首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study describes the photoperiodic control of annual body mass changes in captive. Svalbard ptarmigan, in particular the onset of autumnal increase and midwinter decrease in fat content under natural and simulated daylight-conditions in Tromsø (69° 46 N). Autumnal fattening commences when the birds become photorefractory and presumably depends on this condition. At present it is not known if any causal relationship is involved. Under outdoor ambient temperature, body mass begins to decline in November. However, when Svalbard ptarmigan are caged indoors at higher ambient temperatures and exposed to natural or simulated annual changes in daylength, body mass remains high until February. In these birds the depletion of fat stores appears to be triggered by the increasing daylength, since body mass remained high under permanent exposure to short days throughout spring but decreased promptly following photostimulation in May. When ptarmigan caged indoors were starved in midwinter body mass fell but increased briefly upon refeeding and thereafter declined as in the control birds throughout spring. This indicates that the winter body mass profile in Svalbard ptarmigan is not merely the passive outcome of shifts in the energy expenditure associated with thermoregulation, and that a sliding set point for body mass exists and is temporally fixed at the seasonal maximum in mid winter in birds caged under indoor ambient temperatures. The possibility is discussed that the decline in body mass seen outdoors may be associated with the increased hypothalamus-pituitary-gonadal activity which follows the breaking of photorefractoriness, and that this activity is sufficiently suppressed in Svalbard ptarmigan caged indoors under exposure to short days, to delay the reduction until they are photostimulated.Abbreviations BM body mass - GH growth hormone - HPG hypothalamic-pituitary-gonadal system - LL continous light - NL natural light - SD short day (4 hours light per day) - SL simulated annual changes in daylength - T a ambient temperature  相似文献   

2.
Immunity is necessary in order to fight parasites and pathogens, but immune protection also incurs a cost for the hosts. Therefore, immunity should be traded against other fitness-related traits. Body mass, as a function of body reserves, is important in birds of temperate zones during winter. Sedentary temperate birds usually increase body mass just before winter to survive a period with low food availability and thermoregulatory requirements. Given that immunity is costly and affects body mass, a trade-off is predicted between body mass and immunity in wintering birds. Such a trade-off was tested experimentally by stimulating the immune system of a group of wintering house sparrows (Passer domesticus) from a Spanish population in an outdoor aviary with a lipopolysaccharide while another group served as control. The activation of the immune system negatively affected body mass, despite the relatively mild temperatures of the study zone. Such a trade-off between body mass and immunity was found in other similar studies during breeding, but not during moult, suggesting that the trade-off between immunity and body mass may vary seasonally.  相似文献   

3.
Winter acclimatization in birds is a complex of several strategies based on metabolic adjustment accompanied by long-term management of resources such as fattening. However, wintering birds often maintain fat reserves below their physiological capacity, suggesting a cost involved with excessive levels of reserves. We studied body reserves of roosting great tits in relation to their dominance status under two contrasting temperature regimes to see whether individuals are capable of optimizing their survival strategies under extreme environmental conditions. We predicted less pronounced loss of body mass and body condition and lower rates of overnight mortality in dominant great tits at both mild and extremely low ambient temperatures, when ambient temperature dropped down to ?43 °C. The results showed that dominant great tits consistently maintained lower reserve levels than subordinates regardless of ambient temperature. However, dominants responded to the rising risk of starvation under low temperatures by increasing their body reserves, whereas subdominant birds decreased reserve levels in harsh conditions. Yet, their losses of body mass and body reserves were always lower than in subordinate birds. None of the dominant great tits were found dead, while five young females and one adult female were found dead in nest boxes during cold spells when ambient temperatures dropped down to ?43 °C. The dead great tits lost up to 23.83 % of their evening body mass during cold nights while surviving individuals lost on average 12.78 % of their evening body mass. Our results show that fattening strategies of great tits reflect an adaptive role of winter fattening which is sensitive to changes in ambient temperatures and differs among individuals of different social ranks.  相似文献   

4.
Birds lose feathers, whether during molt or by accident, and replace them by processes that are energetically demanding. We hypothesized that house sparrows Passer domesticus biblicus use behavioral means to save energy when feathers are lost, and tested the general prediction that house sparrows growing new feathers adjust their behavior to minimize the energy costs of foraging and to increase net energy gain from their food. To test these predictions we divided 18 house sparrows into three groups: 1) plucked – house sparrows from which we plucked 15 flight feathers; 2) cut – house sparrows in which the same 15 feathers were cut off at the calamus below the barbs; and 3) control – unmanipulated house sparrows with plumage intact. We recorded both the quantity of seeds the house sparrows ate and the time they spent foraging from assay food patches. We found that ‘plucked’ sparrows growing new feathers adjust their foraging behavior by reducing their feeding time and the number of visits to a food patch. This allowed them to increase their patch harvest rate while maintaining a steady body mass.  相似文献   

5.
As emperor penguins have no breeding territories, a key issue for both members of a pair is not to be separated until the egg is laid and transferred to the male. Both birds remain silent after mating and thereby reduce the risk of having the pair bond broken by unpaired birds. However, silence prevents finding each other if the pair is separated. Huddles—the key to saving energy in the cold and the long breeding fast—continuously form and break up, but not all birds are involved simultaneously. We studied the behaviour of four pairs before laying. Temperature and light intensity measurements allowed us to precisely detect the occurrence of huddling episodes and to determine the surrounding temperature. The four pairs huddled simultaneously for only 6 per cent of the time when weather conditions were harshest. Despite this asynchrony, the huddling behaviour and the resulting benefits were similar between pairs. By contrast, the huddling behaviour of mates was synchronized for 84 per cent of events. By coordinating their huddling behaviour during courtship despite the apparent confusion within a huddle and its ever-changing structure, both individuals save energy while securing their partnership.  相似文献   

6.
晚成性哺乳动物体温调节能力的胎后发育   总被引:1,自引:0,他引:1  
按照体温调节能力的发育情况,哺乳动物的生长发育可分为早成性、晚成性和未成熟性3类。本文主要综述了晚成性哺乳动物体温调节能力的发育特点。这类动物的幼体出生时一般身体裸露,热传导率较高,产热能力较差,不能进行有效的体温调节。当环境温度低于热中性区时,单独的个体不能维持较高的恒定体温。但晚成性幼体也具有一定的体温调节能力,当受低温刺激时,即使新生幼体也会具有增加代谢率的反应;同时结合亲体关怀和幼体之间的聚群效应以及巢的保温作用等方式,仍能使其体温维持在一个较高的水平。晚成性幼体生理性产热的不足,也可看作是一种有利的特点,这样可以减少能量在体温调节方面的消耗,从而增加用于生长发育的能量。文章最后对可能的发展方向进行了展望。  相似文献   

7.
为研究不同温度驯化条件下大绒鼠体重、体温和能量代谢水平的可塑性变化,本实验测定了热驯化(30℃ ;12L∶ 12D)转脱热驯化(5℃ ;12L∶ 12D)和冷驯化(5℃ ;12L∶ 2D) 转脱冷驯化(30℃ ;12L∶ 12D)条件下,大绒鼠体重、体温、能量收支、静止代谢率和非颤抖性产热的变化。结果表明:大绒鼠在热驯化转脱热驯化过程中,随着热驯化时间的延长,大绒鼠体重和体温增加,摄入能、静止代谢率和非颤抖性产热逐渐降低,在28 d 时降到最低;转到脱热驯化条件下,表现出相反的趋势。冷驯化转入脱冷驯化过程中,随着冷驯化时间的延长,大绒鼠的体重和体温降低,摄入能、静止代谢率和非颤抖性产热逐渐升高,28 d 时达到最高;转移到脱冷驯化条件时,表现出相反的趋势。以上结果说明大绒鼠在不同温度驯化条件下,其体重、能量代谢和产热具有可塑性变化,即通过调节体重、体温和能量代谢来适应不同温度变化。  相似文献   

8.

Background

Within their litter, young altricial mammals compete for energy (constraining growth and survival) but cooperate for warmth. The aim of this study was to examine the mechanisms by which huddling in altricial infants influences individual heat production and loss, while providing public warmth. Although considered as a textbook example, it is surprising to note that physiological mechanisms underlying huddling are still not fully characterised.

Methodology/Principal Findings

The brown adipose tissue (BAT) contribution to energy output was assessed as a function of the ability of rabbit (Oryctolagus cuniculus) pups to huddle (placed in groups of 6 and 2, or isolated) and of their thermoregulatory capacities (non-insulated before 5 days old and insulated at ca. 10 days old). BAT contribution of pups exposed to cold was examined by combining techniques of infrared thermography (surface temperature), indirect calorimetry (total energy expenditure, TEE) and telemetry (body temperature). Through local heating, the huddle provided each pup whatever their age with an ambient “public warmth” in the cold, which particularly benefited non-insulated pups. Huddling allowed pups facing a progressive cold challenge to buffer the decreasing ambient temperature by delaying the activation of their thermogenic response, especially when fur-insulated. In this way, huddling permitted pups to effectively shift from a non-insulated to a pseudo-insulated thermal state while continuously allocating energy to growth. The high correlation between TEE and the difference in surface temperatures between BAT and back areas of the body reveals that energy loss for non-shivering thermogenesis is the major factor constraining the amount of energy allocated to growth in non-insulated altricial pups.

Conclusions/Significance

By providing public warmth with minimal individual costs at a stage of life when pups are the most vulnerable, huddling buffers cold challenges and ensures a constant allocation of energy to growth by reducing BAT activation.  相似文献   

9.
Several wild species of birds, including starlings (Sturnus vulgaris), house sparrows (Passer domesticus) and pigeons (Columba livia) gained access to an aviary housing Rothchild's mynahs (Leucospar rothchildii) and over 100 additional birds representing a variety of species. Six of approximately 15 mynahs became infected with avian pox and all of them died. None of the other birds in the aviary developed lesions. Pox virus was isolated from mynah facial lesions on chicken chorioallantoic membrane and in duck embryo fibroblast cell culture. It did not produce lesions in white Leghorn chickens, but did produce lesions in 4 of 11 wild starlings captured outside the aviary. Results indicated the agent was an indigenous starling pox capable of infecting and producing disease in mynah birds. Destruction of the captive starlings and isolation of the remaining mynahs immediately stopped the mortality.  相似文献   

10.
Bats and birds must balance time and energy budgets during migration. Migrating bats face similar physiological challenges to birds, but nocturnality creates special challenges for bats, such as a conflict between travelling and refueling, which many birds avoid by feeding in daylight and flying at night. As endothermic animals, bats and birds alike must expend substantial amounts of energy to maintain high body temperatures. For migratory birds refueling at stopovers, remaining euthermic during inactive periods reduces the net refuelling rate, thereby prolonging stopover duration and delaying subsequent movement. We hypothesized that bats could mitigate similar ambient-temperature dependent costs by using a torpor-assisted migration strategy. We studied silver-haired bats Lasionycteris noctivagans during autumn migration using a combination of respirometry and temperature-sensitive radiotelemetry to estimate energy costs incurred under ambient temperature conditions, and the energy that bats saved by using torpor during daytime roosting periods. All bats, regardless of sex, age, or body condition used torpor at stopover and saved up to 91% of the energy they would have expended to remain euthermic. Furthermore, bats modulated use of torpor depending on ambient temperature. By adjusting the time spent torpid, bats achieved a rate of energy expenditure independent of the ambient temperature encountered at stopover. By lowering body temperature during inactive periods, fuel stores are spared, reducing the need for refuelling. Optimal migration models consider trade-offs between time and energy. Heterothermy provides a physiological strategy that allows bats to conserve energy without paying a time penalty as they migrate. Although uncommon, some avian lineages are known to use heterothermy, and current theoretical models of migration may not be appropriate for these groups. We propose that thermoregulatory strategies should be an important consideration of future migration studies of both bats and birds.  相似文献   

11.
We evaluated biotic and abiotic predictors of rest-phase hypothermia in wintering blue tits (Cyanistes caeruleus) and also assessed how food availability influences nightly thermoregulation. On any given night, captive blue tits (with unrestricted access to food) remained largely homeothermic, whereas free-ranging birds decreased their body temperature (T b) by about 5°C. This was not an effect of increased stress in the aviary as we found no difference in circulating corticosterone between groups. Nocturnal T b in free-ranging birds varied with ambient temperature, date and time. Conversely, T b in captive birds could not be explained by climatic or temporal factors, but differed slightly between the sexes. We argue that the degree of hypothermia is controlled predominantly by birds’ ability to obtain sufficient energy reserves during the day. However, environmental factors became increasingly important for thermoregulation when resources were limited. Moreover, as birds did not enter hypothermia in captivity when food was abundant, we suggest that this strategy has associated costs and hence is avoided whenever resource levels permit.  相似文献   

12.
Corticosterone concentrations were measured in captive house sparrows (Passer domesticus) and found to vary both daily and with different photoperiods. Basal corticosterone was highest during the dark hours of the daily cycle and lowest during the light hours. This trend remained constant when the birds were held on short-day and long-day light cycles, and while the birds were undergoing a prebasic molt. At all times, corticosterone concentrations significantly increased in response to the stress of handling and restraint. Stress-induced corticosterone concentrations, however, only reflected a daily rhythm when the birds were held on short-days. Furthermore, even though mean basal corticosterone concentrations were equivalent over the short-day, long-day, and molt, total corticosterone output in response to stress was lower in molting birds, especially at night. Therefore, these data indicate that captive house sparrows modulate corticosterone in daily cycles that change in response to photoperiod.  相似文献   

13.
Acclimatization to winter conditions is an essential prerequisite for survival of small passerines of the northern temperate zone. Changes in photoperiod, ambient temperature and food availability trigger seasonal acclimatization in physiology and behavior of many birds. In the present study, seasonal adjustments in several physiological, hormonal, and biochemical markers were examined in wild-captured Eurasian tree sparrows (Passer montanus) from the Heilongjiang Province in China. In winter sparrows had higher body mass and basal metabolic rate (BMR). Consistently, the dry mass of liver, heart, gizzard, small intestine, large intestine and total digestive tract were higher in winter than in that in summer. The contents of mitochondrial protein in liver, and state-4 respiration and cytochrome c oxidase (COX) activity in liver and muscle increased significantly in winter. Circulating level of serum triiodothyronine (T3) was significantly higher in winter than in summer. Together, these data suggest that tree sparrows mainly coped with cold by enhancing thermogenic capacities through increased organ masses and heightened activity of respiratory enzymes activities. The results support the view that prominent winter increases in BMR are manifestations of winter acclimatization in tree sparrows and that seasonal variation in metabolism in sparrows is similar to that in other small temperate-wintering birds.  相似文献   

14.
Mark I.  Avery John R.  Krebs 《Ibis》1984,126(1):33-38
The number of spiders caught by caged Great Tits Parus major in a 10 minute test increased in a sigmoid fashion with ambient temperature between 2 and 13°C. In control tests with immobile prey Calliphora pupae there was no significant effect of temperature. These results indicate that increasing activity of arthropod prey with temperature (Kacelnik 1979b) renders them more vulnerable to predators. We suggest that one reason why small temperate-zone birds such as Great Tits do not forage but sing when they get up in the morning is because low ambient temperatures reduce prey activity and hence the profitability of foraging.  相似文献   

15.
Small wintering passerines adaptively modulate daily body mass acquisition as part of their energy management policy. However, whether birds optimize overnight mass loss or body mass at dawn remains poorly understood. We studied environmental correlates of individual variation in body mass at dusk, overnight mass loss and body mass at dawn in a wild population of Great Tits Parus major wintering in northern Fennoscandia. Body mass at dusk, overnight mass loss and body mass at dawn were independent of prevailing conditions despite extremely low night ambient temperatures. Body mass at dusk was higher in males than in females, and decreased throughout winter and when snowfall was higher in the previous month. Overnight mass loss increased with precipitation during the previous week and tended to be higher in mid‐winter, when nights were longest. However, birds reduced overnight mass loss with higher temperatures in the previous week and higher precipitation in the previous 2 weeks. Dawn body mass was strongly correlated with dusk body mass and overnight mass loss, and showed only mild associations with weather variables once dusk mass was accounted for. Body mass in roosting boreal Great Tits seems to be constrained by recent snowfall as the winter progresses, but otherwise appears to be mostly unaffected by previous and current temperatures, suggesting a regular use of facultative hypothermia.  相似文献   

16.
We studied huddles of Japanese macaques (Macaca fuscata) in the Arashiyama E troop at the “Arashiyama Monkey Park, Iwatayama” of Kyoto, central Japan. The macaques made physical contact with other individuals and formed huddles when the air was cold. The 99–101 adult females and 26–36 adult males in the study troop formed 345 huddles during 42 scan samples in the winter of 2001 and 376 huddles during 52 scan samples in the winter of 2002. The average size of huddles was 2.3 (range 2–7) individuals. Males huddled less frequently than females. Maternal kin-related dyads formed 2-female huddles more frequently than unrelated dyads. Choice of huddling partners might restrict the size of huddles. The most frequently observed 3 and 4-member huddles were triangular and diamond-shaped. Macaques usually huddled ventro–ventrally, ventro–laterally, and ventro–dorsally. A third individual frequently placed the ventral part of its body against the first individual and simultaneously put the lateral part of its body against the second individual, so that the 3 individuals formed a triangular huddle. This behaviour indicates that Japanese macaques choose their position and body direction in the huddle to reduce the area of body surface exposed to the air, thereby conserving body heat.  相似文献   

17.
高山姬鼠冷驯化过程中的能量收支   总被引:4,自引:0,他引:4  
为探讨栖息于横断山地区高山姬鼠的能量代谢特征,采用食物平衡法,在冷驯化条件下,对其能量收支进行了测定。分别测定了冷驯化(5 ± 1℃ ,42 d)过程中,高山姬鼠体重、体温、每日摄入能、消化能、消化率、粪便能及可代谢能、可代谢率的变化。结果表明:随着冷驯化时间的延长,高山姬鼠的体重和体温降低,28 d 时达到最低值后保持稳定,其中体重在冷驯化14 d 时即与对照组有显著差异,28 d 时平均比对照组降低了15.5% ,体温在14 d 后和对照组有显著差异。每日摄入能、消化能、可代谢能升高,三者均在冷驯化14 d 后与对照组有极显著差异,21 d 时达到最高后保持稳定。粪便能、消化率和可代谢率在冷驯化过程中没有显著变化。高山姬鼠在冷暴露过程中,通过降低体重减少绝对能量需求;通过降低体温减少用于维持体温恒定所消耗的能量;通过增加能量摄入维持正常的生理机能。高山姬鼠在冷驯化过程中表现出的变化模式,与其低纬度、高海拔、年平均温度较低的生存环境有关,这在一定程度上反映了横断山区小型哺乳动物在低温胁迫下的生存机制和适应对策。  相似文献   

18.
How urbanization affects animal populations is in the focus of current ecological research. Existing theory of this topic suggests that the cities' more constant food supplies and lower predation pressure lead to a high proportion of weak competitors in urban populations. To evaluate this hypothesis, we tested whether competitive performance differs between differently urbanized populations of house sparrows Passer domesticus. We previously showed that wild urban sparrows are smaller and leaner than rural conspecifics, and this difference persists for months under identical captive conditions. Here we compared several aspects of their competitiveness (fighting, scrambling and searching for food) in captive mixed flocks of urban and rural birds. We found that sparrows exhibited consistent individual differences in competitiveness, but these differences were not related either to the degree of urbanization of their original habitats or to their body mass. Moreover, the variance in competitive abilities also did not differ between birds from more and less urbanized habitats. Thus our results did not support the hypothesis that urbanization shifts population structure towards an over‐abundance of weak competitors in house sparrows. We discuss possible explanations why sparrow populations may not differ in competitiveness despite the smaller body mass of urban birds.  相似文献   

19.
We examined the effects of cage size and testosterone (T) levels on basal and peak metabolic rates (BMR and PMR, respectively) and on pectoral and leg muscle masses of male house sparrows (Passer domesticus). Birds were housed either in small birdcages or in flight aviaries for at least 2 weeks prior to the initial metabolic evaluations. They were then implanted with either empty or T-filled silastic capsules and remeasured 5-6 weeks later. Birds treated with single T implants achieved breeding levels (4-6 ng/mL) and one group given double implants reached 10 ng/mL. There was no effect of T on BMR or PMR in any group studied, but there was an effect of caging. Caged birds showed significant reductions in PMR over the course of captivity, whereas PMR in aviary-housed birds were indistinguishable from their free-living counterparts. Testosterone treatment significantly increased leg muscle mass in caged birds, but had no effect on muscle mass in aviary-housed sparrows. We conclude that testosterone has no direct effect on sparrow metabolic rate or muscle mass, but may interact with cage conditions to produce indirect changes to these variables.  相似文献   

20.
We examined the effects of cage size and testosterone (T) levels on basal and peak metabolic rates (BMR and PMR, respectively) and on pectoral and leg muscle masses of male house sparrows (Passer domesticus). Birds were housed either in small birdcages or in flight aviaries for at least 2 weeks prior to the initial metabolic evaluations. They were then implanted with either empty or T-filled silastic capsules and remeasured 5-6 weeks later. Birds treated with single T implants achieved breeding levels (4-6 ng/mL) and one group given double implants reached 10 ng/mL. There was no effect of T on BMR or PMR in any group studied, but there was an effect of caging. Caged birds showed significant reductions in PMR over the course of captivity, whereas PMR in aviary-housed birds were indistinguishable from their free-living counterparts. Testosterone treatment significantly increased leg muscle mass in caged birds, but had no effect on muscle mass in aviary-housed sparrows. We conclude that testosterone has no direct effect on sparrow metabolic rate or muscle mass, but may interact with cage conditions to produce indirect changes to these variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号