose persistence did not correlate with altered spatial or temporal expression of a β-1,3-glucanase gene (HpGluc) encoding a putative callose-degrading enzyme. Expression analysis indicated HpGluc might function during ovule growth and embryo sac expansion in addition to callose dissolution in sexual and apomictic plants. Initial formation pre-meiosis might therefore limit the access of HpGluc protein to callose substrate while the expansion of aposporous embryo sacs is promoted. Callose deposition and dissolution during megasporogenesis were unaffected when initials formed post-meiosis, indicating other events cause sexual termination. Apomixis in Hieracium is not caused by changes in callose distribution but by events that lead to initial cell formation. The timing of initial formation can in turn influence callose dissolution. Received: 18 April 2000 / Accepted: 10 July 2000  相似文献   

17.
Apomixis, asexual reproduction through seeds, occurs in over 40 plant families. This widespread phenomenon can lead to the fixation of successful genotypes, resulting in a fitness advantage. On the other hand, apomicts are expected to lose their fitness advantage if the environment changes because of their limited evolutionary potential, which is due to low genetic variability and the potential accumulation of deleterious somatic mutations. Nonetheless, some apomicts have been extremely successful, for example certain apomictic accessions of Hieracium pilosella L. from New Zealand, where the plant is invasive. Here, we investigate whether the success of these apomictic accessions could be due to a fitness advantage by comparing the vegetative competitiveness of apomictic H. pilosella from New Zealand with sexual accessions of H. pilosella from Europe. Sexual and apomictic plants were grown either (A) alone (no competition), (B) in competition with the other type (intra-specific competition), (C) in competition with the grass Bromus erectus (inter-specific competition), and (D) in competition with the other type and the grass B. erectus (intra- and inter-specific competition). To distinguish effects of apomixis and the region of origin, different H. pilosella lineages were compared. Furthermore, experiments were carried out to investigate effects of the ploidy level. We show that sexual plants are better inter-specific competitors than apomicts in terms of vegetative reproduction (number of stolons) and vegetative spread (stolon length), while apomicts do better than sexuals in intra-specific competition. The magnitude of the effect was in some cases dependent on the ploidy levels of the plants. Furthermore, apomicts always produced more stolons than sexuals, suggesting potential displacement of sexuals by apomicts where they co-occur.  相似文献   

18.
 In the partly apomictic Ranunculus cassubicus group, a subgroup of the R. auricomus complex, two species were studied by morphometric analyses: R. cassubicifolius W. Koch (with three diploid and two autotetraploid sexual populations), and R. carpaticola Soó (with three diploid sexual populations and a hexaploid apomictic one). Multidimensional scaling analyses (MDS) of individuals, boxplots and cluster analyses of populations revealed a differentiation of R. cassubicifolius and R. carpaticola, whereby in MDS the hexaploid apomictic individuals are partly intermediate between R. cassubicifolius and R. carpaticola. The cytodemes of R. cassubicifolius showed no morphological and only a weak genetic differentiation. A comparison of morphology, isozymes, reproductive system and ploidy levels showed only partly congruence of data sets in respect of grouping populations, thus illustrating the problem to find criteria for a taxonomic concept. A treatment of the apomictic population as a separate group is indicated by all data sets, afterwards R. cassubicifolius and diploid R. carpaticola represent two other well-defined groups. Canonical variate analysis including all characters confirmed the three suggested groups as significantly different and showed that a total of 89.3% of individuals are correctly classified; number of teeth of stem leaf segments and number of petals are the most discriminating characters. Herbarium studies confirm the morphological differentiation yielded from population samples. The three population groups are even better separated in a canonical variate analysis of isozyme data (presence/absence of 25 alleles) of the same material, here 92.6% of individuals are correctly classified. Morphology and isozyme data suggest that the hexaploid apomict originated from hybrids of R. cassubicifolius and diploid R. carpaticola and must be excluded from the sexual taxa; the final classification and naming of the apomicts must be left for further studies on a larger material. The sexual taxa should be classified as separate species. Herbarium studies indicate that R. carpaticola s.str. is widespread over the Carpathians and might include other populations hitherto ascribed to other microspecies as well. Received November 20, 2001; accepted May 10, 2002 Published online: September 13, 2002  相似文献   

19.
Apomixis is facultative in characterized members of the genus Hieracium. The three components that comprise the apomictic mechanism include apospory followed by autonomous embryo and endosperm formation. The time of aposporous embryo sac initiation and mode of embryo sac formation are different in Hieracium piloselloides (D3) and Hieracium aurantiacum (A3.4). Genetic studies have shown that a single dominant locus encodes all three components of apomixis in both species (Bicknell et al. 2000). We histologically examined a range of related, genetically characterized apomictic Hieracium plants derived from D3 and A3.4 to assess conservation of the apomictic mechanism in different genetic backgrounds. The plants varied in ploidy, and also in the amount of DNA introduced from sexual Hieracium pilosella (P4). An apomictic hybrid from a cross between the two apomicts was also examined. The developmental processes observed in the parental apomicts were not conserved in the examined plants and alterations occurred in the components of apomixis. One plant also exhibited adventitious embryony. The results show that other genetic factors can modify apomixis with respect to time of initiation, spatial location, and mode of developmental progression. Both the apomictic locus and the modifiers are essential for efficient penetrance of the trait in Hieracium. Some of the findings in Hieracium correspond with observations in Ranunculus and this is discussed in terms of models for apomictic development and the control of apomixis in crops. Received: 21 June 1999 / Revision accepted: 17 November 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号