首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Trophically transmitted parasites start their development in an intermediate host, before they finish the development in their definitive host when the definitive host preys on the intermediate host. In intermediate–definitive host systems, two strategies of host manipulation have been evolved: increasing the rate of transmission to the definitive host by increasing the chance that the definitive host will prey on the intermediate host, or increasing the lifespan of the parasite in the intermediate host by decreasing the predation chance when the intermediate host is not yet infectious. As the second strategy is less well studied than the first, it is unknown under what conditions each of these strategies is prevailed and evolved. We analysed the effect of both strategies on the presence of parasites in intermediate–definitive host systems with a structured population model. We show that the parasite can increase the parameter space where it can persist in the intermediate–definitive host system using one of these two strategies of host manipulation. We found that when the intermediate host or the definitive host has life‐history traits that allow the definitive host to reach large population densities, that is high reproduction rate of the intermediate host or high conversion efficiency of the definitive host (efficiency at which the uninfected definitive host converts caught intermediate hosts into offspring), respectively, evolving manipulation to decrease the predation chance of the intermediate host will be more beneficial than manipulation to increase the predation chance to enhance transmission. Furthermore, manipulation to decrease the predation chance of the intermediate host results in higher population densities of infected intermediate hosts than manipulation that increases the predation chance to enhance transmission. Our study shows that host manipulation in early stages of the parasite development to decrease predation might be a more frequently evolved way of host manipulation than is currently assumed.  相似文献   

2.
    
Parasites with heteroxen cycles are important sources of information on the trophic relations of hosts. This is particularly instructive for species whose age‐based or sex‐based differences are hardly detected by behavioural observations. Here, we describe the helminth community of the omnivorous southern lapwing (Vanellus chilensis) and evaluate whether it is affected by the host's sex, age and body size. The species is sexually monomorphic in body length, but males are slightly heavier than females. We analysed 112 individuals collected in Curitiba, Brazil, in March 2010. All hosts were parasitized. The helminth community was composed of 10 species (the digeneans Leucochloridium parcum and Athesmia sp., the cestode Infula macrophallus, the acantocephalans Plagiorhynchus sp., Centrorhynchus sp., Mediorhynchus sp., and an unidentified Gigantorhynchida, and the nematodes Heterakis psophiae, Dispharynx nasuta and an unidentified Capillariidae), seven of which were novel reports for this host species. Prevalence ranged from <1% to 99%. Whereas I. macrophallus was the most prevalent species, D. nasuta showed the highest mean intensity and abundance of infection. The former was found in most hosts as single male–female pairs, suggesting the occurrence of intrasexual competition. The infracommunities of juvenile birds showed a higher parasite species richness than those of adult males and females, suggesting the exploitation of a wider array of prey. However, the three classes harboured seven parasite species. Differences in parasite diversity (lower in juveniles, intermediate in adult males and higher in adult females) reflect the evenness in the distribution of parasite specimens among taxa in each age–sex class and are compatible with differences in their foraging strategy. Finally, we conclude based on the cycles of the heteroxen species that southern lapwings preyed upon molluscs, coleopterans, woodlice and earthworms.  相似文献   

3.
    
Inequality in male and female numbers may affect population dynamics and extinction probabilities and so has significant conservation implications. We previously demonstrated that Brown‐headed Cowbird Molothrus ater brood parasitism of Song Sparrows Melospiza melodia results in a 50% reduction in the proportion of female host offspring by day 6 post‐hatch and at fledging, which modelling demonstrated is as significant as nest predation in affecting demography. Many avian brood parasites possess special adaptations to parasitize specific hosts so this sex‐ratio effect could be specific to the interaction between these two species. Alternatively, perturbations associated with brood parasitism per se (e.g. the addition of an extra, larger, unrelated nestling), rather than a Cowbird nestling specifically, may be responsible. We experimentally eliminated the effects of Cowbird‐specific traits by parasitizing nests with a conspecific nestling rather than a Cowbird, while otherwise emulating the circumstances of Cowbird parasitism by adding an extra, larger (2‐day‐older), unrelated Song Sparrow nestling to Song Sparrow nests. Our parasitism treatment led to few host offspring deaths and no evidence of male‐biased sex ratios by day 6 post‐hatch. However, after day 6, female nestling mortality rates increased significantly in experimentally parasitized nests, resulting in a 60% reduction in the proportion of females fledging. Cowbird‐specific traits are thus not necessary to cause female‐biased host nestling mortality and far more general features associated with Cowbird parasitism instead appear responsible. Our results suggest, however, that Cowbird‐specific traits may help accelerate the pace of female host deaths. The conservation implications of our results could be wide reaching. Cowbirds are unrelated to all their hosts, are larger than the great majority, and a Cowbird nestling's presence can mean there is an extra mouth to feed. Thus, sex‐biased mortality in parasitized nests could be occurring across a range of host species.  相似文献   

4.
Parasites are common in many ecosystems, yet because of their nature, they do not fossilise readily and are very rare in the geological record. This makes it challenging to study the evolutionary transition that led to the evolution of parasitism in different taxa. Most studies on the evolution of parasites are based on phylogenies of extant species that were constructed based on morphological and molecular data, but they give us an incomplete picture and offer little information on many important details of parasite–host interactions. The lack of fossil parasites also means we know very little about the roles that parasites played in ecosystems of the past even though it is known that parasites have significant influences on many ecosystems. The goal of this review is to bring attention to known fossils of parasites and parasitism, and provide a conceptual framework for how research on fossil parasites can develop in the future. Despite their rarity, there are some fossil parasites which have been described from different geological eras. These fossils include the free‐living stage of parasites, parasites which became fossilised with their hosts, parasite eggs and propagules in coprolites, and traces of pathology inflicted by parasites on the host's body. Judging from the fossil record, while there were some parasite–host relationships which no longer exist in the present day, many parasite taxa which are known from the fossil record seem to have remained relatively unchanged in their general morphology and their patterns of host association over tens or even hundreds of millions of years. It also appears that major evolutionary and ecological transitions throughout the history of life on Earth coincided with the appearance of certain parasite taxa, as the appearance of new host groups also provided new niches for potential parasites. As such, fossil parasites can provide additional data regarding the ecology of their extinct hosts, since many parasites have specific life cycles and transmission modes which reflect certain aspects of the host's ecology. The study of fossil parasites can be conducted using existing techniques in palaeontology and palaeoecology, and microscopic examination of potential material such as coprolites may uncover more fossil evidence of parasitism. However, I also urge caution when interpreting fossils as examples of parasites or parasitism‐induced traces. I point out a number of cases where parasitism has been spuriously attributed to some fossil specimens which, upon re‐examination, display traits which are just as (if not more) likely to be found in free‐living taxa. The study of parasite fossils can provide a more complete picture of the ecosystems and evolution of life throughout Earth's history.  相似文献   

5.
    
Mistletoes are hemiparasites that access water and nutrients from their hosts. Previous studies have suggested that host genera with high nitrogen are parasitized by more mistletoe species but these studies failed to take into account phylogenetic relationships among host genera. Our main question was whether more mistletoe species parasitize host genera with high nitrogen content when phylogenetic relationships were controlled. We also asked whether patterns in mistletoe parasitism were related to host geographic range size, host fruit type and host spinescence. Overall, we found no difference between conventional and phylogenetically controlled analyses. We also found no evidence for higher mistletoe species richness on host genera with high nitrogen, fleshy fruits or spinescence. However, similar to findings for animal parasites, we found that host genera with large geographic range had higher mistletoe species richness. This is likely because a greater number of mistletoe species will encounter hosts that have a greater geographic distribution. Mistletoe studies frequently assume that nitrogen status drives patterns in mistletoe parasitism but our study suggests that macroecological patterns in mistletoe assemblages are primarily determined by host geographic range.  相似文献   

6.
    
Mistletoes are parasitic plants, the spatial distributions of which are poorly understood on macroecological scales. Because of their highly unusual life history, investigating mistletoe macroecology may provide new insight into broad‐scale patterns in species distributions. We collated data on the spatial distribution and host use of 65 species of Loranthaceous mistletoes across the continent of Australia, and tested two predictions. First, we predicted mistletoe diversity would be unrelated to productivity (i.e. evapotranspiration and precipitation), as the parasitic lifestyle might relax environmental constraints on their distributions. Second, we predicted that mistletoe host ranges (number of infected host species) would increase in areas with more potential host species. The basis of this prediction is that greater host generality is likely to evolve in regions with greater host diversity because of greater unpredictability in encounter rates with particular host species. Conversely, in regions with fewer potential hosts, randomly dispersing mistletoe propagules are likely to repeatedly encounter particular host species, thus favouring the evolution of host specialization. The results were generally consistent with these predictions. Mistletoe diversity across Australia was weakly associated with environmental conditions, whereas mistletoe host ranges increased significantly with total plant diversity. Macroecological patterns in mistletoes are unusual. In contrast to non‐parasitic plants, mistletoe diversity is poorly correlated with productivity. Host ranges varied predictably across Australia, providing the first quantitative support for the hypothesis that mistletoes in diverse regions tend to be host generalists, whereas mistletoes in depauperate regions tend to be host specialists. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 459–468.  相似文献   

7.
    
Antagonistic co‐evolution between hosts and parasites (reciprocal selection for resistance and infectivity) is hypothesized to play an important role in host range expansion by selecting for novel infectivity alleles, but tests are lacking. Here, we determine whether experimental co‐evolution between a bacterium (Pseudomonas fluorescens SBW25) and a phage (SBW25Φ2) affects interstrain host range: the ability to infect different strains of P. fluorescens other than SBW25. We identified and tested a genetically and phenotypically diverse suite of co‐evolved phage variants of SBW25Φ2 against both sympatric and allopatric co‐evolving hosts (P. fluorescens SBW25) and a large set of other P. fluorescens strains. Although all co‐evolved phage had a greater host range than the ancestral phage and could differentially infect co‐evolved variants of P. fluorescens SBW25, none could infect any of the alternative P. fluorescens strains. Thus, parasite generalism at one genetic scale does not appear to affect generalism at other scales, suggesting fundamental genetic constraints on parasite adaptation for this virus.  相似文献   

8.
1. Long‐term control of insects by parasites is possible only if the parasite populations persist. Because parasite transmission rate depends on host density, parasite populations may go extinct during periods of low host density. Vertical transmission of parasites, however, is independent of host density and may therefore provide a demographic bridge through times when their insect hosts are rare. 2. The nematode Howardula aoronymphium, which parasitises mycophagous species of Drosophila, can experience both horizontal and effectively vertical transmission, relative rates of which depend, in theory at least, on the density of hosts at breeding sites. 3. A nine‐generation experiment was carried out in which nematodes were transmitted either exclusively vertically or primarily horizontally. This experiment revealed that these parasites can persist and exhibit positive population growth even when there is only vertical transmission. 4. Assays at the end of the experiment revealed that the vertically transmitted nematodes had suffered no inbreeding depression and that they were similar to the horizontally transmitted nematodes in terms of virulence, infectivity, within‐host growth rate, and fecundity. Thus, vertical transmission of H. aoronymphium did not appear to compromise the ability of these parasites to control Drosophila populations.  相似文献   

9.
While avian chronic haemoparasite infections induce reproductive costs, infection has not previously been shown to affect survival. Here, we experimentally reduced, through medication, the intensity of infection by Haemoproteus parasites in wild-breeding female blue tits Cyanistes caeruleus. However, this treatment did not reduce the intensity of infection in males or the intensity of infection by Leucocytozoon. Medicated females, but not males, showed increased local survival until the next breeding season compared with control birds. To our knowledge, this is the first empirical evidence showing long-term direct survival costs of chronic Haemoproteus infections in wild birds.  相似文献   

10.
  总被引:3,自引:0,他引:3  
Abstract Many host-specific parasites are restricted to a limited range of host species by ecological barriers that impede dispersal and successful establishment. In some cases, microevolutionary differentiation is apparent on top of host specificity, as evidenced by significant parasite population genetic structure among host populations. Ecological barriers responsible for specificity and genetic structure can, in principle, reinforce macroevolutionary processes that generate congruent host-parasite phylogenies. However, few studies have explored both the micro- and macroevolutionary ramifications of close association in a single host-parasite system. Here we compare the macroevolutionary histories of two genera of feather lice (Phthiraptera: Ischnocera) that both parasitize New World pigeons and doves (Aves: Columbiformes). Earlier work has shown that dove body lice (genus Physconelloides ) are more host specific and have greater population genetic structure than dove wing lice ( Columbicola ). We reconstructed phylogenies for representatives of the two genera of lice and their hosts, using nuclear and mitochondrial DNA sequences. The phylogenies were well resolved and generally well supported. We compared the phylogenies of body lice and wing lice to the host phylogeny using reconciliation analyses. We found that dove body lice show strong evidence of cospeciation whereas dove wing lice do not. Although the ecology of body and wing lice is very similar, differences in their dispersal ability may underlie these joint differences in host specificity, population genetic structure, and coevolutionary history.  相似文献   

11.
1. Damselflies and dragonflies are widely parasitised insects and numerous studies have tried to understand this host–parasite relationship. However, most of these studies have concentrated on a single host species, neglecting the larger pattern within the Odonata order. 2. The aim of this paper was to examine different damselfly and dragonfly species for common endo‐ and ectoparasites and whether a general infection pattern can be found. Additionally, the goal was to investigate whether the phylogeny of the host species could explain these possible infection patterns. To this end, a dataset from the existing literature was compiled and the prevalence of endoparasitic gregarines and ectoparasitic water mites was analysed for 46 different odonate species. 3. Three distinct patterns were found: (i) most of the odonate host species had both gregarines and water mites, rather than only either one or neither; (ii) there appears to be a positive association between gregarine and water mite prevalences across host species; (iii) a weak phylogenetic signal was detected in gregarine prevalence and a strong one in water mite prevalence. 4. It is hypothesised that, due to the infection and transmission mechanisms by which water mites and gregarines infect different odonate host species, parasitism is aggregated to common, high‐density species. However, much research is needed in order to fully understand this relationship between odonates and their parasites, especially within the same host populations and host species assemblages.  相似文献   

12.
    
1. Dispersal is essential for locating mates, new resources, and to escape unfavourable conditions. Parasitism can impact a host's ability to perform energetically demanding activities such as long‐distance flight, with important consequences for gene flow and meta‐population dynamics. 2. Ectoparasites, in particular, can adversely affect host flight performance by diminishing flight aerodynamics and/or by inflicting physiological damage while feeding on host tissue. 3. Experimental flight assays were conducted using two fruit fly‐mite systems: Drosophila nigrospiracula (Patterson and Wheeler) – Macrocheles subbadius (Berlese) and D. hydei (Sturtevan) – M. muscaedomesticae (Scopoli). Flies that are burdened by mites are expected to exhibit lower flight endurance compared to uninfected flies. 4. The results show that the presence of mites (attached) significantly decreased flight endurance by 57% and 78% compared to uninfected D. nigrospiracula and D. hydei, respectively. The physiological damage caused by M. subbadius was revealed through a 53% decline in flight time among previously infected flies (mites removed just prior to flight assay). Surprisingly, the presumably phoretic M. muscaedomesticae also caused a 62% reduction in flight endurance among previously infected D. hydei. 5. These results suggest a strong deleterious effect of ectoparasitic mites on host flight performance, mediated by a reduction in flight aerodynamics and damage to host physiology. Adverse effects on host flight and/or dispersal may have broad implications for gene flow, population genetic structure, and local adaptation in both host and parasite meta‐populations.  相似文献   

13.
    
Natural enemies such as predators and parasites are known to shape intraspecific variability of behaviour and personality in natural populations, yet several key questions remain: (i) What is the relative importance of predation vs. parasitism in shaping intraspecific variation of behaviour across generations? (ii) What are the contributions of genetic and plastic effects to this behavioural divergence? (iii) And to what extent are responses to predation and parasitism repeatable across independent evolutionary lineages? We addressed these questions using Trinidadian guppies (Poecilia reticulata) (i) varying in their exposure to dangerous fish predators and Gyrodactylus ectoparasites for (ii) both wild‐caught F0 and laboratory‐reared F2 individuals and coming from (iii) multiple independent evolutionary lineages (i.e. independent drainages). Several key findings emerged. First, a population's history of predation and parasitism influenced behavioural profiles, but to different extent depending on the behaviour considered (activity, shoaling or boldness). Second, we had evidence for some genetic effects of predation regime on behaviour, with differences in activity of F2 laboratory‐reared individuals, but not for parasitism, which had only plastic effects on the boldness of wild‐caught F0 individuals. Third, the two lineages showed a mixture of parallel and nonparallel responses to predation/parasitism, with parallel responses being stronger for predation than for parasitism and for activity and boldness than for shoaling. These findings suggest that different sets of behaviours provide different pay‐offs in alternative predation/parasitism environments and that parasitism has more transient effects in shaping intraspecific variation of behaviour than does predation.  相似文献   

14.
    
Recent years have seen renewed interest in phage therapy – the use of viruses to specifically kill disease‐causing bacteria – because of the alarming rise in antibiotic resistance. However, a major limitation of phage therapy is the ease at with bacteria can evolve resistance to phages. Here, we determined whether in vitro experimental coevolution can increase the efficiency of phage therapy by limiting the resistance evolution of intermittent and chronic cystic fibrosis Pseudomonas aeruginosa lung isolates to four different phages. We first pre‐adapted all phage strains against all bacterial strains and then compared the efficacy of pre‐adapted and nonadapted phages against ancestral bacterial strains. We found that evolved phages were more efficient in reducing bacterial densities than ancestral phages. This was primarily because only 50% of bacterial strains were able to evolve resistance to evolved phages, whereas all bacteria were able to evolve some level of resistance to ancestral phages. Although the rate of resistance evolution did not differ between intermittent and chronic isolates, it incurred a relatively higher growth cost for chronic isolates when measured in the absence of phages. This is likely to explain why evolved phages were more effective in reducing the densities of chronic isolates. Our data show that pathogen genotypes respond differently to phage pre‐adaptation, and as a result, phage therapies might need to be individually adjusted for different patients.  相似文献   

15.
    
Host specificity has a major influence on a parasite's ability to shift between human and animal host species. Yet there is a dearth of quantitative approaches to explore variation in host specificity across biogeographical scales, particularly in response to the varying community compositions of potential hosts. We built a global dataset of intermediate host associations for nine of the world's most widespread helminth parasites (all of which infect humans). Using hierarchical models, we asked if realised parasite host specificity varied in response to regional variation in the phylogenetic and functional diversities of potential host species. Parasites were recorded in 4–10 zoogeographical regions, with some showing considerable geographical variation in observed versus expected host specificity. Parasites generally exhibited the lowest phylogenetic host specificity in regions with the greatest variation in prospective host phylogenetic diversity, namely the Neotropical, Saharo‐Arabian and Australian regions. Globally, we uncovered notable variation in parasite host shifting potential. Observed host assemblages for Hydatigera taeniaeformis and Hymenolepis diminuta were less phylogenetically diverse than expected, suggesting limited potential to spillover into unrelated hosts. Host assemblages for Echinococcus granulosus, Mesocestoides lineatus and Trichinella spiralis were less functionally diverse than expected, suggesting limited potential to shift across host ecological niches. By contrast, Hyd. taeniaeformis infected a higher functional diversity of hosts than expected, indicating strong potential to shift across hosts with different ecological niches. We show that the realised phylogenetic and functional diversities of infected hosts are determined by biogeographical gradients in prospective host species pools. These findings emphasise the need to account for underlying species diversity when assessing parasite host specificity. Our framework to identify variation in realised host specificity is broadly applicable to other host–parasite systems and will provide key insights into parasite invasion potential at regional and global scales.  相似文献   

16.
    
According to the Red Queen hypothesis, hosts and pathogens are engaged in an escalating coevolutionary arms race between resistance and virulence. However, the vast majority of symbionts colonize their hosts' mucosal compartments without triggering any immune response, resulting in durable commensal associations. Here, I propose a simple extension of previous mathematical models for antagonistic coevolution in which the host can mount a delayed immune response; in response, the symbiont can change its virulence following this activation. Even though the levels of virulence in both phases are assumed to be genetically determined, this simple form of plasticity can select for commensal associations. In particular, coevolution can result in hosts that do not activate their immune response, thus preventing phenotypically plastic pathogens from switching to a higher virulence level. I argue that, from the host's point of view, this state is analogous to the mafia behaviour previously described in avian brood parasites. More importantly, this study provides a new hypothesis for the maintenance of a commensal relationship through antagonistic coevolution.  相似文献   

17.
    
The horn fly Haematobia irritans (Diptera: Muscidae) is a blood obligate ectoparasite of bovids that causes annual losses to the U.S. beef cattle industry of over US$1.75 billion. Climate warming, the anthropogenic dispersion of bovids and the cross‐breeding of beef cattle with other bovid species may facilitate novel horn fly–host interactions. In particular, hybridizing yaks [Bos grunniens (Artiodactyla: Bovidae)] with beef cows (Bos taurus) for heterosis and carcass improvements may increase the exposure of yak × beef hybrids to horn flies. The present paper reports on the collection of digital images of commingled beef heifers (n = 12) and F1 yak × beef hybrid bovids (heifers, n = 7; steers, n = 5) near Laramie, Wyoming (~ 2200 m a.s.l.) in 2018. The total numbers of horn flies on beef heifers and F1 yak × beef heifers [mean ± standard error (SE): 88 ± 13 and 70 ± 17, respectively] did not differ significantly; however, F1 yak × beef steers had greater total horn fly abundance (mean ± SE: 159 ± 39) than female bovids. The present report of this experiment is the first such report in the literature and suggests that F1 yak × beef bovids are as susceptible as cattle to horn fly parasitism. Therefore, similar monitoring and treatment practices should be adopted by veterinarians, entomologists and producers.  相似文献   

18.
    
Disease dynamics hinge on parasite transmission among hosts. However, canonical models for transmission often fit data poorly, limiting predictive ability. One solution involves building mechanistic yet general links between host behaviour and disease spread. To illustrate, we focus on the exposure component of transmission for hosts that consume their parasites, combining experiments, models and field data. Models of transmission that incorporate parasite consumption and foraging interference among hosts vastly outperformed alternatives when fit to experimental data using a zooplankton host (Daphnia dentifera) that consumes spores of a fungus (Metschnikowia bicuspidata). Once plugged into a fully dynamic model, both mechanisms inhibited epidemics overall. Foraging interference further depressed parasite invasion and prevalence at high host density, creating unimodal (hump‐shaped) relationships between host density and these indices. These novel results qualitatively matched a unimodal density–prevalence relationship in natural epidemics. Ultimately, a mechanistic approach to transmission can reveal new insights into disease outbreaks.  相似文献   

19.
    
Host–parasite coevolution stems from reciprocal selection on host resistance and parasite infectivity, and can generate some of the strongest selective pressures known in nature. It is widely seen as a major driver of diversification, the most extreme case being parallel speciation in hosts and their associated parasites. Here, we report on endoparasitic nematodes, most likely members of the mermithid family, infecting different Timema stick insect species throughout California. The nematodes develop in the hemolymph of their insect host and kill it upon emergence, completely impeding host reproduction. Given the direct exposure of the endoparasites to the host's immune system in the hemolymph, and the consequences of infection on host fitness, we predicted that divergence among hosts may drive parallel divergence in the endoparasites. Our phylogenetic analyses suggested the presence of two differentiated endoparasite lineages. However, independently of whether the two lineages were considered separately or jointly, we found a complete lack of codivergence between the endoparasitic nematodes and their hosts in spite of extensive genetic variation among hosts and among parasites. Instead, there was strong isolation by distance among the endoparasitic nematodes, indicating that geography plays a more important role than host‐related adaptations in driving parasite diversification in this system. The accumulating evidence for lack of codiversification between parasites and their hosts at macroevolutionary scales contrasts with the overwhelming evidence for coevolution within populations, and calls for studies linking micro‐ versus macroevolutionary dynamics in host–parasite interactions.  相似文献   

20.
    
Foraging host individuals can defend against fecal–orally transmitted parasites by avoiding feces‐contaminated patches, which has been widely documented among ungulates. However, it remains unclear whether smaller‐sized hosts (e.g., mice), with their high metabolism and constant needs for energy acquisition, can afford the same behavioral strategy. In this study, we used laboratory and field experiments to test whether feces‐contaminated patches are avoided by the Taiwan field mice Apodemus semotus. In the laboratory experiment, wild‐caught mice whose parasitic infection was not manipulated were given two options to forage from feces‐contaminated and uncontaminated patches. These naturally infected mice spent less time in feces‐contaminated than uncontaminated patches. In the field experiment, we reduced gastrointestinal parasite load of randomly chosen mice via anthelmintic treatment. Whereas the untreated mice did not discriminate among food patches with different levels of parasitism risk (i.e., high‐ or low‐risk patches containing conspecific feces of high or low parasite egg counts, no‐feces patches containing no feces), the treated mice spent less time in feces‐contaminated patches than in no‐feces patches. Similar to the larger‐sized ungulates, we demonstrated here that small mammals can also exhibit fecal‐avoidance foraging. Furthermore, such behavior may be influenced by both environmental parasitism risk and host infection status, which has implications in host–parasite transmission dynamics, namely the selective use of uncontaminated patches by the less‐infected (treated) mice may drive parasites to aggregate within the infected portion of a host population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号