首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Pacific salmon (Oncorhynchus spp.) returning to streams around the North Pacific Rim provide a nutrient subsidy to these ecosystems. While many species of animals feed directly on salmon carcasses each autumn, salmon-derived nutrients can also be stored in coastal habitats throughout the year. The effects of this storage legacy on vertebrates in other seasons are not well understood, especially in estuaries, which can receive a large portion of post-spawning salmon nutrients. We examine the effects of residual salmon-derived nutrients, forest habitats and landscape features on summer breeding birds in estuary forests. We compared models containing environmental variables and combined chum (Oncorhynchus keta) and pink (Oncorhynchus gorbuscha) salmon biomass to test predictions concerning bird density and diversity. We discovered that total bird, insectivore, golden-crowned kinglet and Pacific wren densities and Shannon's diversity in the summer were strongly predicted by salmon biomass in the autumn. For most metrics, this relationship approaches an asymptote beyond 40 000 kg of salmon biomass. Foliage height diversity, watershed catchment area and estuary area were also important predictors of avian communities. Our study suggests that the legacy of salmon nutrients influences breeding bird density and diversity in estuaries that vary across a wide gradient of spawning salmon biomass.  相似文献   

2.
Bald eagles (Haliaeetus leucocephalus) are recovering from severe population declines, and are exerting pressure on food resources in some areas. Thousands of bald eagles overwinter near Puget Sound, primarily to feed on chum salmon (Oncorhynchus keta) carcasses. We used modeling techniques to examine how anticipated climate changes will affect energetic demands of overwintering bald eagles. We applied a regional downscaling method to two global climate change models to obtain hourly temperature, precipitation, wind, and longwave radiation estimates at the mouths of three Puget Sound tributaries (the Skagit, Hamma Hamma, and Nisqually rivers) in two decades, the 1970s and the 2050s. Climate data were used to drive bald eagle bioenergetics models from December to February for each river, year, and decade. Bald eagle bioenergetics were insensitive to climate change: despite warmer winters in the 2050s, particularly near the Nisqually River, bald eagle food requirements declined only slightly (<1%). However, the warming climate caused salmon carcasses to decompose more rapidly, resulting in 11% to 14% less annual carcass biomass available to eagles in the 2050s. That estimate is likely conservative, as it does not account for decreased availability of carcasses due to anticipated increases in winter stream flow. Future climate-driven declines in winter food availability, coupled with a growing bald eagle population, may force eagles to seek alternate prey in the Puget Sound area or in more remote ecosystems.  相似文献   

3.
As bald eagle populations recover, defining major sources of mortality provides managers important information to develop management plans and mitigation efforts. We obtained data from necropsies on 1,490 dead bald eagles (Haliaeetus leucocephalus) collected in Michigan, USA, conducted from 1986 to 2017 to determine causes of death (COD). Trauma and poisoning were the most common primary COD categories, followed by disease. Within trauma and poisoning, vehicular trauma (n = 532) and lead poisoning (n = 176) were the leading COD subcategories, respectively. Females comprised a greater number of carcasses for most COD diagnoses. The proportion of trauma and poisoning CODs significantly increased in the last few years of the study in comparison to a select few years at the beginning. Trauma CODs were greater in autumn months during whitetail deer (Odocoileus virginianus) breeding and hunting seasons and in February, when aquatic foraging is unavailable and eagles are likely forced to scavenge along roadsides. Poisoning CODs were greatest in late winter and early spring months, when deer carcasses containing lead ammunition, which are preserved by the cold weather, also become a supplemental food source. The major infectious disease CODs, West Nile virus and botulism (Clostridium botulinum type E), were more prevalent during summer months. We recommend moving road-killed carcasses, especially white-tailed deer, from the main thoroughfare to the back of the right-of-way, and the transition from lead ammunition and fishing tackle to non-toxic alternatives to decrease these main anthropogenic sources of mortality for bald eagles, and other scavenger species. © 2020 The Wildlife Society.  相似文献   

4.
In coastal streams throughout the north Pacific region, spawning salmon (Oncorhynchus spp.) subsidize terrestrial communities with their nutrients and carcasses. We document the previously unreported composition and ecology of terrestrial invertebrates using salmon carcasses in forest habitats from two high salmon density watersheds in coastal British Columbia. From experimental placement of 186 carcasses, terrestrial Diptera-dominated salmon carcass decay (85.5% of carcasses). Overall, we recorded over 60 species from salmon carcasses, including saprophagous Diptera and Coleoptera (15 spp.), dipteran predators (eight spp.) and parasitoids (four spp.), and opportunistic predators, scavengers, and detritivores (24 spp.). Using stable isotopes of nitrogen and carbon, we reconstruct the dietary niches of select species relative to salmon muscle tissue and previously sampled non-salmon feeding invertebrate species. From comparisons across seasons, sampling locations and larval and adult life stages, we find evidence for a diet of salmon tissue in flies (Calliphora terraenovae and Dryomyza anilis), and beetles (Nicrophorus investigator and Anthobium fimetarium). The parasitic wasps Alysia alticola and Atractodes sp. had the highest levels of enrichment of all species, representing their larval diet of fly larvae that have fed on salmon carcasses 1 year prior to adult wasp sampling. Temporal and spatial isotopic variation in insect indicator species varies by species mobility and the pathway of salmon nutrient uptake. Cataloguing these associations may be useful for developing indices of intact salmon runs, bear foraging, and subsequent nutrient transfer in coastal watersheds.  相似文献   

5.
The use of salmon Salmo salar carrion by otters Lutra lutra and other scavengers along the River Dee in north-east Scotland was studied by radio-tagging and individual marking of fish carcasses. More carcasses were available on the Dee than on tributary streams used for spawning, indicating that salmon returned to the river after spawning and died there. The amount of salmon carrion available to terrestrial and avian scavengers along the Dee varied from 6.7 kg. km-1 on an upstream study area to 36 kg. km-1 downstream. Fish carcasses in the Dee were moved by spates up to 20 km but in streams used for spawning less than 1 km. Of 86 carcasses examined in 1990/91, 64 were available to terrestrial and avian scavengers on the bank or awash and of these 45 had been fed upon by otters and 16 by birds. In 1991/92, 23 of 30 carcasses were available to terrestrial and avian scavengers. All had been fed upon, 19 by otters, four by birds. Other carcasses, in shallow water, were not available to terrestrial and avian scavengers. Subsequent scavenging was mainly by otters and continued for up to three weeks after the carcasses were found. Heron Ardea cinerea , great black-backed gull Larus marinus and crow Corvus corone also scavenged salmon carcasses along the Dee. Great black-backed gulls were the most frequent scavengers, but heron (dominant to black-backed gull) was a major scavenger in 1990/91. Crows, subordinate to other scavengers, waited, often in pairs, upon dominant scavengers. There were more scavenging birds downstream and numbers did not change between years. Of 20 salmon carcasses placed in spawning areas eight were probably, two possibly, removed by otters. Otters continued to scavenge carcasses for up to a month. Scavenging by foxes Vulpes vulpes and birds followed the removal of fish carcasses from the water by otters. Radio transmitters were removed by otters and left lying alongside carcasses.  相似文献   

6.
The alteration of scavenging communities can reduce basic ecosystem services and increase risks to human and wildlife health. Recent work demonstrated that scavenging communities in agricultural landscapes are extremely efficient: superabundant mesopredators sequestered system energy by dominating scavenging activity. To explore how the disturbance of these communities affects the stability of carrion removal as an ecosystem function, we experimentally manipulated a scavenging community within an agricultural landscape by reducing the abundance of the dominant scavenger, raccoons Procyon lotor. We then monitored the fates of 676 mouse Mus musculus carcasses placed in 13 control and 13 removal woodlots from June 2007–May 2008. The diversity of vertebrate scavengers did not change between control and removal woodlots and scavenging by invertebrates was unaffected by our experiment. Although Virginia opossums Didelphis virginiana and other scavengers exhibited a functional response when raccoons were reduced in abundance, the increases did not change the proportional allocation of carcasses among scavengers. Finally, the reduced abundance of a major scavenger affected system efficiency. More carcasses remained un‐scavenged at the end of trials in removal woodlots than in control woodlots. This experiment demonstrates the vulnerability of a critical ecosystem service, carrion removal, to perturbations of the scavenging community and serves to highlight the method by which scavenger communities may respond to perturbations.  相似文献   

7.
Resource subsidies across habitat boundaries can structure recipient communities and food webs. In the northern Pacific region, bears Ursus spp. foraging on anadromous salmon Oncorhynchus spp. provide a key link between marine and terrestrial ecosystems, with salmon density, fish size and watershed size as potential predictors of the magnitude of marine subsidy to terrestrial habitats. We use nitrogen and carbon stable isotopes to provide an assessment of the patterns of marine‐enrichment in riparian plants (11 species, 4 guilds) and litter invertebrates (4 guilds) sampled from 27 watersheds in coastal British Columbia, Canada. Watersheds occurred in three geographical regions (Vancouver Island, mainland midcoast and Haida Gwaii) and varied in size, and in biomass (kg m?1 of spawning length) and species of salmon (chum O. keta, pink O. gorbuscha and coho O. kisutch). δ15N values in all plant species and invertebrate guilds were positively predicted by total salmon biomass (kg m?1) and negatively predicted by watershed size. We observed replicated parallel slopes among plant species and invertebrate guilds across the gradient in salmon biomass, with differences in means hypothesized to be due to plant fractionation and animal trophic position. As such, we derived a watershed δ15N‐index averaged across guilds, and using an information theoretic approach we find that the biomass of chum salmon is a much stronger predictor of the δ15N‐index than either pink or coho salmon, or the sum biomass of all species. The top linear model contained chum biomass and watershed size. Chum salmon biomass independently predicted δ15N‐index variation in all three regions of British Columbia. Chum salmon are larger than pink or coho and provide an energetic reward for bears that facilitates carcass transfer, tissue selective foraging, and nutrient distribution by insect scavengers. Analyses of biodiversity and habitat data across many watersheds moves towards a long‐term goal in fisheries ecology to better integrate ecosystem values in salmon conservation.  相似文献   

8.
The particle size of the food resource strongly determines the structure and dynamics of food webs. However, the ecological implications of carcass size variation for scavenging networks structure and functioning have been largely overlooked. Here we investigate differences in scavenging patterns due to carcass size in a complex vertebrate scavenger community, Hluhluwe‐iMfolozi Park, South Africa, while taking into account seasonality. We monitored the consumption of three types of experimental carcasses: ‘small’ (< 10 kg), ‘medium’ (10–100 kg) and ‘large’ (> 100 kg). We employed general lineal models to explore the influence of carcass size on 1) scavenging network structure (scavenger species richness per carcass) and 2) functioning (carcass detection time, consumption time, consumption rate and percentage of carrion consumed). We also tested whether the structure of the scavenging network of each carcass size was nested, i.e. whether the scavenging assemblage in species‐poor carcasses was a subset of the assemblage consuming species‐rich carcasses. We found strong evidence indicating that carcass size is a major factor governing the associated scavenger assemblage. Scavenger species richness per carcass and carcass consumption time and rate increased with carcass size, while carcass detection time and percentage of carrion biomass consumed were negatively related to carcass size. Strikingly, most of the carrion biomass was consumed by facultative scavengers, represented by large mammalian carnivores, rather than by obligate scavengers (i.e. vultures). Scavenging network nestedness tended to be higher at larger carcasses, and nestedness was sensitive to the removal of the most connected species in the network (spotted hyena) rather than vultures. When comparing scavenging and predation assemblages, crucial size‐dependent differences emerge. Also, we identified a traditionally ignored mechanism by which hunting large prey could be relatively less profitable for predators, namely the costs associated with competition from scavengers and decomposers.  相似文献   

9.
We tested the hypothesis that the carcasses of anadromous Pacific salmon (Oncorhynchus spp.) constitute a significant source of nutrients in the nutrient-poor freshwaters where these fish migrate, spawn, senesce, and die. In a 110 m-long stream reach in Southeast Alaska, we retained nearly 3000 salmon carcasses and compared streamwater nitrogen (N), phosphorus (P), and the biomass of benthic biofilm in this reach with an upstream reference reach. The study spanned 5 months, bracketed the entire salmon run, and encompassed significant seasonal variation in abiotic stream conditions. Concentrations of dissolved and particulate N and P followed distinctly unimodal patterns through time, which tracked the abundance of live salmon, and we observed strong predictive relationships between live-salmon abundance and streamwater-nutrient concentrations. In contrast, we did not observe clear relationships between salmon carcasses and streamwater nutrients. Biofilm biomass within our study reaches seemed to more closely track the abundance of live salmon than the abundance of carcasses. The experimental retention of carcasses had a minor or undetectable influence on nutrient concentrations and biofilm within the study reach as compared to the reference reach. We conclude that physical factors such as temperature, discharge, nutrient limitation, and irradiance vary seasonally in ways that maximize the influence of nutrients provisioned by live salmon and minimize the influence of carcass-derived nutrients on the aspects of stream ecosystems that we examined. Overall, our results promote a new perspective on the ecological role of salmon in freshwaters, and contribute to a more mechanistic understanding of how migratory fishes can influence aquatic ecosystems.  相似文献   

10.
Food webs near the interface of adjacent ecosystems are potentially subsidised by the flux of organic matter across system boundaries. Such subsidies, including carrion of marine provenance, are predicted to be instrumental on open-coast sandy shores where in situ productivity is low and boundaries are long and highly permeable to imports from the sea. We tested the effect of carrion supply on the structure of consumer dynamics in a beach-dune system using broad-scale, repeated additions of carcasses at the strandline of an exposed beach in eastern Australia. Carrion inputs increased the abundance of large invertebrate scavengers (ghost crabs, Ocypode spp.), a numerical response most strongly expressed by the largest size-class in the population, and likely due to aggregative behaviour in the short term. Consumption of carrion at the beach-dune interface was rapid and efficient, driven overwhelmingly by facultative avian scavengers. This guild of vertebrate scavengers comprises several species of birds of prey (sea eagles, kites), crows and gulls, which reacted strongly to concentrations of fish carrion, creating hotspots of intense scavenging activity along the shoreline. Detection of carrion effects at several trophic levels suggests that feeding links arising from carcasses shape the architecture and dynamics of food webs at the land-ocean interface.  相似文献   

11.
Scavenging is a common feeding behavior by many species that plays an important role in ecosystem stability and function while also providing ecosystem services. Despite its importance, facultative scavenging on large animal carcasses has generally been overlooked in Asian temperate forest ecosystems. The aim of this study was to determine the composition and feeding behavior of the facultative scavenger guild as it relates to sika deer (Cervus nippon) carcasses in Japanese forests. There are no obligate scavengers or large predators that kill adult ungulates, but humans fill the role of large predators by culling deer for population management. We documented nine vertebrate species scavenging on deer carcasses and found that mammals were more frequent scavengers than birds and also fed for longer durations. This result suggests that there is a facultative scavenger guild composed mainly of mammals in our forest ecosystem and that carcass utilization by birds was restricted to only forest species. Raccoon dogs (Nyctereutes procyonoides) and Asian black bears (Ursus thibetanus) were the most frequent scavenger species and also fed for longer durations than other scavengers. There were significant seasonal differences in scavenging by Asian black bear, Japanese marten (Martes melampus), and mountain hawk‐eagle (Nisaetus nipalensis), suggesting the availability of other food resources may alter facultative scavenging by each species. Our results support that scavenging is widespread in this system and likely has important functions including building links in the food web.  相似文献   

12.
Abstract.  1. In many undisturbed watersheds along the Pacific Rim, anadromous salmon ( Oncorhynchus spp.) provide a predictable source of carrion to the riparian zone, largely due to horizontal transfer of salmon carcasses by bears ( Ursus spp.) and other vertebrates.
2. Burying beetles are important members of the north-temperate carrion fauna, and may utilise salmon carcasses and remnants for breeding. In this study, isotopic and observational data are reported that demonstrate previously unrecognised Nicrophorus investigator (Zetterstedt) reproduction on large salmon carcasses from five watersheds in coastal British Columbia.
3. Stable isotope signatures (δ15N and δ13C) of adult beetles collected in autumn indicate a diet of salmon origin in all but one individual from all watersheds, suggesting that this beetle–salmon association is widespread. Comparison of autumn isotope signatures to individuals collected randomly in summer suggests that isotope signatures represent the larval carrion source from the previous autumn rather than immediate adult diet.
4. In a survey of N. investigator use of salmon carcasses from two watersheds, 35 broods were observed on chum and pink salmon carcasses, including 16 natural brood complexes containing over 100 larvae, and five ranging from 250 to 750 larvae.
5. Overall, north-coastal populations of N. investigator breed on the rich and reliable salmon resource and may exhibit a system of communal breeding on these carcasses. This is most relevant when the dramatic reduction in salmon spawning biomass over the last century is considered.  相似文献   

13.
Abundance, biomass and retention of salmon carcasses (Oncorhynchus keta and O. masou masou) were studied in a spring-fed tributary, the Naibetsu River, Chitose River system, Hokkaido, northern Japan, in 1998–2003, where almost all adult salmon were caught for a salmon enhancement program by a fish trap at the lower reach every fall. The abundance and biomass fluctuated seasonally, with two peaks in fall and winter, and annually. The total number of carcasses in fall was significantly correlated with the highest water level at lower reach in fall, indicating that the adult salmon swam over the trap at flood. Carcass abundance in winter may depend on the population size spawned in the wild at the upper reach, since the trap was removed in this season. Since the large wood debris and gravel were absent or scarce, many carcasses were lost from the study site within 20 days and a few carcasses remained over 31 days. Carcass removal by some terrestrial animals from the study site was detected.  相似文献   

14.
During the late 20th Century, due to decreases in both contamination and persecution, bald eagle (Haliaeetus leucocephalus) populations increased dramatically. Currently, mechanisms regulating eagle populations are not well understood. To examine potential regulating processes in the Pacific Northwest, where eagles are no longer primarily regulated by contaminants or direct persecution, we examined bald eagle reproductive success, breeding populations, winter populations, mortality, and salmon stream use. Wintering and breeding eagle populations in south-coastal British Columbia (BC) quadrupled between the early 1980s and the late 1990s, and have since stabilized. Density-dependent declines in reproduction occurred during 1986–2009, but not through changes in site quality. Mid-winter survival was crucial as most mortality occurred then, and models showed that density-dependent reductions in population growth rates were partially due to reduced survival. Wintering eagles in British Columbia fed heavily on chum salmon (Oncorhynchus keta) runs, and then switched to birds in late winter, when mortality was highest. Eagles tended to arrive after the peak in salmon availability at streams in BC as part of a migration associated with salmon streams from Alaska to northern Washington. Eagles were most abundant in southern BC during cold Alaskan winters and in years of high chum salmon availability. We suggest that eagle populations in the Pacific Northwest are currently partially limited by density on the breeding grounds and partially by adult mortality in late winter, likely due to reduced late winter salmon stocks forcing eagles to exploit more marginal prey supplies. Larger eagle populations have affected some local prey populations. © 2011 The Wildlife Society.  相似文献   

15.
Since the late 20th century, the biomass of Pacific salmon Oncorhynchus spp. has increased. Hokkaido, northern Japan, is one of the main areas of chum salmon O. keta production in the North Pacific and intensive hatchery programs support the recent high abundance. However, proper management of naturally spawning populations is necessary to conserve healthy stocks of this species. In 2008, we started a program to assess the naturally spawning chum salmon populations in Hokkaido. Of the total of approximately 1,500 rivers in Hokkaido, 238 rivers with lengths of longer than 8 km (excluding those rivers used for hatchery broodstock collection) were surveyed in 2008 and 2009. The number of non-enhanced rivers found to contain naturally reproducing chum salmon was 59 (31.4% of surveyed rivers) and 50 (37.6% of surveyed rivers) rivers in 2008 and 2009, respectively. Including the rivers where hatchery broodstock were collected and rivers shorter than 8 km that contain naturally spawning chum salmon, chum salmon ascended at least 191 and 175 rivers in Hokkaido in 2008 and 2009, respectively. Repeated foot surveys indicated that the run timings of naturally spawning chum salmon may be affected by coastal commercial fisheries. This study showed that naturally spawning chum salmon remain in many rivers in Hokkaido where hatchery programs have been intensively conducted.  相似文献   

16.
Hunters support scavengers with seasonal pulses of carrion. If those hunters also deploy remote cameras at kill sites, they could simultaneously contribute data to wildlife research while gaining first-hand knowledge of scavenger ecology. In 2018–2020, we recruited hunters to monitor carcasses and offal with remote cameras across western Montana, USA. We increased our sampling effort by also setting up cameras following successful elk (Cervus canadensis) hunts at a private ranch. Cameras recorded 19 scavenger species. Golden eagles (Aquila chrysaetos) appeared at 55% of sites, and 3 individuals wore auxiliary markers, demonstrating how hunters can augment efforts to detect tagged wildlife. Cameras also documented elusive predators (e.g., wolves [Canis lupus]) and a seasonality of scavenging among American black bears (Ursus americanus). At 42% of the sites, ≥1 cervid investigated the carrion within 1 m, a behavior that may transmit the prions associated with chronic wasting disease. Hunters are willing and competent citizen scientists that can help generate wildlife observations at a broad spatial scale.  相似文献   

17.
Hicks BJ  Wipfli MS  Lang DW  Lang ME 《Oecologia》2005,144(4):558-569
After rearing to adulthood at sea, coho salmon (Oncorhynchus kisutch) return to freshwater to spawn once and then die on or near their spawning grounds. We tested the hypothesis that spawning coho salmon return marine N and C to beaver (Castor canadensis) ponds of the Copper River Delta (CRD), Cordova, southcentral Alaska, thereby enhancing productivity of the aquatic food webs that support juvenile coho salmon. We sampled three types of pond treatment: (1) natural enrichment by spawning salmon, (2) artificial enrichment via addition of salmon carcasses and eggs, and (3) ponds with no salmon enrichment. All ponds supported juvenile coho salmon. Seasonal samples of stable isotopes revealed that juvenile coho salmon, threespine sticklebacks (Gasterosteus aculeatus), caddisfly larvae, leeches, and chironomid midge larvae were enriched with marine N and C. The aquatic vascular plants bur reed (Sparganium hyperboreum), pondweed (Potamogeton gramineus), and mare’s tail (Hippuris vulgaris) were enriched with marine N only. Riparian vegetation (Sitka alder Alnus viridis ssp. sinuata and willow Salix spp.) did not show enrichment. Artificial additions of adult carcasses and eggs of coho salmon increased the δ15N and δ13C values of juvenile coho salmon. In this dynamic and hydrologically complex coastal environment, spawning coho salmon contributed marine N and C comprising 10–50% of the dietary needs of juvenile coho salmon through direct consumption of eggs and carcass material. Invertebrates that have assimilated marine N and C yield a further indirect contribution. This perennial subsidy maintains the productivity of the ecosystem of the coho salmon on the CRD.  相似文献   

18.
During two consecutive spawning seasons, the movement and distribution of naturally occurring coho salmon (Oncorhynchus kisutch) carcasses were monitored, and the effectiveness of large woody debris (LWD) in retaining carcasses in a stream was evaluated. In both seasons studied, the proportion of carcasses trapped by LWD increased as the season progressed. Densities of salmon carcasses were higher in slow waters such as stream edges and backwaters throughout the study periods. The average distance drifted by carcasses was 19.5m in the first season and 32.1 m in the second season. These results support the notion that LWD contributes to retention of salmon carcasses and enhances availability of salmon-derived nutrients for organisms near salmon spawning grounds.  相似文献   

19.
1. Pacific salmon (Oncorhynchus spp.) deliver marine‐derived nutrients to the streams in which they spawn and die, and these resource subsidies can increase the abundance of stream biota. In strong contrast, physical disturbance from salmon spawning activity can reduce the abundance of benthic organisms. Previous experimental designs have not established the relative effects of these two contrasting processes on stream organisms during a salmon run. 2. We combined manipulative and observational field studies to assess the degree of nutrient enrichment, physical disturbance, and the net effect of salmon on the abundance of benthic periphyton. Related salmon‐mediated processes were also evaluated for benthic macroinvertebrates. Mesh exclosures (2 × 2 m plots) prevented salmon from disturbing areas of the stream channel, which were compared with areas to which salmon had access. Sampling was conducted both before and during the late‐summer spawning run of pink (O. gorbushca) and chum (O. keta) salmon. 3. Streamwater nitrogen and phosphorus concentrations increased sharply with the onset of the salmon run, and highly significant positive relationships were observed between the numbers of salmon present in the stream and these dissolved nutrients. Before the salmon run, periphyton biomass (as chlorophyll a) and total macroinvertebrate abundance were very similar between control and exclosure plots. During the salmon run, exclosures departed substantially from controls, suggesting significant disturbance imparted on benthic biota. 4. Comparing exclosures before and during the salmon run enabled us to estimate the effects of salmon in the absence of direct salmon disturbance. This ‘nutrient enrichment potential’ was significant for periphyton biomass, as was a related index for macroinvertebrate abundance (although enhanced invertebrate drift into exclosures during the salmon run could also have been important). Interestingly, however, the net effect of salmon, evaluated by comparing control plots before and during the salmon run, was relatively modest for both periphyton and macroinvertebrates, suggesting that nutrient enrichment effects were largely offset by disturbance. 5. Our results illustrate the importance of isolating the specific mechanisms via which organisms affect ecosystems, and indicate that the relative magnitude of salmon nutrient enrichment and benthic disturbance determines the net effect that these ecologically important fish have on stream ecosystems.  相似文献   

20.
Species’ impacts on primary production can have strong ecological consequences. In freshwater ecosystems, Pacific salmon (Oncorhynchus spp.) may influence stream periphyton through substrate disturbance during spawning and nutrient subsidies from senescent adults. The shape of relationships between the abundance of spawning salmon and stream periphyton, as well as interactions with environmental variables, are incompletely understood and may differ across the geographic range of salmon. We examined these relationships across 24 sockeye salmon (Oncorhynchus nerka) spawning streams in north-central British Columbia, Canada. The influence of salmon abundance and environmental variables (temperature, light, dissolved nutrients, water velocity, watershed size, and invertebrate grazer abundance) on post-spawning periphyton abundance and nitrogen stable isotope signatures, which can indicate the uptake of salmon nitrogen, was evaluated using linear regression models and Akaike Information Criterion. Periphyton nitrogen stable isotope signatures were best described by a positive log-linear relationship with an upstream salmon abundance metric that includes salmon from earlier years. This suggests the presence of a nutrient legacy. In contrast, periphyton abundance was negatively related to the spawning-year salmon density, which likely results from substrate disturbance during spawning, and positively related to dissolved soluble reactive phosphorus prior to spawning, which may indicate phosphorus limitation in the streams. These results suggest that enrichment from salmon nutrients does not always translate into elevated periphyton abundance. This underscores the need to directly assess the outcome of salmon impacts on streams rather than extrapolating from stable isotope evidence for the incorporation of salmon nutrients into food webs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号