首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While the factors influencing reproduction and survival in colonial populations are relatively well studied, factors involved in dispersal and settlement decisions are not well understood. The present study investigated exchanges of great cormorants Phalacrocorax carbo sinensis among six breeding colonies over a 13‐year period when the breeding population in Denmark increased from 2800 to 36 400 nests. We used a multistate capture‐recapture model that combined multisite resightings and recoveries to examine simultaneously recruitment, natal dispersal, breeding dispersal and annual survival of first‐year, immature and breeding great cormorants. Mean survival of first‐year birds (0.50±0.09, range=0.42–0.66 among colonies) was lower than survival of breeders (0.90±0.06, range=0.81–0.97). Mean survival of immature birds over the study period was 0.87±0.08. Dispersal from a colony increased with decreasing mean brood size in the colony in both first‐time and experienced breeders. The choice of the settlement colony in first‐time breeders was affected by conditions in the natal colony and in the colonies prospected during the pre‐breeding years. In particular, first‐time breeders recruited to colonies where they could expect better breeding success. Experienced breeders relied mainly on cues present early in the season and on their own breeding experience to choose a new breeding colony. Newly established colonies resulted mainly from the immigration of first‐time breeders originating from denser colonies. Dispersal was distance‐dependent and first‐time breeders dispersed longer distances than breeders. We suggest that the prospecting behaviour allows first‐time breeders to recruit in nearby as well as more distant potential breeding colonies. Dispersing breeders preferred to settle in neighbouring colonies likely to benefit from their experience with foraging areas. We discuss the importance of these movements for growth and expansion of the breeding population.  相似文献   

2.
Dispersal (i.e. movement from a natal or breeding site to another breeding site) is a central process in ecology and evolution as it affects the eco‐evolutionary dynamics of spatially structured populations. Dispersal evolution is regulated by the balance between costs and benefits, which is influenced by the individual phenotype (i.e. phenotype‐dependent dispersal) and environmental factors (i.e. condition‐dependent dispersal). Even though these processes have been extensively studied in species with simple life cycles, our knowledge about these mechanisms in organisms displaying complex life cycles remains fragmentary. In fact, little is specifically known about how the interplay between individual and environmental factors may lead to alternative dispersal strategies that, in turn, lead to the coexistence of contrasted site fidelity phenotypes. In this paper, we examined breeding dispersal in a pond‐breeding amphibian, the great crested newt Triturus cristatus, within usual walking distances for a newt. We took advantage of recent developments in multi‐event capture–recapture models and used capture–recapture data (946 newts marked) collected in a spatially structured population occupying a large pond network (73 ponds). We showed a high rate of breeding site infidelity (i.e. pond use) and the coexistence of two dispersal phenotypes, namely, a highly pond faithful phenotype and a dispersing phenotype. Individuals that were site faithful at time t – 1 were therefore more likely to remain site faithful at time t. Our results also demonstrated that the probability that individuals belong to one or the other dispersal phenotypes depended on environmental and individual factors. In particular, we highlighted the existence of a dispersal syndrome implying a covariation pattern among dispersal behavior, body size, and survival. Our work opens new research prospects in the evolution of dispersal in organisms displaying complex life cycles and raises interesting questions about the evolutionary pathways that contribute to the diversification of movement strategies in the wild.  相似文献   

3.
In some animal populations, immigrants have lower survival than philopatric individuals. Costs of dispersal or low phenotypic quality of dispersers may explain the pattern. However, apparent adult survival estimates, which describe real survival combined with site fidelity cannot be separated from permanent emigration. Thus, heterogeneity in breeding dispersal propensities of immigrants and philopatrics can bias fitness correlates of dispersal. Differences in breeding dispersal propensities may be caused by different strategies in response to environmental cues inducing dispersal, such as reproductive success. In such cases, the reported differences between immigrants and philopatric individuals may not reflect true variation in survival. We studied whether dispersal status specific apparent adult survival is associated with reproductive success in a Temminck's stint Calidris temminckii population. We analysed two long term capture–recapture datasets characterised by low and high nest predation levels. Philopatric individuals had higher apparent adult survival than immigrants in both datasets and the difference was highlighted during the high nest predation period. By contrasting return rates between successful and unsuccessful breeders as a proxy for dispersal, we found that unsuccessful immigrants breeding for the first time dispersed more likely than successful immigrants, but such a pattern was not found among philopatric individuals. Our results support the hypothesis that immigrant and philopatric individuals have different breeding dispersal strategies following reproductive failure and that their apparent adult survival differences are at least partly explained by different breeding dispersal propensities. Our results also suggest that the recent decline of the study population reflects a multiple response to increased nest predation through decreased local recruitment and increased emigration.  相似文献   

4.
The distribution of suitable habitat influences natal and breeding dispersal at small spatial scales, resulting in strong microgeographic genetic structure. Although environmental variation can promote interpopulation differences in dispersal behavior and local spatial patterns, the effects of distinct ecological conditions on within‐species variation in dispersal strategies and in fine‐scale genetic structure remain poorly understood. We studied local dispersal and fine‐scale genetic structure in the thorn‐tailed rayadito (Aphrastura spinicauda), a South American bird that breeds along a wide latitudinal gradient. We combine capture‐mark‐recapture data from eight breeding seasons and molecular genetics to compare two peripheral populations with contrasting environments in Chile: Navarino Island, a continuous and low density habitat, and Fray Jorge National Park, a fragmented, densely populated and more stressful environment. Natal dispersal showed no sex bias in Navarino but was female‐biased in the more dense population in Fray Jorge. In the latter, male movements were restricted, and some birds seemed to skip breeding in their first year, suggesting habitat saturation. Breeding dispersal was limited in both populations, with males being more philopatric than females. Spatial genetic autocorrelation analyzes using 13 polymorphic microsatellite loci confirmed the observed dispersal patterns: a fine‐scale genetic structure was only detectable for males in Fray Jorge for distances up to 450 m. Furthermore, two‐dimensional autocorrelation analyzes and estimates of genetic relatedness indicated that related males tended to be spatially clustered in this population. Our study shows evidence for context‐dependent variation in natal dispersal and corresponding local genetic structure in peripheral populations of this bird. It seems likely that the costs of dispersal are higher in the fragmented and higher density environment in Fray Jorge, particularly for males. The observed differences in microgeographic genetic structure for rayaditos might reflect the genetic consequences of population‐specific responses to contrasting environmental pressures near the range limits of its distribution.  相似文献   

5.
The lifetime movements of an individual determine the gene flow and invasion potential of the species. However, sex dependence of dispersal and selective pressures driving dispersal have gained much more attention than dispersal at different life and age stages. Natal dispersal is more common than dispersal between breeding attempts, but breeding dispersal may be promoted by resource availability and competition. Here, we utilize mark–recapture data on the nest‐box population of Siberian flying squirrels to analyze lifetime dispersal patterns. Natal dispersal means the distance between the natal nest and the nest used the following year, whereas breeding movements refer to the nest site changes between breeding attempts. The movement distances observed here were comparable to distances reported earlier from radio‐telemetry studies. Breeding movements did not contribute to lifetime dispersal distance and were not related to variation in food abundance or habitat patch size. Breeding movements of males were negatively, albeit not strongly, related to male population size. In females, breeding movement activity was low and was not related to previous breeding success or to competition between females for territories. Natal philopatry was linked to apparent death of a mother; that is, we did not find evidence for mothers bequeathing territories for offspring, like observed in some other rodent species. Our results give an example of a species in which breeding movements are not driven by environmental variability or nest site quality. Different evolutionary forces often operate in natal and breeding movements, and our study supports the view that juveniles are responsible for redistributing individuals within and between populations. This emphasizes the importance of knowledge on natal dispersal, if we want to understand consequences of movement ecology of the species at the population level.  相似文献   

6.
Dispersal is a key trait responsible for the spread of individuals and genes among local populations, thereby generating eco‐evolutionary interactions. Especially in heterogeneous metapopulations, a tight coupling between dispersal, population dynamics and the evolution of local adaptation is expected. In this respect, dispersal should counteract ecological specialization by redistributing locally selected phenotypes (i.e. migration load). Habitat choice following an informed dispersal decision, however, can facilitate the evolution of ecological specialization. How such informed decisions influence metapopulation size and variability is yet to be determined. By means of individual‐based modelling, we demonstrate that informed decisions about both departure and settlement decouple the evolution of dispersal and that of generalism, selecting for highly dispersive specialists. Choice at settlement is based on information from the entire dispersal range, and therefore decouples dispersal from ecological specialization more effectively than choice at departure, which is only based on local information. Additionally, habitat choice at departure and settlement reduces local and metapopulation variability because of the maintenance of ecological specialization at all levels of dispersal propensity. Our study illustrates the important role of habitat choice for dynamics of spatially structured populations and thus emphasizes the importance of considering that dispersal is often informed.  相似文献   

7.
Climate variation and trends affect species distribution and abundance across large spatial extents. However, most studies that predict species response to climate are implemented at small spatial scales or are based on occurrence‐environment relationships that lack mechanistic detail. Here, we develop an integrated population model (IPM) for multi‐site count and capture‐recapture data for a declining migratory songbird, Wilson's warbler (Cardellina pusilla), in three genetically distinct breeding populations in western North America. We include climate covariates of vital rates, including spring temperatures on the breeding grounds, drought on the wintering range in northwest Mexico, and wind conditions during spring migration. Spring temperatures were positively related to productivity in Sierra Nevada and Pacific Northwest genetic groups, and annual changes in productivity were important predictors of changes in growth rate in these populations. Drought condition on the wintering grounds was a strong predictor of adult survival for coastal California and Sierra Nevada populations; however, adult survival played a relatively minor role in explaining annual variation in population change. A latent parameter representing a mixture of first‐year survival and immigration was the largest contributor to variation in population change; however, this parameter was estimated imprecisely, and its importance likely reflects, in part, differences in spatio‐temporal distribution of samples between count and capture‐recapture data sets. Our modeling approach represents a novel and flexible framework for linking broad‐scale multi‐site monitoring data sets. Our results highlight both the potential of the approach for extension to additional species and systems, as well as needs for additional data and/or model development.  相似文献   

8.
Assessing the drivers of survival across the annual cycle is important for understanding when and how population limitation occurs in migratory animals. Density‐dependent population regulation can occur during breeding and nonbreeding periods, and large‐scale climate cycles can also affect survival throughout the annual cycle via their effects on local weather and vegetation productivity. Most studies of survival use mark–recapture techniques to estimate apparent survival, but true survival rates remain obscured due to unknown rates of permanent emigration. This is especially problematic when assessing annual survival of migratory birds, whose movement between breeding attempts, or breeding dispersal, can be substantial. We used a multistate approach to examine drivers of annual survival and one component of breeding dispersal (habitat‐specific movements) in a population of American redstarts (Setophaga ruticilla) over 11 years in two adjacent habitat types. Annual survival displayed a curvilinear relation to the Southern Oscillation Index, with lower survival during La Niña and El Niño conditions. Although redstart density had no impact on survival, habitat‐specific density influenced local movements between habitat types, with redstarts being less likely to disperse from their previous year's breeding habitat as density within that habitat increased. This finding was strongest in males and may be explained by conspecific attraction influencing settlement decisions. Survival was lowest in young males, but movement was highest in this group, indicating that apparent survival rates were likely biased low due to permanent emigration. Our findings demonstrate the utility of examining breeding dispersal in mark–recapture studies and complement recent work using spatially explicit models of dispersal probability to obtain greater accuracy in survival estimates.  相似文献   

9.
10.
The development of parentage analysis to track the dispersal of juvenile offspring has given us unprecedented insight into the population dynamics of coral reef fishes. These tools now have the potential to inform fisheries management and species conservation, particularly for small fragmented populations under threat from exploitation and disturbance. In this study, we resolve patterns of larval dispersal for a population of the anemonefish Amphiprion melanopus in the Keppel Islands (southern Great Barrier Reef). Habitat loss and fishing appear to have impacted this population and a network of no‐take marine reserves currently protects 75% of the potential breeders. Using parentage analysis, we estimate that 21% of recruitment in the island group was generated locally and that breeding adults living in reserves were responsible for 79% (31 of 39) of these of locally produced juveniles. Overall, the network of reserves was fully connected via larval dispersal; however, one reserve was identified as a critical source of larvae for the island group. The population in the Keppel Islands also appears to be well‐connected to other source populations at least 60 km away, given that 79% (145 of 184) of the juveniles sampled remained unassigned in the parentage analysis. We estimated the effective size of the A. melanopus metapopulation to be 745 (582–993 95% CI) and recommend continued monitoring of its genetic status. Maintaining connectivity with populations beyond the Keppel Islands and recovery of local recruitment habitat, potentially through active restoration of host anemone populations, will be important for its long‐term persistence.  相似文献   

11.
Dispersal is increasingly recognized as a process of fundamental importance in population dynamics and other aspects of biology. Concurrently, interest in age‐dependent effects on survival, including actuarial senescence, has increased, especially in studies of long‐lived seabirds. Nevertheless, datasets necessary for studying dispersal and age‐dependent effects are few, as these require simultaneous data collection at two or more sites over many years. We conducted a 22‐year capture‐mark‐recapture study of Common Terns Sterna hirundo at three breeding colonies 10–26 km apart in Buzzards Bay, Massachusetts, USA. All birds in the study were of known age (range 2–28 years, median 7 years, = 3290) and 77% were of known sex. Estimates of adult recapture, survival and breeding dispersal rates were obtained for all age‐classes from 2 to 20 years. The model that acquired 100% of the QAICc (Akaike's Information Criterion adjusted for small sample size and overdispersion) weight in our analysis included age‐specificity in all parameters but no relationship with sex. Our study may be the first to demonstrate age‐specificity in recapture, survival and breeding dispersal rates simultaneously, using a single model. Annual rates of breeding dispersal ranged from <0.01 to 0.27, with a population‐weighted mean of 0.065; they decreased with increasing distance between colony sites and, unexpectedly, increased with age. Breeding dispersal did not increase consistently after years with predation on adults or after an attempt to displace birds from an oiled site. Survival rates did not vary among sites or years. Annual adult survival increased from 0.80 in 2‐year‐old birds to a maximum of approximately 0.88 around age 8 years and then declined to 0.76 at age 20 years, yielding strong evidence for actuarial senescence. The peak annual survival rate of 0.88 is at the low end of other estimates for Common Tern and in the lower part of the range recorded for other terns, but total numbers in the three colonies increased seven‐fold during the study. This was part of a slower increase in the regional population, with net immigration into the study colonies. Our results demonstrate the biological significance of breeding dispersal in local population dynamics and age‐related effects on survival and dispersal from a metapopulation of a long‐lived seabird.  相似文献   

12.
Dispersal patterns of individuals within populations have implicationsfor the social and genetic structure of local populations.Knowing what factors determine individual dispersal behavioris essential for predicting how the population structure willbe influenced by environmental and demographic changes. Inthis study, I investigated whether the settling pattern of individuals breeding for the first time within a colony of greatcormorants was determined by ecological or genetic factors.Furthermore, I examined the possible effects of age and gender.First-time breeders that came back to breed within their natalcolony showed strong philopatry toward their natal breedingsites. Because of the simultaneous strong fidelity of breederstoward their former breeding sites, this caused kin to clusterto some extent around the natal site. However, genetic factors(attraction to close kin) are less likely to explain natalphilopatry than ecological ones (attraction to the natal siteitself). Younger first-time breeders were more philopatric than older ones, in accordance with a decrease in the predictabilityof the quality of breeding sites with increasing time lags.Furthermore, males dispersed farther from the natal breedingsite than females. This result is contrary to what is generallyexpected for a breeding system where the male is dependent on a breeding territory for mate acquisition. I suggest thatthis sex difference could arise because first-time breedingmales are constrained from settling in the natal site by interferencecompetition with older males or because males are better informedabout alternative breeding sites of high quality within thecolony.  相似文献   

13.
Models of parental investment typically assume that populations are well mixed and homogeneous and have devoted little attention to the impact of spatial variation in the local environment. Here, in a patch‐structured model with limited dispersal, we assess to what extent resource‐rich and resource‐poor mothers should alter the size of their young in response to the local environment in their patch. We show that limited dispersal leads to a correlation between maternal and offspring environments, which favours plastic adjustment of offspring size in response to local survival risk. Strikingly, however, resource‐poor mothers are predicted to respond more strongly to local survival risk, whereas resource‐rich mothers are predicted to respond less strongly. This lack of sensitivity on the part of resource‐rich mothers is favoured because they accrue much of their fitness through dispersing young. By contrast, resource‐poor mothers accrue a larger fraction of their fitness through philopatric young and should therefore respond more strongly to local risk. Mothers with more resources gain a larger share of their fitness through dispersing young partly because their fitness in the local patch is constrained by the limited number of local breeding spots. In addition, when resource variation occurs at the patch level, the philopatric offspring of resource‐rich mothers face stronger competition from the offspring of other local mothers, who also enjoy abundant resources. The effect of limited local breeding opportunities becomes less pronounced as patch size increases, but the impact of patch‐level variation in resources holds up even with many breeders per patch.  相似文献   

14.
Adult birds tend to show high fidelity to their breeding territory or disperse over relatively short distances. Gene flow among avian populations is thus expected to occur primarily through natal dispersal. Although natal dispersal is a critical demographic process reflecting the area over which population dynamics take place, low recapture rates of birds breeding for the first time have limited our ability to reliably estimate dispersal rates and distances. Stable isotope approaches can elucidate origins of unmarked birds and so we generated year- and age-specific δ2H and δ34S feather isoscapes (ca. 180 000 km2) of coastal-breeding Ovenbirds (Seiurus aurocapilla) and used bivariate probability density functions to assign the likely natal areas of 35 males recruited as first-year breeders into a population located in northwestern New Brunswick, Canada. Most individuals (80–94% depending on the magnitude of an age correction factor used; i.e. 28–33 out of 35) were classified as residents (i.e. fledged within our study area) and estimated minimum dispersal distances of immigrants were between 40 and 240 km. Even when considering maximum dispersal distances, the likely origin of most first-year breeders was<200 km from our study area. Our method identified recruitment into our population from large geographic areas with relatively few samples whereas previous mark-recapture based methods have required orders of magnitude more individuals to describe dispersal at such geographic scales. Natal dispersal movements revealed here suggest the spatial scale over which many population processes are taking place and we suggest that conservation plans aiming to maintain populations of Ovenbirds and ecologically-similar species should consider management units within 100 or at most 200 km of target breeding populations.  相似文献   

15.
Changes in population size of local populations of birds have usually been interpreted in relation to adult return rate and recruitment of young individuals after natal dispersal. Little is known about the importance of redistribution of adult individuals through breeding dispersal. The small Norwegian population of ortolan buntings Emberiza hortulana has a patchy distribution with about 30 long‐term local populations. During a period of general population decline (29% decrease over 7 years), the population trends of local populations (measured as number of males recorded) were highly variable, with some even increasing four‐fold. Comparisons of demographic parameters showed that adult immigration rate (i.e. dispersal of adult males) explained both yearly changes in male population size and population trends over the whole study period better than adult return rate or adult emigration rate, or a measure of recruitment of young males. Adult immigration rates and recruitment rates were correlated, suggesting that both young and adult males find the same places attractive. In the study area, adult sex ratio was strongly male‐biased, and immigration rate was higher when local sex ratio was less skewed. In addition, less skewed sex ratio was related to higher adult return rate and lower emigration rate. We found no relationships between measures of breeding success and population change. We suggest that conspecific attraction may explain the observed patterns. Some local populations may act as hot‐spots attracting adult males from other populations. Thus, local population changes need not reflect overall population growth rate, but may be a consequence of redistribution of adult birds.  相似文献   

16.
We used a long‐term population band‐resight survey database, a parallel reproduction database, and multistate mark–recapture analysis to assess the costs of reproduction, a keystone concept of life‐history evolution, in Nazca boobies (Sula granti) from Punta Cevallos, Isla Española, Galápagos, Ecuador. We used eight years of resight and breeding data to compare models that included sex‐ and state‐specific survival probabilities and probabilities of transition between reproductive states using multistate mark–recapture models. Models that included state‐specific effects were compared with models lacking such effects to evaluate costs of reproduction. The top model, optimizing the trade‐off of model simplicity and fit to the data using the Akaike Information Criterion (AIC), showed evidence of a temporally varying survival cost of reproduction: nonbreeders showed higher annual survival than breeders did in some years. Because increasing investment among breeders showed no negative association with survival and subsequent breeding success, this evidence indicates a cost to both males and females of initiating, but not of continuing, a reproductive attempt. In some cases, breeders reaching the highest reproductive state (fledging an offspring) showed higher survival or subsequent breeding success than did failed breeders, consistent with differences in overall quality that promote both survival and reproduction. Although a male‐biased adult sex ratio was observed in this population of Nazca boobies, models of state‐ and sex‐specific survival and transition probabilities were not supported, indicating that males and females do not incur different costs of reproduction, and that the observed sex ratio bias is not due to sex‐specific adult mortality.  相似文献   

17.
Dispersal ability has been hypothesized to reduce intraspecific differentiation by homogenizing populations. On the other hand, long‐distance dispersers may have better opportunities to colonize novel habitats, which could result in population divergence. Using direct estimates of natal and breeding dispersal distances, we investigated the relationship between dispersal distances and: (i) population differentiation, assessed as subspecies richness; (ii) ecological plasticity, assessed as the number of habitats used for breeding; and (iii) wing size, assessed as wing length. The number of subspecies was negatively correlated with dispersal distances. This was the case also after correcting for potential confounding factors such as migration and similarity due to common ancestry. Dispersal was not a good predictor of ecological plasticity, suggesting that long‐distance dispersers do not have more opportunities to colonize novel habitats. Residual wing length was related to natal dispersal, but only for sedentary species. Overall, these results suggest that dispersal can have a homogenizing effect on populations and that low dispersal ability might promote speciation.  相似文献   

18.
Patterns of sex‐biased dispersal (SBD) are typically consistent within taxa, for example female‐biased in birds and male‐biased in mammals, leading to theories about the evolutionary pressures that lead to SBD. However, generalizations about the evolution of sex biases tend to overlook that dispersal is mediated by ecological factors that vary over time. We examined potential temporal variation in between‐ and within‐population dispersal over an 11‐year period in a bird, the dark‐eyed junco (Junco hyemalis). We measured between‐population dispersal patterns using genetic assignment indices and found yearly variation in which sex was more likely to have immigrated. When we measured within‐population spatial genetic structure and mark–recapture dispersal distances, we typically found yearly SBD patterns that mirrored between‐population dispersal, indicating common eco‐evolutionary causes despite expected differences due to the scale of dispersal. However, in years without detectable between‐population sex biases, we found genetic similarity between nearby males within our population. This suggests that, in certain circumstances, ecological pressures may act on within‐population dispersal without affecting dispersal between populations. Alternatively, current analytical tools may be better able to detect within‐population SBD. Future work will investigate potential causes of the observed temporal variation in dispersal patterns and whether they have greater effects on within‐population dispersal.  相似文献   

19.
In seasonal environments variation in food abundance in the non‐breeding season is thought to affect songbird population dynamics. In a unique tit‐sea buckthorn berry system we can estimate the berry abundance and both the tit consumption and population dynamics. Six hundred nest boxes were available to great and blue tits Cyanistes caeruleus for breeding in spring and roosting in winter. We followed the dynamics including the recapture histories of individually marked great tits from 2008 to 2014. In each year we estimated 1) the winter sea buckthorn berry availability, 2) an index of berry consumption in December based on the colour of the faeces of roosting birds, 3) the number of breeding great and blue tits, 4) both recapture probability and the return rate of the great tits and 5) immigration rates. December berry abundance positively predicted the number of breeding pairs of both species in the subsequent season and great tit return rates in the second half of the winter. There was support for a sex specific berry effect on the adult return rate in the great tit: female return rate was associated less strongly to berry abundance than male return rate. This skewed the sex ratio of the local breeders in the following breeding season. Intriguingly, annual berry consumption in December was not related to berry abundance, and individuals consuming more berries tended to have slightly lower return rates. Reproductive rate was not related to berry abundance. There was hardly support for a relation between immigration rates of first year breeders and berry abundance. Taken together these results imply that berry stock not only affected population size but also the population composition through sex specific exchange with the surroundings. Since population density covaried with berry abundance, density dependent effects provide an alternative explanation for the patterns observed.  相似文献   

20.
Breeding dispersal is a key process of population structure and dynamics and is often triggered by an individual's breeding failure. In both colonial and territorial birds, reproductive success of conspecifics (RSc) can also lead individuals to change breeding sites after a failure on a site. Yet, few studies have simultaneously investigated the independent contribution of individual reproductive success (RSi) and of RSc on dispersal decision. Here, we develop a modeling framework to disentangle the effects of RSi and RSc on demographic parameters, while accounting for imperfect individual detection and other confounding factors such as age or dispersal behavior in the previous year. Using a 10‐year capture–recapture dataset composed of 1,595 banded tree swallows, we assessed the effects of nonmanipulated RSi and RSc on female breeding dispersal in this semicolonial passerine. Dispersal was strongly driven by RSi, but not by RSc. Unsuccessful females were 9.5–2.5 times more likely to disperse than successful ones, depending if they had dispersed or not in the previous year, respectively. Unsuccessful females were also three times less likely to be detected than successful ones. Contrary to theoretical and empirical studies, RSc did not drive the decision to disperse but influenced the selection of the following breeding site once dispersal had been initiated. Because detection of individuals was driven by RSi, which was positively correlated to RSc, assuming a perfect detection as in previous studies may have lead us to conclude that RSc affected dispersal patterns, yet our approach corrected for this bias. Overall, our results suggest that the value and use of RSc as public information to guide dispersal decisions are likely dictated by multiple ecological determinants, such as landscape structure and extent, if this cue is indeed used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号