首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
A novel actinomycete strain designated S2T was isolated from Tunisian rhizosphere soil of Lavandula officinalis. This isolate exhibited broad spectrum antibacterial activity against several Gram-positive and Gram-negative bacteria and also antifungal activity against yeast and filamentous fungi. The isolate S2T presents morphological and chemotaxonomic characteristics typical of the members of the genus Streptomyces. Whole cell hydrolysates of S2T were found to contain LL-diaminopimelic acid. The major fatty acids were identified as C16:0, anteiso-C15:0 and iso-C16:0 whereas the predominant menaquinones were found to be MK-9(H6) and MK-9(H8). The polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside and three unidentified compounds. The G+C content of the genomic DNA was determined to be 71.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S2T belongs to the genus Streptomyces and is closely related to Streptomyces netropsis DSM 40259T with 99.86% sequence similarity. Multi-locus sequence analysis (MLSA) based on four house-keeping gene alleles (gyrB, recA, trpB, rpoB) showed that isolate S2T is closely related to S. netropsis, with an MLSA distance greater than 0.007. The DNA–DNA relatedness between strain S2T and its near phylogenetic neighbour was 63.6 ± 2.3%, which is lower than the 70% threshold value for delineation of genomic prokaryotic species. This isolate was also distinguished from the type strain S. netropsis DSM 40259T, using a combination of morphological and physiological features. Based on its phenotypic and molecular properties, strain S2T is considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces tunisialbus sp. nov. is proposed. The type strain is S2T (= JCM 32165T = DSM 105760T).  相似文献   

3.
Cryphonectria cubensis and Endothia eugeniae are fungal pathogens of Eucalyptus and clove that were reduced to synonymy on the basis of results of cross-inoculation studies, isozyme analysis, cultural studies, and morphology. A previous phylogenetic study on Cryphonectria, based on sequence variation in the ITS region of the ribosomal RNA operon, also supported the conspecificity of C. cubensis and E. eugeniae, but was based on only one E. eugeniae isolate. New collections from clove in Brazil and Indonesia have become available, providing the opportunity to reconsider the conspecificity of C. cubensis and E. eugeniae. The occurrence of C. cubensis on clove was confirmed based on morphological comparisons and phylogenetic analyses of ribosomal DNA and β-tubulin gene sequence data. In addition to C. cubensis, other fungi morphologically similar to Cryphonectria species on the basis of their orange stromata were present on some clove specimens, but no isolates were available for these fungi. Furthermore, some isolates, for which no herbarium material exists, grouped separately from the C. cubensis clade and closer to the Cryphonectria clade. The presence of more than one closely related fungus on clove raises questions relating to the legitimacy of the synonymy of E. eugeniae and C. cubensis. Based on the presence of C. cubensis on the type specimen of E. eugeniae, we recognize the synonymy of the two fungi but provide evidence that other fungi, more closely related to Cryphonectria spp. than to C. cubensis, are present on clove.  相似文献   

4.
5.
Seven non-basidiomycetic fungi, Aspergillus, Candida, Cladosporium, Fusarium, Monicillium, Trichoderma and Penicillium, and two basidiomycetic fungi, Pleurotus and Phanerochaete were isolated from a creosote-contaminated soil by using mineral salts medium and soil extract broth containing antibiotics. Soil contaminated with phenol, o-cresol, m-cresol and p-cresol was collected from the yard of a wood treatment plant in South Africa and inoculated with the strains of Aspergillus, Cladosporium, Fusarium, Monicillium, Penicillium and Phanerochaete, selected from the isolate. The soil in some of the treatment reactors was amended with nutrient supplements to give a C:N:P ratio of 25:5:1. A total of 18 duplicate treatments were established and incubated in the dark at 25°C for 70days. The soil in all the reactors was tilled weekly and moisture was maintained at 70% field capacity. Soil samples were collected every 2weeks for analysis of residual concentrations of the phenols tested, pH measurement and moisture content determination. The nutrient-supplemented treatments were more effective in degrading the phenols (between 84 and 100%) than those that were not supplemented. Barley, which was used as bulking agent enhanced the growth of the fungi and subsequently the degradation of the phenols. Inoculation with a mixture of the six fungal isolates promoted more phenol degradation than with single isolates.  相似文献   

6.
The ectendomycorrhizal fungus Terfezia boudieri is known to secrete auxin. While some of the effects of fungal auxin on the plant root system have been described, a comprehensive understanding is still lacking. A dual culture system to study pre mycorrhizal signal exchange revealed previously unrecognized root–fungus interaction mediated by the fungal auxin. The secreted fungal auxin induced negative taproot gravitropism, attenuated taproot growth rate, and inhibited initial host development. Auxin also induced expression of Arabidopsis carriers AUX1 and PIN1, both of which are involved in the gravitropic response. Exogenous application of auxin led to a root phenotype, which fully mimicked that induced by ectomycorrhizal fungi. Co-cultivation of Arabidopsis auxin receptor mutants tir1-1, tir1-1 afb2-3, tir1-1 afb1-3 afb2-3, and tir1-1 afb2-3 afb3-4 with Terfezia confirmed that auxin induces the observed root phenotype. The finding that auxin both induces taproot deviation from the gravity axis and coordinates growth rate is new. We propose a model in which the fungal auxin induces horizontal root development, as well as the coordination of growth rates between partners, along with the known auxin effect on lateral root induction that increases the availability of accessible sites for colonization at the soil plane of fungal spore abundance. Thus, the newly observed responses described here of the root to Terfezia contribute to a successful encounter between symbionts.  相似文献   

7.
A strain of the fungus Gliocladium roseum YMF1.00133 was found to secrete nematicidal metabolites against nematodes Panagrellus redivivus, Caenothabditis elegans and Bursaphelenchus xylophilus in experiments searching for nematicidal fungi. Through bioassay-guided fractionations, a unique trioxopiperazine alkaloid, gliocladin C (compound 1), and an alkylane resorcinol, 5-n-heneicosylresorcinol (compound 2) were obtained from the methanol extract of the fungus and determined by single-crystal X-ray analysis and spectroscopic data. In vitro immersion experiments showed that the ED50 values of compounds 1 and 2 after 24 h incubation were 15 and 30 μg/mL against C. elegans, 50 and 80 μg/mL against P. redivivus, and 200 and 180 μg/mL against B. xylophilus, respectively. The X-ray diffraction data of compound 1 and the nematicidal activity of compounds 1 and 2 were reported for the first time.  相似文献   

8.
Ambrosia beetles subsist on fungal symbionts that they carry to, and cultivate in, their natal galleries. These symbionts are usually saprobes, but some are phytopathogens. Very few ambrosial symbioses have been studied closely, and little is known about roles that phytopathogenic symbionts play in the life cycles of these beetles. One of the latter symbionts, Raffaelea lauricola, causes laurel wilt of avocado, Persea americana, but its original ambrosia beetle partner, Xyleborus glabratus, plays an uncertain role in this pathosystem. We examined the response of a putative, alternative vector of R. lauricola, Xyleborus bispinatus, to artificial diets of R. lauricola and other ambrosia fungi. Newly eclosed, unfertilized females of X. bispinatus were reared in no-choice assays on one of five different symbionts or no symbiont. Xyleborus bispinatus developed successfully on R. lauricola, R. arxii, R. subalba and R. subfusca, all of which had been previously recovered from field-collected females of X. bispinatus. However, no development was observed in the absence of a symbiont or on another symbiont, Ambrosiella roeperi, recovered from another ambrosia beetle, Xylosandrus crassiusculus. In the no-choice assays, mycangia of foundress females of X. bispinatus harbored significant colony-forming units of, and natal galleries that they produced were colonized with, the respective Raffaelea symbionts; with each of these fungi, reproduction, fecundity and survival of the beetle were positively impacted. However, no fungus was recovered from, and reproduction did not occur on, the A. roeperi and no symbiont diets. These results highlight the flexible nature of the ambrosial symbiosis, which for X. bispinatus includes a fungus with which it has no evolutionary history. Although the “primary” symbiont of the neotropical X. bispinatus is unclear, it is not the Asian R. lauricola.  相似文献   

9.
Paracoccidioidomycosis ceti is a cutaneous disease of cetaceans caused by uncultivated Paracoccidioides brasiliensis or Paracoccidioides spp. Serological cross-reactions between paracoccidioidomycosis ceti and paracoccidioidomycosis, paracoccidioidomycosis and histoplasmosis, and paracoccidioidomycosis and coccidioidomycosis have been reported before. The present study aimed to detect immunohistochemical cross-reaction between antibodies to Paracoccidioides sp. and Histoplasma capsulatum, and vice versa. Thirty murine sera, obtained from experimental infections of 6 isolates of H. capsulatum, were reacted with paraffin-embedded yeast-form cells of Paracoccidioides sp. derived from a case of paracoccidioidomycosis ceti in Japan. The murine sera were also reacted with human isolates of H. capsulatum yeast cells, with P. brasiliensis yeast cells, and with fungal cells of Coccidioides posadasii. Three dolphins’ sera from cases of paracoccidioidomycosis ceti, two human sera from patients with paracoccidioidomycosis, and a serum from a healthy person with a history of coccidioidomycosis were used in order to determine that the tested fungal cells reacted properly. Sera derived from mice infected with an isolate of H. capsulatum reacted positively against yeast cells of Paracoccidioides sp., yeast cells of P. brasiliensis, and fungal cells of C. posadasii, while those derived from other strains were negative. The present study recorded for the first time the cross-reaction between the yeast cells of H. capsulatum and antibodies against Paracoccidioides spp., the yeast cells of Paracoccidioides sp. and antibodies against H. capsulatum, the yeast cells of Paracoccidioides sp. and antibodies against Coccidioides sp., and fungal cells of C. posadasii and antibodies against Paracoccidioides spp.  相似文献   

10.
11.
Functional response is a key index in determining the population fluctuation in predation. However, the lack of operable research system limits the studies on functional response of fungal predators. Hirsutella rhossiliensis is a dominant parasite of the soybean cyst nematode, Heterodera glycines. In a soil microcosm bioassay, we determined fungal biomass at different days within 21 days after inoculation, and parasitism rate of H. glycines by the fungus was determined. The functional response of H. rhossiliensis to H. glycines was established and found to be Holling’s type III, which was influenced by mycelial densities. Meanwhile, we conducted anti-fungal analysis of metabolic fractions extracted from H. rhossiliensis to explain the potential mechanism of the intraspecific competition illustrated by functional response. The result of anti-fungal experiments indicated that the fungal predators had more complicated interaction at population level than expected, which might be regulated by self-inhibition metabolite(s). This study was the first functional response study of fungal predators in microcosm. With the increasing recognition of emerging fungal threats to animal, plant, and ecosystem health, the methodologies and hypotheses proposed in this study might inspire further research in fungal ecology.  相似文献   

12.
The exploration of poorly studied areas of Earth can highly increase the possibility to discover novel bioactive compounds. In this study, the cultivable fraction of fungi and bacteria from Barents Sea sediments has been studied to mine new bioactive molecules with antibacterial activity against a panel of human pathogens. We isolated diverse strains of psychrophilic and halophilic bacteria and fungi from a collection of nine samples from sea sediment. Following a full bioassay-guided approach, we isolated a new promising polyextremophilic marine fungus strain 8Na, identified as Aspergillus protuberus MUT 3638, possessing the potential to produce antimicrobial agents. This fungus, isolated from cold seawater, was able to grow in a wide range of salinity, pH and temperatures. The growth conditions were optimised and scaled to fermentation, and its produced extract was subjected to chemical analysis. The active component was identified as bisvertinolone, a member of sorbicillonoid family that was found to display significant activity against Staphylococcus aureus with a minimum inhibitory concentration (MIC) of 30 μg/mL.  相似文献   

13.

Main conclusion

Strigolactones (SLs) do not influence spore germination or hyphal growth of Fusarium oxysporum. Mutant studies revealed no role for SLs but a role for ethylene signalling in defence against this pathogen in pea. Strigolactones (SLs) play important roles both inside the plant as a hormone and outside the plant as a rhizosphere signal in interactions with mycorrhizal fungi and parasitic weeds. What is less well understood is any potential role SLs may play in interactions with disease causing microbes such as pathogenic fungi. In this paper we investigate the influence of SLs on the hemibiotrophic pathogen Fusarium oxysporum f.sp. pisi both directly via their effects on fungal growth and inside the plant through the use of a mutant deficient in SL. Given that various stereoisomers of synthetic and naturally occuring SLs can display different biological activities, we used (+)-GR24, (?)-GR24 and the naturally occurring SL, (+)-strigol, as well as a racemic mixture of 5-deoxystrigol. As a positive control, we examined the influence of a plant mutant with altered ethylene signalling, ein2, on disease development. We found no evidence that SLs influence spore germination or hyphal growth of Fusarium oxysporum and that, while ethylene signalling influences pea susceptibility to this pathogen, SLs do not.
  相似文献   

14.
False smut disease of rice is posing an increasing concern for production, not only because of the hiking epidemic occurrence in rice production, but also because of the challenging specific pathogenesis of the disease. The aim of this work was to evaluate the potential of five fungal endophytes to reduce negative effects of rice false smut fungus (Ustilagonoidea virens) on rice plants, in both the laboratory and greenhouse. Though all the fungal isolates showed the ability to inhibit the growth of U. virens with varying degrees, isolate E337 showed significant antagonistic activity against the pathogenic fungi. The isolate E337 was identified as Antennariella placitae by molecular and morphological data analysis including 18S rDNA sequence analysis. This isolate showed a significant in vitro inhibition of mycelial growth of U. virens by dual culture method and it was subsequently tested for its in vivo biocontrol potential on false smut disease on rice plants. Greenhouse experiments confirmed that applications of conidia of A. placitae protected rice plants by improving rice yield and by decreasing the severity of false smut disease on susceptible rice plants. This is the first report where A. placitae has been identified as a biocontrol organism.  相似文献   

15.
16.
Piriformospora indica, a root endophytic fungus, has been reported to promote growth of many plants under normal condition and allow the plants to survive under stress conditions. However, its impact on an important medicinal plant Aloe vera L. has not been well studied. Therefore, this study was undertaken to investigate the effect of P. indica on salinity stress tolerance of A. vera plant. P. indica inoculated and non-inoculated A. vera plantlets were subjected to four levels of salinity treatment- 0, 100, 200 and 300 mM NaCl. The salinity stress decreased the ability of the fungus to colonize roots of A. vera but the interaction of A. vera with P. indica resulted in an overall increase in plant biomass and greater shoot and root length as well as number of shoots and roots. The photosynthetic pigment (Chl a, Chl b and total Chl) and gel content were significantly higher for the fungus inoculated A. vera plantlets, at respective salinity concentrations. Furthermore, the inoculated plantlets had higher phenol, flavonoid, flavonol, aloin contents and radical scavenging activity at all salinity concentrations. The higher phenolic and flavonoid content may help the plants ameliorate oxidative stress resulting from high salinity.  相似文献   

17.
Fusarium verticillioides is one of the main pathogens of maize, causing ear and stalk rots. This fungus is also able to produce high levels of fumonisins, which have been linked to various illnesses in humans and animals. Previous studies have shown that maize hybrids genetically modified with the cry genes from the bacterium Bacillus thuringiensis (Bt) presented lower incidence of F. verticillioides and fumonisin levels, presumably through the reduction of insects, which could act as vectors of fungi. The aim of this study was to assess the incidence of F. verticillioides and the concentration of fumonisins in Bt and isogenic non-Bt hybrids (2B710Hx, 30F35YG, 2B710, and 30F35, respectively). The samples of 2B710Hx and 30F35YG presented lower F. verticillioides frequency than 2B710 and 30F35 samples. However, there was no statistical difference between fumonisin contamination when Bt and non-Bt samples were compared (P > 0.05). The results suggest that other environmental parameters could possibly trigger fumonisin production during plant development in the field; consequently, other management strategies should be applied to aid controlling fumonisin contamination in maize.  相似文献   

18.

Key message

Map-based cloning identified a candidate gene for resistance to the anthracnose fungal pathogen Colletotrichum orbiculare in cucumber, which reveals a novel function for the highly conserved STAYGREEN family genes for host disease resistance in plants.

Abstract

Colletotrichum orbiculare is a hemibiotrophic fungal pathogen that causes anthracnose disease in cucumber and other cucurbit crops. No host resistance genes against the anthracnose pathogens have been cloned in crop plants. Here, we reported fine mapping and cloning of a resistance gene to the race 1 anthracnose pathogen in cucumber inbred lines Gy14 and WI 2757. Phenotypic and QTL analysis in multiple populations revealed that a single recessive gene, cla, was underlying anthracnose resistance in both lines, but WI2757 carried an additional minor-effect QTL. Fine mapping using 150 Gy14?×?9930 recombinant inbred lines and 1043 F2 individuals delimited the cla locus into a 32 kb region in cucumber Chromosome 5 with three predicted genes. Multiple lines of evidence suggested that the cucumber STAYGREEN (CsSGR) gene is a candidate for the anthracnose resistance locus. A single nucleotide mutation in the third exon of CsSGR resulted in the substitution of Glutamine in 9930 to Arginine in Gy14 in CsSGR protein which seems responsible for the differential anthracnose inoculation responses between Gy14 and 9930. Quantitative real-time PCR analysis indicated that CsSGR was significantly upregulated upon anthracnose pathogen inoculation in the susceptible 9930, while its expression was much lower in the resistant Gy14. Investigation of allelic diversities in natural cucumber populations revealed that the resistance allele in almost all improved cultivars or breeding lines of the U.S. origin was derived from PI 197087. This work reveals an unknown function for the highly conserved STAYGREEN (SGR) family genes for host disease resistance in plants.
  相似文献   

19.
This study’s aim was to determine the identity of antibacterial compounds produced by Pseudomonas aeruginosa strain UICC B-40 and describe the antibacterial compounds’ mechanisms of action for damaging pathogenic bacteria cells. Isolation and identification of the compounds were carried out using thin layer chromatography (TLC), nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography mass spectrometry (LC-MS) analyses. Antibacterial activity was assayed via minimum inhibitory concentration (MIC) and the antibacterial compound mechanism was observed morphologically through scanning electron microscopy (SEM). This study successfully identified the (2E,5E)-phenyltetradeca-2,5-dienoate antibacterial compound (molecular weight 300 g/mol), composed of a phenolic ester, fatty acid and long chain of aliphatic group structures. MIC values for this compound were determined at 62.5 μg/ml against Staphylococcus aureus strain ATCC 25923. The mechanism of the compound involved breaking down the bacterial cell walls through the lysis process. The (2E,5E)-phenyltetradeca-2,5-dienoate compound exhibited inhibitory activity on the growth of Gram-positive bacteria.  相似文献   

20.
Grapevine trunk diseases (Eutypa dieback, esca and Botryosphaeria dieback) are caused by a complex of xylem-inhabiting fungi, which severely reduce yields in vineyards. Botryosphaeria dieback is associated with Botryosphaeriaceae. In order to develop effective strategies against Botryosphaeria dieback, we investigated the molecular basis of grapevine interactions with a virulent species, Neofusicoccum parvum, and a weak pathogen, Diplodia seriata. We investigated defenses induced by purified secreted fungal proteins within suspension cells of Vitis (Vitis rupestris and Vitis vinifera cv. Gewurztraminer) with putative different susceptibility to Botryosphaeria dieback. Our results show that Vitis cells are able to detect secreted proteins produced by Botryosphaeriaceae, resulting in a rapid alkalinization of the extracellular medium and the production of reactive oxygen species. Concerning early defense responses, N. parvum proteins induced a more intense response compared to D. seriata. Early and late defense responses, i.e., extracellular medium alkalinization, cell death, and expression of PR defense genes were stronger in V. rupestris compared to V. vinifera, except for stilbene production. Secreted Botryosphaeriaceae proteins triggered a high accumulation of δ-viniferin in V. vinifera suspension cells. Artificial inoculation assays on detached canes with N. parvum and D. seriata showed that the development of necrosis is reduced in V. rupestris compared to V. vinifera cv. Gewurztraminer. This may be related to a more efficient induction of defense responses in V. rupestris, although not sufficient to completely inhibit fungal colonization. Overall, our work shows a specific signature of defense responses depending on the grapevine genotype and the fungal species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号