首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Niall P. Hanan 《Biotropica》2012,44(2):189-196
This paper examines the feasibility of applying self‐thinning concepts to savannas and how competition with herbaceous vegetation may modify self‐thinning patterns among woody plants in these ecosystems. Competition among woody plants has seldom been invoked as a major explanation for the persistence of herbaceous vegetation in mixed tree–grass ecosystems. On the contrary, the primary resource‐based explanations for tree–grass coexistence are based on tree–grass competition (niche‐separation) that assumes that trees are inferior competitors unless deeper rooting depths provide them exclusive access to water. Alternative nonresource‐based hypotheses postulate that trees are the better competitors, but that tree populations are suppressed by mortality related to fire, herbivores, and other disturbances. If self‐thinning of woody plants can be detected in savannas, stronger evidence for resource‐limitation and competitive interactions among woody plants would suggest that the primary models of savannas need to be adjusted. We present data from savanna sites in South Africa to suggest that self‐thinning among woody plants can be detected in low‐disturbance situations, while also showing signs that juvenile trees, more so than adults, are suppressed when growing with herbaceous vegetation in these ecosystems. This finding we suggest is evidence for size‐asymmetric competition in savannas.  相似文献   

2.
Ungulate herbivores play a prominent role in maintaining the tree–grass balance in African savannas. Their top‐down role through selective feeding on either trees or grasses is well studied, but their bottom‐up role through deposition of nutrients in dung and urine has been overlooked. Here, we propose a novel concept of savanna ecosystem functioning in which the balance between trees and grasses is maintained through stoichiometric differences in dung of herbivores that feed on them. We describe a framework in which N2‐fixing trees and grasses, as well as ungulate browsing and grazing herbivores, occupy opposite positions in an interconnected cycle of processes. The framework makes the testable assumption that the differences in dung N:P ratio among browsers and grazers are large enough to influence competitive interactions between N2‐fixing trees and grasses. Other key elements of our concept are supported with field data from a Kenyan savanna.  相似文献   

3.
Aim Tropical savanna ecosystems are uniquely characterized by the co‐dominance of both trees and grasses. An operational understanding of the ecological processes involved in maintaining this condition is essential for understanding both the functioning of savanna systems as well as their potential response to environmental change. A simple model is presented to explore the potential for a demographic mechanism of long‐term tree persistence and temporal physiognomic stability in the Brazilian cerrado. Location The model is developed based on data from the humid cerrado of Brazil. Methods In contrast to many existing models of tree–grass dynamics a model is presented which is based on data from the humid cerrado of Brazil, which is both qualitatively and quantitatively different from many of the more arid savannas of the palaeotropics. The model focuses on the dynamics of a synthetic tree population, with particular attention given to reproduction, seedling establishment and fire effects; with separate sub‐models for grass production, fire and rainfall. Results The model successfully predicts coexistence across the full range of observed vegetation physiognomies, but only under limited conditions. Under coexistence conditions, the dynamics of the tree population are characterized by long periods of gradual decline, punctuated by occasional bursts of growth. However, in agreement with earlier studies, the model consistently over‐predicts domination by the tree component. Fire is identified as an overriding factor in determining model behaviour, and the response of reproduction and sapling recruitment to variance in the frequency of fire ignition is identified to be of potential importance in the functioning of the Brazilian cerrado. The key dynamics of the model which promote tree–grass coexistence are consistent with a number of established determinants of ecological resilience in savanna systems. Main conclusions The model identifies the importance of the effective exploitation of rare opportunities for favourable recruitment (e.g. exclusion from fire) by the tree population, in promoting coexistence within a predominantly adverse environment. Support is provided for an alternative demographic mechanism of tree–grass coexistence in the cerrado (the storage effect), which is not based on the limiting assumption of niche partitioning through differences in rooting depth. The results are consistent with those presented by recent modelling work based on the more arid savannas of southern Africa. The model presented here differs in the emphasis given to particular environmental and life‐history attributes which are critical in determining the tree–grass balance, but provides further general support for the potential role of demographic mechanisms (such as the storage effect) in determining the structure of tropical savannas. Despite having clear limitations, models can serve as valuable heuristic tools to aid the integration and exploration of existing data sets as well as our present understanding of key ecological processes.  相似文献   

4.
Tree–grass coexistence is broadly observed in tropical savannas. Recent studies indicate that, in arid savannas, such coexistence is stable and related to water availability. The role of different factors (from niche separation to demographic structure) has been explored. Nevertheless, spatial mechanisms of water–vegetation interactions have been rarely taken into account, despite their well-known importance for vegetation distribution. Here, we introduce a spatial model including tree and grass biomass dynamics, together with soil and surface water dynamics. We consider two water–vegetation feedbacks. Grasses increase water infiltration into the soil, while tree shadow limits evaporation, and both mechanisms increase soil water availability, leading to positive feedbacks. The infiltration feedback can also lead to spatial pattern formation. Despite the fact that trees and grasses compete for the same resource, namely water, we observe stable coexistence as a possible model outcome. The system displays a complex behavior, with multiple stable states and possible catastrophic shifts between states, e.g., patterned grassland, bare soil and forest. In our model, coexistence is always linked with multi-stability and spatial pattern formation, driven by grass infiltration feedback. Given such complex model solutions, we expect that, under real conditions, heterogeneities and disturbances, acting on the multi-stable states, may further foster coexistence.  相似文献   

5.
Several explanations for the persistence of tree–grass mixtures in savannas have been advanced thus far. In general, these either concentrate on competition‐based mechanisms, where niche separation with respect to limiting resources such as water lead to tree–grass coexistence, or demographic mechanisms, where factors such as fire, herbivory and rainfall variability promote tree–grass persistence through their dissimilar effects on different life‐history stages of trees. Tests of these models have been largely site‐specific, and although different models find support in empirical data from some savanna sites, enough dissenting evidence exists from others to question their validity as general mechanisms of tree–grass coexistence. This lack of consensus on determinants of savanna structure and function arises because different models: (i) focus on different demographic stages of trees, (ii) focus on different limiting factors of tree establishment, and (iii) emphasize different subsets of the potential interactions between trees and grasses. Furthermore, models differ in terms of the most basic assumptions as to whether trees or grasses are the better competitors. We believe an integration of competition‐based and demographic approaches is required if a comprehensive model that explains both coexistence and the relative productivity of the tree and grass components across the diverse savannas of the world is to emerge. As a first step towards this end, we outline a conceptual framework that integrates existing approaches and applies them explicitly to different life‐history stage of trees.  相似文献   

6.
Changing climatic conditions and unsustainable land use are major threats to savannas worldwide. Historically, many African savannas were used intensively for livestock grazing, which contributed to widespread patterns of bush encroachment across savanna systems. To reverse bush encroachment, it has been proposed to change the cattle‐dominated land use to one dominated by comparatively specialized browsers and usually native herbivores. However, the consequences for ecosystem properties and processes remain largely unclear. We used the ecohydrological, spatially explicit model EcoHyD to assess the impacts of two contrasting, herbivore land‐use strategies on a Namibian savanna: grazer‐ versus browser‐dominated herbivore communities. We varied the densities of grazers and browsers and determined the resulting composition and diversity of the plant community, total vegetation cover, soil moisture, and water use by plants. Our results showed that plant types that are less palatable to herbivores were best adapted to grazing or browsing animals in all simulated densities. Also, plant types that had a competitive advantage under limited water availability were among the dominant ones irrespective of land‐use scenario. Overall, the results were in line with our expectations: under high grazer densities, we found heavy bush encroachment and the loss of the perennial grass matrix. Importantly, regardless of the density of browsers, grass cover and plant functional diversity were significantly higher in browsing scenarios. Browsing herbivores increased grass cover, and the higher total cover in turn improved water uptake by plants overall. We concluded that, in contrast to grazing‐dominated land‐use strategies, land‐use strategies dominated by browsing herbivores, even at high herbivore densities, sustain diverse vegetation communities with high cover of perennial grasses, resulting in lower erosion risk and bolstering ecosystem services.  相似文献   

7.
Many mechanisms have been suggested to explain the coexistence of woody species and grasses in savannas. However, evidence from field studies and simulation models has been mixed. Patch dynamics is a potentially unifying mechanism explaining tree–grass coexistence and the natural occurrence of shrub encroachment in arid and semi-arid savannas. A patch-dynamic savanna consists of a spatial mosaic of patches. Each patch maintains a cyclical succession between dominance of woody species and grasses, and the succession of neighbouring patches is temporally asynchronous. Evidence from empirical field studies supports the patch dynamics view of savannas. As a basis for future tests of patch dynamics in savannas, several hypotheses are presented and one is exemplarily examined: at the patch scale, realistically parameterized simulation models have generated cyclical succession between woody and grass dominance. In semi-arid savannas, cyclical successions are driven by precipitation conditions that lead to mass recruitment of shrubs in favourable years and to simultaneous collapse of shrub cohorts in drought years. The spatiotemporal pattern of precipitation events determines the scale of the savanna vegetation mosaic in space and time. In a patch-dynamic savanna, shrub encroachment is a natural, transient phase corresponding to the shrub-dominated phase during the successional cycle. Hence, the most promising management strategy for encroached areas is a large-scale rotation system of rangelands. In conclusion, patch dynamics is a possible scale-explicit mechanism for the explanation of tree–grass coexistence in savannas that integrates most of the coexistence mechanisms proposed thus far for savannas.  相似文献   

8.
Traditional explanations of tree-grass coexistence in African savannas are based on competition between these growth forms or demographic bottlenecks of trees maintained by fire or mammalian browsers. Perturbation of their “balance” may result in an alternate system state of woody encroachment. Invertebrate herbivory has never been offered as an explanation. We developed a consumer-resource model which illustrated that annual irruptions of a lepidopteran (Imbrasia belina), known as mopane worm, can determine the tree-grass balance of semi-arid Colophospermum mopane savanna in southern Africa. Model performance was sensitive to the abundance, hence mortality, of mopane worms, owing to their complete defoliation of tree leaf biomass resulting in altered competitive relations between trees and grasses. Invertebrate herbivores have been recognized in other systems as agents for effecting a state change of host tree populations; this modeling study offers a first indication of such a role for the well-researched tree-grass relations of African savannas.  相似文献   

9.
In savannas, fire and herbivores are important drivers of natural ecosystem processes. Fire is also used intensively for management purposes. However, reported fire effects differ between studies. Reasons for these differences are still poorly understood. Here, we investigated the effects of fire on leaf chemistry of grasses and woody plants in the savanna of the Busanga Flood Plain, Zambia, in relation to the time elapsed between plant sampling and the last fire (fire age) and the frequency of fires during the last 16 years (fire recurrence). We analyzed leaves for their nitrogen, carbon, and fiber concentrations, and estimated their metabolizable energy content, reflecting feed quality for browsers and grazers. Grasses and woody plants differed in all chemical components and showed different responses to fire. Grass quality was higher at sites burnt in the year of sample collection than at sites burnt only in previous years, but did not change under different fire recurrences. Leaves of woody plants did not differ in relation to fire age but their quality increased with increasing fire recurrence. In woody plants, the carbon content responded to the interaction between fire age and fire recurrence, indicating changes in carbon allocation in response to fire. Thus, burning increased feed quality for grazers and browsers but on different temporal scales. The scale effects may contribute to the differences in resource allocation described by different studies. They merit more attention in management decisions as well as in future studies on fire effects in savanna systems.  相似文献   

10.
Eucalypts (Eucalyptus spp. and Corymbia spp.) dominate many communities across Australia, including frequently burnt tropical savannas and temperate forests, which receive less frequent but more intense fires. Understanding the demographic characteristics that allow related trees to persist in tropical savannas and temperate forest ecosystems can provide insight into how savannas and forests function, including grass–tree coexistence. This study reviews differences in critical stages in the life cycle of savanna and temperate forest eucalypts, especially in relation to fire. It adds to the limited data on tropical eucalypts, by evaluating the effect of fire regimes on the population biology of Corymbia clarksoniana, a tree that dominates some tropical savannas of north‐eastern Australia. Corymbia clarksoniana displays similar demographic characteristics to other tropical savanna species, except that seedling emergence is enhanced when seed falls onto recently burnt ground during a high rainfall period. In contrast to many temperate forest eucalypts, tropical savanna eucalypts lack canopy‐stored seed banks; time annual seed fall to coincide with the onset of predictable wet season rain; have very rare seedling emergence events, including a lack of mass germination after each fire; possess an abundant sapling bank; and every tropical eucalypt species has the ability to maintain canopy structure by epicormically resprouting after all but the most intense fires. The combination of poor seedling recruitment strategies, coupled with characteristics allowing long‐term persistence of established plants, indicate tropical savanna eucalypts function through the persistence niche rather than the regeneration niche. The high rainfall‐promoted seedling emergence of C. clarksoniana and the reduction of seedling survival and sapling growth by fire, support the predictions that grass–tree coexistence in savannas is governed by rainfall limiting tree seedling recruitment and regular fires limiting the growth of juvenile trees to the canopy.  相似文献   

11.
Savannas are characterized by the coexistence of trees and flammable grasses. Yet, tree–grass coexistence has been labeled as paradoxical—how do these two functional groups coexist over such an extensive area, despite being generally predisposed to excluding each other? For instance, many trees develop dense canopies that limit grass growth, and many grasses facilitate frequent/intense fires, increasing tree mortality. This study revisits tree–grass coexistence with a model of hierarchical competition between pyrogenic grasses, “forest trees” adapted to closed-canopy competition, and “savanna trees” that are inferior competitors in closed-canopy communities, but more resistant to fire. The assumptions of this model are supported by empirical observations, including a systematic review of savanna and forest tree community composition reported here. In general, the model simulations show that when savanna trees exert weaker competitive effects on grasses, a self-reinforcing grass community is maintained, which limits forest tree expansion while still allowing savanna trees to persist (albeit as a subdominant to grasses). When savanna trees exert strong competitive effects on grasses, savanna trees cover increases initially, but as grasses decline their inhibitory effect on forest trees weakens, allowing forest trees to expand and exclude grasses and savanna trees. Rather than paradoxical, these results suggest that having weaker competitive effects on grasses may be advantageous for savanna trees, leading to greater long-term abundance and stability. We label this the “enemy of my enemy hypothesis,” which might apply to species coexistence in communities defined by hierarchical competition or with species capable of generating strong ecological feedbacks.  相似文献   

12.
Both resource and disturbance controls have been invoked to explain tree persistence among grasses in savannas. Here we determine the extent to which competition for available resources restricts the rooting depth of both grasses and trees, and how this may influence nutrient cycling under an infrequently burned savanna near Darwin, Australia. We sampled fine roots <2 mm in diameter from 24 soil pits under perennial as well as annual grasses and three levels of canopy cover. The relative proportion of C3 (trees) and C4 (grasses) derived carbon in a sample was determined using mass balance calculations. Our results show that regardless of the type of grass both tree and grass roots are concentrated in the top 20 cm of the soil. While trees have greater root production and contribute more fine root biomass grass roots contribute a disproportional amount of nitrogen and carbon to the soil relative to total root biomass. We postulate that grasses maintain soil nutrient pools and provide biomass for regular fires that prevent forest trees from establishing while savanna trees, are important for increasing soil N content, cycling and mineralization rates. We put forward our ideas as a hypothesis of resource‐regulated tree–grass coexistence in tropical savannas.  相似文献   

13.
The coexistence of woody and grassy plants in savannas has often been attributed to a rooting-niche separation (two-layer hypothesis). Water was assumed to be the limiting resource for both growth forms and grasses were assumed to extract water from the upper soil layer and trees and bushes from the lower layers. Woody plant encroachment (i.e. an increase in density of woody plants often unpalatable to domestic livestock) is a serious problem in many savannas and is believed to be the result of overgrazing in ‘two-layer systems’. Recent research has questioned the universality of both the two-layer hypothesis and the hypothesis that overgrazing is the cause of woody plant encroachment.

We present an alternative hypothesis explaining both tree–grass coexistence and woody plant encroachment in arid savannas. We propose that woody plant encroachment is part of a cyclical succession between open savanna and woody dominance and is driven by two factors: rainfall that is highly variable in space and time, and inter-tree competition. In this case, savanna landscapes are composed of many patches (a few hectares in size) in different states of transition between grassy and woody dominance, i.e. we hypothesize that arid savannas are patch-dynamic systems. We summarize patterns of tree distribution observed in an arid savanna in Namibia and show that these patterns are in agreement with the patch-dynamic savanna hypothesis. We discuss the applicability of this hypothesis to fire-dominated savannas, in which rainfall variability is low and fire drives spatial heterogeneity.

We conclude that field studies are more likely to contribute to a general understanding of tree–grass coexistence and woody plant encroachment if they consider both primary (rain and nutrients) and secondary (fire and grazing) determinants of patch properties across different savannas.  相似文献   


14.
15.
A popular hypothesis for tree and grass coexistence in savannas is that tree seedlings are limited by competition from grasses. However, competition may be important in favourable climatic conditions when abiotic stress is low, whereas facilitation may be more important under stressful conditions. Seasonal and inter-annual fluctuations in abiotic conditions may alter the outcome of tree–grass interactions in savanna systems and contribute to coexistence. We investigated interactions between coolibah (Eucalyptus coolabah) tree seedlings and perennial C4 grasses in semi-arid savannas in eastern Australia in contrasting seasonal conditions. In glasshouse and field experiments, we measured survival and growth of tree seedlings with different densities of C4 grasses across seasons. In warm glasshouse conditions, where water was not limiting, competition from grasses reduced tree seedling growth but did not affect tree survival. In the field, all tree seedlings died in hot dry summer conditions irrespective of grass or shade cover, whereas in winter, facilitation from grasses significantly increased tree seedling survival by ameliorating heat stress and protecting seedlings from herbivory. We demonstrated that interactions between tree seedlings and perennial grasses vary seasonally, and timing of tree germination may determine the importance of facilitation or competition in structuring savanna vegetation because of fluctuations in abiotic stress. Our finding that trees can grow and survive in a dense C4 grass sward contrasts with the common perception that grass competition limits woody plant recruitment in savannas.  相似文献   

16.
Tree cover is a fundamental structural characteristic and driver of ecosystem processes in terrestrial ecosystems, and trees are a major global carbon (C) sink. Fire and herbivores have been hypothesized to play dominant roles in regulating trees in African savannas, but the evidence for this is conflicting. Moving up a trophic scale, the factors that regulate fire occurrence and herbivores, such as disease and predation, are poorly understood for any given ecosystem. We used a Bayesian state-space model to show that the wildebeest population irruption that followed disease (rinderpest) eradication in the Serengeti ecosystem of East Africa led to a widespread reduction in the extent of fire and an ongoing recovery of the tree population. This supports the hypothesis that disease has played a key role in the regulation of this ecosystem. We then link our state-space model with theoretical and empirical results quantifying the effects of grazing and fire on soil carbon to predict that this cascade may have led to important shifts in the size of pools of C stored in soil and biomass. Our results suggest that the dynamics of herbivores and fire are tightly coupled at landscape scales, that fire exerts clear top-down effects on tree density, and that disease outbreaks in dominant herbivores can lead to complex trophic cascades in savanna ecosystems. We propose that the long-term status of the Serengeti and other intensely grazed savannas as sources or sinks for C may be fundamentally linked to the control of disease outbreaks and poaching.  相似文献   

17.
Interactions between trees and grasses that influence leaf area index (LAI) have important consequences for savanna ecosystem processes through their controls on water, carbon, and energy fluxes as well as fire regimes. We measured LAI, of the groundlayer (herbaceous and woody plants <1-m tall) and shrub and tree layer (woody plants >1-m tall), in the Brazilian cerrado over a range of tree densities from open shrub savanna to closed woodland through the annual cycle. During the dry season, soil water potential was strongly and positively correlated with grass LAI, and less strongly with tree and shrub LAI. By the end of the dry season, LAI of grasses, groundlayer dicots and trees declined to 28, 60, and 68% of mean wet-season values, respectively. We compared the data to remotely sensed vegetation indices, finding that field measurements were more strongly correlated to the enhanced vegetation index (EVI, r 2=0.71) than to the normalized difference vegetation index (NDVI, r 2=0.49). Although the latter has been more widely used in quantifying leaf dynamics of tropical savannas, EVI appears better suited for this purpose. Our ground-based measurements demonstrate that groundlayer LAI declines with increasing tree density across sites, with savanna grasses being excluded at a tree LAI of approximately 3.3. LAI averaged 4.2 in nearby gallery (riparian) forest, so savanna grasses were absent, thereby greatly reducing fire risk and permitting survival of fire-sensitive forest tree species. Although edaphic conditions may partly explain the larger tree LAI of forests, relative to savanna, biological differences between savanna and forest tree species play an important role. Overall, forest tree species had 48% greater LAI than congeneric savanna trees under similar growing conditions. Savanna and forest species play distinct roles in the structure and dynamics of savanna–forest boundaries, contributing to the differences in fire regimes, microclimate, and nutrient cycling between savanna and forest ecosystems.  相似文献   

18.
Savannas are defined based on vegetation structure, the central concept being a discontinuous tree cover in a continuous grass understorey. However, at the high‐rainfall end of the tropical savanna biome, where heavily wooded mesic savannas begin to structurally resemble forests, or where tropical forests are degraded such that they open out to structurally resemble savannas, vegetation structure alone may be inadequate to distinguish mesic savanna from forest. Additional knowledge of the functional differences between these ecosystems which contrast sharply in their evolutionary and ecological history is required. Specifically, we suggest that tropical mesic savannas are predominantly mixed tree–C4 grass systems defined by fire tolerance and shade intolerance of their species, while forests, from which C4 grasses are largely absent, have species that are mostly fire intolerant and shade tolerant. Using this framework, we identify a suite of morphological, physiological and life‐history traits that are likely to differ between tropical mesic savanna and forest species. We suggest that these traits can be used to distinguish between these ecosystems and thereby aid their appropriate management and conservation. We also suggest that many areas in South Asia classified as tropical dry forests, but characterized by fire‐resistant tree species in a C4 grass‐dominated understorey, would be better classified as mesic savannas requiring fire and light to maintain the unique mix of species that characterize them.  相似文献   

19.
Fire–vegetation feedbacks potentially maintain global savanna and forest distributions. Accordingly, vegetation in savanna and forest ecosystems should have differential responses to fire, but fire response data for herbaceous vegetation have yet to be synthesized across biomes. Here, we examined herbaceous vegetation responses to experimental fire at 30 sites spanning four continents. Across a variety of metrics, herbaceous vegetation increased in abundance where fire was applied, with larger responses to fire in wetter and in cooler and/or less seasonal systems. Compared to forests, savannas were associated with a 4.8 (±0.4) times larger difference in herbaceous vegetation abundance for burned versus unburned plots. In particular, grass cover decreased with fire exclusion in savannas, largely via decreases in C4 grass cover, whereas changes in fire frequency had a relatively weak effect on grass cover in forests. These differential responses underscore the importance of fire for maintaining the vegetation structure of savannas and forests.  相似文献   

20.
In this paper, we address the question whether and through which mechanisms herbivores can induce spatial patterning in savanna vegetation, and how the role of herbivory as a determinant of vegetation patterning changes with herbivore density and the pre-existing pattern of vegetation. We thereto developed a spatially explicit simulation model, including growth of grasses and trees, vertical zonation of browseable biomass, and spatially explicit foraging by grazers and browsers. We show that herbivores can induce vegetation patterning when two key assumptions are fulfilled. First, herbivores have to increase the attractiveness of a site while foraging so that they will revisit this site, e.g. through an increased availability or quality of forage. Second, foraging should be spatially explicit, e.g. when foraging at a site influences vegetation at larger spatial scales or when vegetation at larger spatial scales influences the selection and utilisation of a site. The interaction between these two assumptions proved to be crucial for herbivores to produce spatial vegetation patterns, but then only at low to intermediate herbivore densities. High herbivore densities result in homogenisation of vegetation. Furthermore, our model shows that the pre-existing spatial pattern in vegetation influences the process of vegetation patterning through herbivory. However, this influence decreases when the heterogeneity and dominant scale of the initial vegetation decreases. Hence, the level of adherence of the herbivores to forage in pre-existing patches increases when these pre-existing patches increase in size and when the level of vegetation heterogeneity increases. The findings presented in this paper, and critical experimentation of their ecological validity, will increase our understanding of vegetation patterning in savanna ecosystems, and the role of plant–herbivore interactions therein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号