首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Life cycle assessment (LCA) was combined with primary data from nine forest harvesting operations in New York, Maine, Massachusetts, and Vermont, from 2013 to 2019 where forest biomass (FB) for bioenergy was one of several products. The objective was to conduct a data‐driven study of greenhouse gas emissions associated with FB feedstock harvesting operations in the Northeast United States. Deterministic and stochastic LCA models were built to simulate the current FB bioenergy feedstock supply chain in the Northeast US with a cradle‐to‐gate scope (forest harvest through roadside loading) and a functional unit of 1.0 Mg of green FB feedstock at a 50% moisture content. Baseline LCA, sensitivity analysis, and uncertainty analyses were conducted for three different FB feedstock types—dirty chips, clean chips, and grindings—enabling an empirically driven investigation of differences between feedstock types, individual harvesting process contributions, and literature comparisons. The baseline LCA average impacts were lower for grindings (4.57 kg CO2eq/Mg) and dirty chips (7.16 kg CO2eq/Mg) than for clean chips (23.99 kg CO2eq/Mg) under economic allocation, but impacts were of similar magnitude under mass allocation, ranging from 24.42 to 27.89 kg CO2eq/Mg. Uncertainty analysis showed a wider range of probable results under mass allocation compared to economic allocation. Sensitivity analysis revealed the impact of variations in the production masses and total economic values of primary products of forest harvests on the LCA results due to allocation of supply chain emissions. The high variability in fuel use between logging contractors also had a distinct influence on LCA results. The results of this study can aid decision‐makers in energy policy and guide emissions reductions efforts while informing future LCAs that expand the system boundary to regional FB energy pathways, including electricity generation, transportation fuels, pellets for heat, and combined heat and power.  相似文献   

2.
Within the bioenergy debate, the ‘food vs. fuel’ controversy quickly replaced enthusiasm for biofuels derived from first‐generation feedstocks. Second‐generation biofuels offer an opportunity to produce fuels from dedicated energy crops, waste materials or coproducts such as cereal straw. Wheat represents one of the most widely grown arable crops around the world, with wheat straw, a potential source of biofuel feedstock. Wheat straw currently has limited economic value; hence, wheat cultivars have been bred for increased grain yield; however, with the development of second‐generation biofuel production, utilization of straw biomass provides the potential for ‘food and fuel’. Reviewing the evidence for the development of dual‐purpose wheat cultivars optimized for food grain and straw biomass production, we present a holistic assessment of a potential ideotype for a dual‐purpose cultivar (DPC). An ideal DPC would be characterized by high grain and straw yields, high straw digestibility (i.e. biofuel yield potential) and good lodging resistance. Considerable variation in these traits exists among current wheat cultivars, facilitating the selection of improved individual traits; however, increasing straw yield and digestibility could potentially have negative trade‐off impacts on grain yield and lodging resistance, reducing the feasibility of a single ideotype. Adoption of alternative management practices could potentially increase straw yield and digestibility, albeit these practices are also associated with potential trade‐offs among cultivar traits. Benefits from using DPCs include reduced logistics costs along the biofuel feedstock supply chain, but practical barriers to differential pricing for straw digestibility traits are likely to reduce the financial incentive to farmers for growing higher ‘biofuel‐quality’ straw cultivars. Further research is required to explore the relationships among the ideotype traits to quantify potential DPC benefits; this will help to determine whether stakeholders along the bioenergy feedstock supply chain will invest in the development of DPCs that provide food and fuel potential.  相似文献   

3.
A wide range of bioenergy crops has been proposed as feedstocks that can serve as renewable and ecologically sound substitutes to fossil fuels. In the United States, corn grain (Zea mays) ethanol is the primary biofuel, with over 49 billion liters produced in 2010. Along with the Energy Independence and Security Act (EISA) of 2007 mandate, concerns about competition for food, land availability, nutrient and water requirements, energy balances, and greenhouse gas (GHG) emissions have prompted researchers to investigate other potential feedstocks. These include second-generation lignocellulosic feedstock and third-generation biodiesel from microalgae and cyanobacteria. However, each feedstock option has associated benefits and consequences for its use. One technique used to evaluate the energy efficiency of bioenergy production systems is the life-cycle assessment (LCA), where system inputs and outputs are computed in terms of either C or energy equivalents to assess the net gains in energy or C offsets. This article collates and synthesizes information about feedstock production options. Results show a wide range of calculated energy and GHG balances, even for the same feedstock species. Discrepancies in LCA and uncertainty thus make direct comparisons difficult and prevent a consensus in determining feedstock suitability. Recommendations must be based upon LCA model assumptions, crop species, cultivation methods, management practices, and energy conversion choices. Currently lignocellulosic feedstock, while a better alternative than corn grain, is not a long-term viable energy source. New feedstocks and technologies are necessary if bioenergy is to be C-neutral and efficient in energy production and land use. Although C fluxes are considered in LCA, one important ecosystem C stock that has previously been left out of many LCA models is changes to soil organic carbon (SOC). Future research, developments, and priorities are discussed for options to produce low C fuel sources and stabilize the climate.  相似文献   

4.
Biorefining agro‐industrial biomass residues for bioenergy production represents an opportunity for both sustainable energy supply and greenhouse gas (GHG) emissions mitigation. Yet, is bioenergy the most sustainable use for these residues? To assess the importance of the alternative use of these residues, a consequential life cycle assessment (LCA) of 32 energy‐focused biorefinery scenarios was performed based on eight selected agro‐industrial residues and four conversion pathways (two involving bioethanol and two biogas). To specifically address indirect land‐use changes (iLUC) induced by the competing feed/food sector, a deterministic iLUC model, addressing global impacts, was developed. A dedicated biochemical model was developed to establish detailed mass, energy, and substance balances for each biomass conversion pathway, as input to the LCA. The results demonstrated that, even for residual biomass, environmental savings from fossil fuel displacement can be completely outbalanced by iLUC, depending on the feed value of the biomass residue. This was the case of industrial residues (e.g. whey and beet molasses) in most of the scenarios assessed. Overall, the GHGs from iLUC impacts were quantified to 4.1 t CO2‐eq.ha?1demanded yr?1 corresponding to 1.2–1.4 t CO2‐eq. t?1 dry biomass diverted from feed to energy market. Only, bioenergy from straw and wild grass was shown to perform better than the alternative use, as no competition with the feed sector was involved. Biogas for heat and power production was the best performing pathway, in a short‐term context. Focusing on transport fuels, bioethanol was generally preferable to biomethane considering conventional biogas upgrading technologies. Based on the results, agro‐industrial residues cannot be considered burden‐free simply because they are a residual biomass and careful accounting of alternative utilization is a prerequisite to assess the sustainability of a given use. In this endeavor, the iLUC factors and biochemical model proposed herein can be used as templates and directly applied to any bioenergy consequential study involving demand for arable land.  相似文献   

5.
Albedo change during feedstock production can substantially alter the life cycle climate impact of bioenergy. Life cycle assessment (LCA) studies have compared the effects of albedo and greenhouse gases (GHGs) based on global warming potential (GWP). However, using GWP leads to unequal weighting of climate forcers that act on different timescales. In this study, albedo was included in the time‐dependent LCA, which accounts for the timing of emissions and their impacts. We employed field‐measured albedo and life cycle emissions data along with time‐dependent models of radiative transfer, biogenic carbon fluxes and nitrous oxide emissions from soil. Climate impacts were expressed as global mean surface temperature change over time (?T) and as GWP. The bioenergy system analysed was heat and power production from short‐rotation willow grown on former fallow land in Sweden. We found a net cooling effect in terms of ?T per hectare (?3.8 × 10–11 K in year 100) and GWP100 per MJ fuel (?12.2 g CO2e), as a result of soil carbon sequestration via high inputs of carbon from willow roots and litter. Albedo was higher under willow than fallow, contributing to the cooling effect and accounting for 34% of GWP100, 36% of ?T in year 50 and 6% of ?T in year 100. Albedo dominated the short‐term temperature response (10–20 years) but became, in relative terms, less important over time, owing to accumulation of soil carbon under sustained production and the longer perturbation lifetime of GHGs. The timing of impacts was explicit with ?T, which improves the relevance of LCA results to climate targets. Our method can be used to quantify the first‐order radiative effect of albedo change on the global climate and relate it to the climate impact of GHG emissions in LCA of bioenergy, alternative energy sources or land uses.  相似文献   

6.

Introduction

In the last years, the use of biomass for energy purposes has been seen as a promising option to reduce the use of nonrenewable energy sources and the emissions of fossil carbon. However, LCA studies have shown that the energetic use of biomass also causes impacts on climate change and, furthermore, that different environmental issues arise, such as land use and agricultural emissions. While biomass is renewable, it is not an unlimited resource. Its use, to whatever purpose, must therefore be well studied to promote the most efficient option with the least environmental impacts. The 47th LCA Discussion Forum gathered several national and international speakers who provided a broad and qualified view on the topic.

Summary of the topics presented in DF 47

Several aspects of energetic biomass use from a range of projects financed by the Swiss Federal Office of Energy (SFOE) were presented in this Discussion Forum. The first session focused on important aspects of the agricultural biogas production like the use of high energy crops or catch crops as well as the influence of plant size on the environmental performance of biogas. In the second session, other possibilities of biomass treatment like direct combustion, composting, and incineration with municipal waste were presented. Topic of the first afternoon session was the update and harmonization of biomass inventories and the resulting new assessment of biofuels. The short presentations investigated some further aspects of the LCA of bioenergy like the assessment of spatial variation of greenhouse gas (GHG) emissions from bioenergy production in a country, the importance of indirect land use change emissions on the overall results, the assessment of alternative technologies to direct spreading of digestate or the updates of the car operation datasets in ecoinvent.

Conclusions

One main outcome of this Discussion Forum is that bioenergy is not environmentally friendly per se. In many cases, energetic use of biomass allows a reduction of GHG and fossil energy use. However, there is often a tradeoff with other environmental impacts linked to agricultural production like eutrophication or ecotoxicity. Methodological challenges still exist, like the assessment of direct and indirect land use change emissions and their attribution to the bioenergy production, or the influence of heavy metal flows on the bioenergy assessment. Another challenge is the implementation of a life cycle approach in certification or legislation schemes, as shown by the example of the Renewable Energy Directive of the European Union.  相似文献   

7.
The use of different input data, functional units, allocation methods, reference systems and other assumptions complicates comparisons of LCA bioenergy studies. In addition, uncertainties and use of specific local factors for indirect effects (like land-use change and N-based soil emissions) may give rise to wide ranges of final results. In order to investigate how these key issues have been addressed so far, this work performs a review of the recent bioenergy LCA literature. The abundance of studies dealing with the different biomass resources, conversion technologies, products and environmental impact categories is summarized and discussed. Afterwards, a qualitative interpretation of the LCA results is depicted, focusing on energy balance, GHG balance and other impact categories. With the exception of a few studies, most LCAs found a significant net reduction in GHG emissions and fossil energy consumption when bioenergy replaces fossil energy.  相似文献   

8.
Carbon dioxide (CO2) emissions from biomass combustion are traditionally assumed climate neutral if the bioenergy system is carbon (C) flux neutral, i.e. the CO2 released from biofuel combustion approximately equals the amount of CO2 sequestered in biomass. This convention, widely adopted in life cycle assessment (LCA) studies of bioenergy systems, underestimates the climate impact of bioenergy. Besides CO2 emissions from permanent C losses, CO2 emissions from C flux neutral systems (that is from temporary C losses) also contribute to climate change: before being captured by biomass regrowth, CO2 molecules spend time in the atmosphere and contribute to global warming. In this paper, a method to estimate the climate impact of CO2 emissions from biomass combustion is proposed. Our method uses CO2 impulse response functions (IRF) from C cycle models in the elaboration of atmospheric decay functions for biomass‐derived CO2 emissions. Their contributions to global warming are then quantified with a unit‐based index, the GWPbio. Since this index is expressed as a function of the rotation period of the biomass, our results can be applied to CO2 emissions from combustion of all the different biomass species, from annual row crops to slower growing boreal forest.  相似文献   

9.
Accurate estimation of the greenhouse gas (GHG) mitigation potential of bioenergy crops requires the integration of a significant component of spatially varying information. In particular, crop yield and soil carbon (C) stocks are variables which are generally soil type and climate dependent. Since gaseous emissions from soil C depend on current C stocks, which in turn are related to previous land management it is important to consider both previous and proposed future land use in any C accounting assessment. We have conducted a spatially explicit study for England and Wales, coupling empirical yield maps with the RothC soil C turnover model to simulate soil C dynamics. We estimate soil C changes under proposed planting of four bioenergy crops, Miscanthus ( Miscanthus × giganteus ), short rotation coppice (SRC) poplar ( Populus trichocarpa Torr. & Gray × P. trichocarpa , var. Trichobel), winter wheat, and oilseed rape. This is then related to the former land use – arable, pasture, or forest/seminatural, and the outputs are then assessed in the context of a life cycle analysis (LCA) for each crop. By offsetting emissions from management under the previous land use, and considering fossil fuel C displaced, the GHG balance is estimated for each of the 12 land use change transitions associated with replacing arable, grassland, or forest/seminatural land, with each of the four bioenergy crops. Miscanthus and SRC are likely to have a mostly beneficial impact in reducing GHG emissions, while oilseed rape and winter wheat have either a net GHG cost, or only a marginal benefit. Previous land use is important and can make the difference between the bioenergy crop being beneficial or worse than the existing land use in terms of GHG balance.  相似文献   

10.
The agriculture sector can contribute to climate change mitigation by reducing its own greenhouse gas (GHG) emissions, sequestering carbon in vegetation and soils, and providing biomass to substitute for fossil fuels and other GHG-intensive products. The sector also needs to address water, soil, and biodiversity impacts caused by historic and current practices. Emerging EU policies create incentives for cultivation of perennial plants that provide biomass along with environmental benefits. One such option, common in northern Europe, is to include grass in rotations with annual crops to provide biomass while remediating soil organic carbon (SOC) losses and other environmental impacts. Here, we apply a spatially explicit model on >81,000 sub-watersheds in EU27 + UK (Europe) to explore the effects of widespread deployment of such systems. Based on current accumulated SOC losses in individual sub-watersheds, the model identifies and quantifies suitable areas for increased grass cultivation and corresponding biomass- and protein supply, SOC sequestration, and reductions in nitrogen emissions to water as well as wind and water erosion. The model also provides information about possible flood mitigation. The results indicate a substantial climate mitigation potential, with combined annual GHG savings from soil-carbon sequestration and displacement of natural gas with biogas from grass-based biorefineries, equivalent to 13%–48% of current GHG emissions from agriculture in Europe. The environmental co-benefits are also notable, in some cases exceeding the estimated mitigation needs. Yield increases for annual crops in modified rotations mitigate the displacement effect of increasing grass cultivation. If the grass is used as feedstock in lieu of annual crops, the displacement effect can even be negative, that is, a reduced need for annual crop production elsewhere. Incentivizing widespread deployment will require supportive policy measures as well as new uses of grass biomass, for example, as feedstock for green biorefineries producing protein concentrate, biofuels, and other bio-based products.  相似文献   

11.
To calculate the global warming potential of biogenic carbon dioxide emissions (GWPbCO2) associated with diverting residual biomass to bioenergy use, the decay of annual biogenic carbon pulses into the atmosphere over 100 years was compared between biomass use for energy and its business-as-usual decomposition in agricultural, forestry, or landfill sites. Bioenergy use increased atmospheric CO2 load in all cases, resulting in a 100GWPbCO2 (units of g CO2e/g biomass CO2 released) of 0.003 for the fast-decomposing agricultural residues to 0.029 for the slow, 0.084–0.625 for forest residues, and 0.368–0.975 for landfill lignocellulosic biomass. In comparison, carbon emissions from fossil fuels have a 100GWP of 1.0 g (CO2e/g fossil CO2). The fast decomposition rate and the corresponding low 100GWPbCO2 values of agricultural residues make them a more climate-friendly feedstock for bioenergy production relative to forest residues and landfill lignocellulosic biomass. This study shows that CO2 released from the combustion of bioenergy or biofuels made from residual biomass has a greenhouse gas footprint that should be considered in assessing climate impacts.  相似文献   

12.
Within-field spatial variability reduces growers’ return on investment and overall productivity while potentially increasing negative environmental impacts through increased soil erosion, nutrient runoff, and leaching. The hypothesis that integrating energy crops into non-profitable segments of agricultural fields could potentially increase grain yield and biomass feedstock production was tested in this study using a statewide analysis of predominantly corn- and soy-producing counties in Iowa. Basic and rigorous controls on permissible soil and soil-carbon losses were imposed on harvest of crop residues to enhance year-to-year sustainability of crop and residue production. Additional criteria limiting harvesting costs and focus on large-area subfields for biomass production were imposed to reduce the impacts of energy crop integration on grain production. Model simulations were conducted using 4 years (2013–2016) of soil, weather, crop yield, and management practice data on all counties in Iowa. Miscanthus (Miscanthus x giganteus), switchgrass (Panicum virgatum), and crop-residue-based bioenergy feedstock systems were evaluated as biomass. Average energy crop and plant residue harvesting efficiencies were estimated at 50 and 60%, respectively. Because of higher potential yields, average logistics costs for miscanthus-based biomass production were 15 and 23% lower than switchgrass-based and crop residue-based biomass productions, respectively, under basic sustainability controls, and 17 and 26% lower under rigorous sustainability controls. Subfield shape, size, area, and harvest equipment size were the dominant factors influencing harvesting cost and efficiency suggesting that in areas where subfields are predominantly profitable or harvesting efficiencies low, other options such as prairie strips, buffer zones around fields, and riparian areas should be investigated for more profitable biomass production and sustainable farming systems.  相似文献   

13.
Zhu X  Yao Q 《Bioresource technology》2011,102(23):10936-10945
It is technologically possible for a biorefinery to use a variety of biomass as feedstock including native perennial grasses (e.g., switchgrass) and agricultural residues (e.g., corn stalk and wheat straw). Incorporating the distinct characteristics of various types of biomass feedstocks and taking into account their interaction in supplying the bioenergy production, this paper proposed a multi-commodity network flow model to design the logistics system for a multiple-feedstock biomass-to-bioenergy industry. The model was formulated as a mixed integer linear programming, determining the locations of warehouses, the size of harvesting team, the types and amounts of biomass harvested/purchased, stored, and processed in each month, the transportation of biomass in the system, and so on. This paper demonstrated the advantages of using multiple types of biomass feedstocks by comparing with the case of using a single feedstock (switchgrass) and analyzed the relationship of the supply capacity of biomass feedstocks to the output and cost of biofuel.  相似文献   

14.
Large‐scale bioenergy demand has triggered new approaches to straw management in Brazilian sugarcane fields. With the progressive shift from a burned to a nonburned harvest system, most of the straw presently retained on the soil surface has become economically viable feedstock for bioenergy production. The trade‐offs between the need to preserve soil quality and produce more bioenergy have been the subject of intense discussion. This study presents a synthesis of available information on the magnitude of the main impacts of straw removal from sugarcane fields for bioenergy production and therefore represents an easily available resource to guide management decisions on the recommended amount of straw to be maintained on the field to take advantage of the agronomic, environmental, and industrial benefits. Crop residues remaining on sugarcane fields provide numerous ecosystem services including nutrient recycling, soil biodiversity, water storage, carbon accumulation, control of soil erosion, and weed infestation. Furthermore, several studies reported higher sugarcane production under straw retention on the field, while few suggest that straw may jeopardize biomass production in cold regions and under some specific soil conditions. Pest control is among the parameters favored by straw removal, while N2O emissions are increased only if straw is associated with the application of N fertilizer and vinasse. An appropriate recommendation, which is clearly site specific, should be based on a minimum mass of straw on the field to provide those benefits. Overall, this review indicates that most of the agronomic and environmental benefits are achieved when at least 7 Mg ha?1 of dry straw is maintained on the soil surface. However, modeling efforts are of paramount importance to assess the magnitude and rates of straw removal considering the several indicators involved in this complex equation, so that an accurate straw recovery rate could be provided to producers and industry toward greater sustainability.  相似文献   

15.
The area of dedicated energy crops is expected to increase in Sweden. This will result in direct land use changes, which may affect the carbon stocks in soil and biomass, as well as yield levels and the use of inputs. Carbon dioxide (CO2) fluxes of biomass are often not considered when calculating the climate impact in life cycle assessments (LCA) assuming that the CO2 released at combustion has recently been captured by the biomass in question. With the extended time lag between capture and release of CO2 inherent in many perennial bioenergy systems, the relation between carbon neutrality and climate neutrality may be questioned. In this paper, previously published methodologies and models are combined in a methodological framework that can assist LCA practitioners in interpreting the time‐dependent climate impact of a bioenergy system. The treatment of carbon differs from conventional LCA practice in that no distinction is made between fossil and biogenic carbon. A time‐dependent indicator is used to enable a representation of the climate impact that is not dependent on the choice of a specific characterization time horizon or time of evaluation and that does not use characterization factors, such as global warming potential and global temperature potential. The indicator used to aid in the interpretation phase of this paper is global mean surface temperature change (ΔTs(n)). A theoretical system producing willow for district heating was used to study land use change effects depending on previous land use and variations in the standing biomass carbon stocks. When replacing annual crops with willow this system presented a cooling contribution to ΔTs(n). However, the first years after establishing the willow plantation it presented a warming contribution to ΔTs(n). This behavior was due mainly to soil organic carbon (SOC) variation. A rapid initial increase in standing biomass counteracted the initial SOC loss.  相似文献   

16.
Crop residue exploitation for bioenergy can play an important role in climate change mitigation without jeopardizing food security, but it may be constrained by impacts on soil organic carbon (SOC) stocks, and market, logistic and conversion challenges. We explore opportunities to increase bioenergy potentials from residues while reducing environmental impacts, in line with sustainable intensification. Using the case study of North Rhine‐Westphalia in Germany, we employ a spatiotemporally explicit approach combined with stakeholder interviews. First, the interviews identify agronomic and environmental impacts due to the potential reduction in SOC as the most critical challenge associated with enhanced crop residue exploitation. Market and technological challenges and competition with other residue uses are also identified as significant barriers. Second, with the use of agroecosystem modelling and estimations of bioenergy potentials and greenhouse gas emissions till mid‐century, we evaluate the ability of agricultural management to tackle the identified agronomic and environmental challenges. Integrated site‐specific management based on (a) humus balancing, (b) optimized fertilization and (c) winter soil cover performs better than our reference scenario with respect to all investigated variables. At the regional level, we estimate (a) a 5% increase in technical residue potentials and displaced emissions from substituting fossil fuels by bioethanol, (b) an 8% decrease in SOC losses and associated emissions, (c) an 18% decrease in nitrous oxide emissions, (d) a 37% decrease in mineral fertilizer requirements and emissions from their production and (e) a 16% decrease in nitrate leaching. Results are spatially variable and, despite improvements induced by management, limited amounts of crop residues are exploitable for bioenergy in areas prone to SOC decline. In order to sustainably intensify crop residue exploitation for bioenergy and reconcile climate change mitigation with other sustainability objectives, such as those on soil and water quality, residue management needs to be designed in an integrated and site‐specific manner.  相似文献   

17.
The Saccharinae, especially sugarcane, Miscanthus and sorghum, present remarkable characteristics for bioenergy production. Biotechnology of these plants will be important for a sustainable feedstock supply. Herein, we review knowledge useful for their improvement and synergies gained by their parallel study.  相似文献   

18.
Grassland biomass is suitable in numerous ways for producing energy. It is well established as feedstock for biogas production. The aim of this review is to summarize current knowledge on suitability and sustainability of grassland biomass for anaerobic digestion. In the first section grassland management for biogas feedstock as well as specifics of harvest, postharvest and digestion technology are described. Methane yields from grass are influenced by many factors. While the effects of some parameters such as grass species, cutting period and management intensity can be regarded as well known, other parameters such as preservation and processing still need investigation. In the second section economic aspects and environmental impacts are discussed. Profitability can be achieved depending on grass silage supply costs and the concept of anaerobic digestion and energy use. Grassland biomass for biogas production competes with other feedstock and other forms of grassland use, in particular animal husbandry. In developed countries a growing production of milk and meat is achieved with decreasing ruminant numbers, resulting in an increasing amount of surplus grassland with a remarkable bioenergy potential. In emerging and developing countries a rapidly rising demand for and production of milk and meat induce growing pressure on grasslands, so that their use for animal feed presumably will take priority over use for bioenergy. Grasslands provide a variety of essential environmental benefits such as carbon storage, habitat function, preservation of ground and surface water quality. When producing biogas from grassland these benefits will remain or even grow, providing appropriate grassland management is implemented. In particular, greenhouse gas emissions can be considerably reduced.  相似文献   

19.
Under the current accounting systems, emissions produced when biomass is burnt for energy are accounted as zero, resulting in what is referred to as the ‘carbon neutrality’ assumption. However, if current harvest levels are increased to produce more bioenergy, carbon that would have been stored in the biosphere might be instead released in the atmosphere. This study utilizes a comparative approach that considers emissions under alternative energy supply options. This approach shows that the emission benefits of bioenergy compared to use of fossil fuel are time‐dependent. It emerges that the assumption that bioenergy always results in zero greenhouse gas (GHG) emissions compared to use of fossil fuels can be misleading, particularly in the context of short‐to‐medium term goals. While it is clear that all sources of woody bioenergy from sustainably managed forests will produce emission reductions in the long term, different woody biomass sources have various impacts in the short‐medium term. The study shows that the use of forest residues that are easily decomposable can produce GHG benefits compared to use of fossil fuels from the beginning of their use and that biomass from dedicated plantations established on marginal land can be carbon neutral from the beginning of its use. However, the risk of short‐to‐medium term negative impacts is high when additional fellings are extracted to produce bioenergy and the proportion of felled biomass used for bioenergy is low, or when land with high C stocks is converted to low productivity bioenergy plantations. The method used in the study provides an instrument to identify the time‐dependent pattern of emission reductions for alternative bioenergy sources. In this way, decision makers can evaluate which bioenergy options are most beneficial for meeting short‐term GHG emission reduction goals and which ones are more appropriate for medium to longer term objectives.  相似文献   

20.
Diminishing fossil carbon resources, global warming, and increasing material and energy needs urge for the rapid development of a bioeconomy. Biomass feedstock from agro‐industrial value chains provides opportunities for energy and material production, potentially leading to competition with traditional food and feed production. Simulation and optimization models can support the evaluation of biomass value chains and identify bioeconomy development paths, potentials, opportunities, and risks. This study presents the linkage of a farm model (EFEM) and a techno‐economic location optimization model (BIOLOCATE) for evaluating the straw‐to‐energy and the innovative straw‐to‐chemical value chains in the German federal state of Baden‐Wuerttemberg taking into account the spatially distributed and price‐sensitive nature of straw supply. The general results reveal the basic trade‐off between economies of scale of the energy production plants and the biorefineries on the one hand and the feedstock supply costs on the other hand. The results of the farm model highlight the competition for land between traditional agricultural biomass utilization such as food and feed and innovative biomass‐to‐energy and biomass‐to‐chemical value chains. Additionally, farm‐modeling scenarios illustrate the effect of farm specialization and regional differences on straw supply for biomass value chains as well as the effect of high straw prices on crop choices. The technological modeling results show that straw combustion could cover approximately 2% of Baden‐Wuerttemberg's gross electricity consumption and approximately 35% of the district heating consumption. The lignocellulose biorefinery location and size are affected by the price sensitivity of the straw supply and are only profitable for high output prices of organosolv lignin. The location optimization results illustrate that economic and political framework conditions affect the regional distribution of biomass straw conversion plants, thus favoring decentralized value chain structures in contrast to technological economies of scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号