共查询到20条相似文献,搜索用时 0 毫秒
1.
A common life history pattern in many organisms is that reproductive success increases with age. We report a similar pattern in house sparrows Passer domesticus , older individuals performed better than yearlings for most measures of reproductive success. Older males and females began breeding earlier in a given season and fledged more young than their yearling counterparts. Individual males also fledged more young in their second breeding season than they did in their first, but individual females did not show consistent improvement in reproductive success from year one to two. A path analysis indicated that age in both sexes acted primarily through the timing of breeding; earlier nesters laid more eggs and hence fledged more young but did not have more nesting attempts. We tested whether the increased reproductive success with age arose from high quality individuals surviving to be older (selection hypothesis). In contrast to the main prediction of this hypothesis that reproductive success and survival should be positively related, we found that survival from one year of age to two years of age was negatively related to reproductive success in the first year for males and females combined. Additionally, individuals that survived to breed as two-year-olds did not differ in total young fledged in their first year from those that did not survive to their second season of breeding. Our results indicate that fledgling production increases with age due to improvements in timing of breeding, particularly in females, and not because of the loss of poor breeders or increased output. Mechanisms producing age-related differences in timing of breeding warrant further study. 相似文献
2.
3.
The evidence for a relationship between life history and immune defense is equivocal, although the basic premise is intuitively
appealing: animals that live short lives and reproduce early and rapidly should not waste resources on defenses they might
never use. One possible reason for a lack of strong support for this hypothesis could be the inherent complexity of the vertebrate
immune system. Indeed, different components of the vertebrate immune system vary in their relative costs and benefits, and
therefore only some defenses may complement variation in species’ life history. To address this hypothesis, we compared multiple
types of immune activity between two populations of house sparrows (Passer domesticus) with distinct life histories, one from Colon, Panama, which lay small clutches over an extended breeding season (i.e., slow-living)
and the other from Princeton, New Jersey, which lay larger clutches in a smaller window of time (i.e., fast-living). We expected
(a) that more costly types of immune defenses would be stronger in the slow-living sparrows and (2) that the slow-living sparrows
would show a greater increase in whole-body energy expenditure after immune challenge compared to their fast-living counterparts.
We found that secondary antibody response to a novel antigen was more rapid and energetic investment in immune activity was
greater in slow-living sparrows. However, cell-mediated immune activity was more robust in fast-living sparrows, and other
measures of defense were not different between populations. These results provide partial support for a relationship between
life history and immune defense in this species, but they also indicate that this relationship is not clear-cut. Further study
is necessary to identify the influence of other factors, particular pathogen environment during development, on the architecture
of the immune system of wild animals. 相似文献
4.
Recent studies have demonstrated that preen oil acts to reduce or eliminate feather-associated bacteria. The mechanisms underlying this antibacterial activity, however, are incompletely understood. In addition to the activity of alcohols (i.e. 3,7-dimethyloctan-1-ol), recent research has suggested that antimicrobial peptides may underlie the antibacterial activity of preen oil. Here, we document the presence of innate and adaptive immune proteins, lysozyme and immunoglobulin Y (IgY), in the preen oil of house sparrows Passer domesticus. We suggest lysozyme functions as an antimicrobial agent, with potentially important impacts against Gram-positive feather degrading bacteria. Furthermore, both lysozyme and IgY likely act in local immune defence of the preen gland, and may also play a role in regulating the local microbiome, with potentially important consequences for chemical communication and signalling. Our findings suggest that the preen gland and its secretions should be considered an integral part of the body's first line of defence against invading infections. 相似文献
5.
Many vertebrates show seasonality in immune defenses, perhaps because of trade-offs with other physiological processes. Trade-offs between reproduction and immune function have been well studied, but how other life cycle events such as molt affect immune function remains unclear. Here, we hypothesize that one possible explanation is that accumulative dissociated processes (e.g., resource deficits generated over the long term by physiological processes) can have delayed effects on immune activity. To test this hypothesis, we compared cutaneous immune responses in groups of captive female house sparrows (Passer domesticus) photoperiodically induced into six different life cycle stages. We predicted that if delayed trade-offs occur, immune activity would be reduced after a mature life state was reached (e.g., postmolt) and not just compromised when other tissues were actively growing (instantaneous trade-off). We found evidence for both types of trade-offs: immune responses were weakest in sparrows that had just completed postnuptial molt, but they were also weak in birds growing reproductive tissues or feathers. Birds in mature reproductive states or light molt had strong immune responses comparable with birds in a nonbreeding/nonmolting state. Altogether, our results indicate that immune activity in female house sparrows can be influenced by both instantaneous and delayed trade-offs. 相似文献
6.
Cell-mediated immunity is an important vertebrate defense against pathogens, but components of this response may vary in quality. Such variation could arise through the effects of ecology on optimal immunocompetence. We used injections of phytohaemagglutinin (PHA) to measure the factors influencing T-cell proliferation in nestling house sparrows (Passer domesticus). Bivariate analyses revealed positive associations with nestling mass and size, but no effect of ectoparasites. The response to PHA was, however, strongly affected by brood identity. A mixed model with brood identity as a random factor and nestling mass, size, number of ectoparasites, parental feeding rate, clutch size, brood size at hatching, and date uncovered significant positive correlations between PHA response and both nestling mass and the brood size at hatching. Because many of these variables are related hierarchically, we used path analysis to explore the relationships in more detail. We found that a nestling immune response was affected by several indirect paths. Brood size at hatch had both positive and negative paths, and date in the season had several indirect negative effects through its effect on brood size and nestling mass. The approach used and the results obtained offer some new ideas for incorporating immune responses into life history theory. 相似文献
7.
Edith Katsnelson Uzi Motro Marcus W. Feldman Arnon Lotem 《Proceedings. Biological sciences / The Royal Society》2011,278(1705):582-589
Social foragers can use either a ‘producer’ strategy, which involves searching for food, or a ‘scrounger’ strategy, which involves joining others'' food discoveries. While producers rely on personal information and past experience, we may ask whether the tendency to forage as a producer is related to being a better learner. To answer this question, we hand-raised house sparrow (Passer domesticus) nestlings that upon independence were given an individual-learning task that required them to associate colour signal and food presence. Following the testing phase, all fledglings were released into a shared aviary, and their social-foraging tendencies were measured. We found a significant positive correlation between individual''s performance in the individual-learning task and subsequent tendency to use searching (producing) behaviour. Individual-learning score was negatively correlated with initial fear of the test apparatus and with body weight. However, the correlation between individual learning and searching remained significant after controlling for these variables. Since it was measured before the birds entered a social group, individual-learning ability could not be the outcome of being a producer. However, the two traits may be initially associated, or individual learning could facilitate producing behaviour. To our knowledge, this is the first evidence that associates individual-learning abilities with social-foraging strategies in animal groups. 相似文献
8.
9.
Miriam Ben‐Hamo Darren John Burns Ulf Bauchinger Shomen Mukherjee Keren Embar Berry Pinshow 《Journal of avian biology》2016,47(1):103-108
Birds lose feathers, whether during molt or by accident, and replace them by processes that are energetically demanding. We hypothesized that house sparrows Passer domesticus biblicus use behavioral means to save energy when feathers are lost, and tested the general prediction that house sparrows growing new feathers adjust their behavior to minimize the energy costs of foraging and to increase net energy gain from their food. To test these predictions we divided 18 house sparrows into three groups: 1) plucked – house sparrows from which we plucked 15 flight feathers; 2) cut – house sparrows in which the same 15 feathers were cut off at the calamus below the barbs; and 3) control – unmanipulated house sparrows with plumage intact. We recorded both the quantity of seeds the house sparrows ate and the time they spent foraging from assay food patches. We found that ‘plucked’ sparrows growing new feathers adjust their foraging behavior by reducing their feeding time and the number of visits to a food patch. This allowed them to increase their patch harvest rate while maintaining a steady body mass. 相似文献
10.
11.
G. MORENO‐RUEDA 《Journal of evolutionary biology》2010,23(10):2229-2237
A trade‐off between immune system and moulting is predicted in birds, given that both functions compete for resources. However, it is unclear whether such a trade‐off exists during post‐breeding moult. This study tests such a trade‐off in the house sparrow (Passer domesticus). Males injected with an antigen (lipopolysaccharide) significantly moulted slower than sham‐injected males. Moreover, males whose seventh primaries were plucked to simulate moult showed smaller immune response to phytohaemagglutinin than control males, in which seventh primaries were clipped. A trade‐off between moult speed and body mass was also found. The results show a clear trade‐off between moult and immune response in the house sparrow: immune response negatively affected moult and moult negatively affected immune response. These findings suggest that only individuals in good condition may have an efficient moult and simultaneously respond effectively in terms of immunity to pathogens, which could explain how plumage traits honestly indicate parasite resistance in birds. 相似文献
12.
13.
Lynn B. Martin Courtney A. C. Coon Andrea L. Liebl Aaron W. Schrey 《Proceedings. Biological sciences / The Royal Society》2014,281(1774)
Interactions between hosts and parasites influence the success of host introductions and range expansions post-introduction. However, the physiological mechanisms mediating these outcomes are little known. In some vertebrates, variation in the regulation of inflammation has been implicated, perhaps because inflammation imparts excessive costs, including high resource demands and collateral damage upon encounter with novel parasites. Here, we tested the hypothesis that variation in the regulation of inflammation contributed to the spread of house sparrows (Passer domesticus) across Kenya, one of the world''s most recent invasions of this species. Specifically, we asked whether inflammatory gene expression declines with population age (i.e. distance from Mombasa (dfM), the site of introduction around 1950). We compared expression of two microbe surveillance molecules (Toll-like receptors, TLRs-2 and 4) and a proinflammatory cytokine (interleukin-6, IL-6) before and after an injection of an immunogenic component of Gram-negative bacteria (lipopolysaccharide, LPS) among six sparrow populations. We then used a best-subset model selection approach to determine whether population age (dfM) or other factors (e.g. malaria or coccidian infection, sparrow density or genetic group membership) best-explained gene expression. For baseline expression of TLR-2 and TLR-4, population age tended to be the best predictor with expression decreasing with population age, although other factors were also important. Induced expression of TLRs was affected by LPS treatment alone. For induced IL-6, only LPS treatment reliably predicted expression; baseline expression was not explained by any factor. These data suggest that changes in microbe surveillance, more so than downstream control of inflammation via cytokines, might have been important to the house sparrow invasion of Kenya. 相似文献
14.
15.
J. Lu V. M. Cassone 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1993,173(6):775-782
Recent research in our laboratory has indicated that in sparrows the visual suprachiasmatic nucleus (vSCN) is metabolically
rhythmic such that 2-deoxy[14C]glucose (2DG) uptake and specific binding of 2[125I]iodomelatonin (IMEL) are high during subjective day for up to 10 circadian cycles in constant darkness (DD). These rhythms
damp to arrhythmicity in pinealectomized birds (PINX). The present study was designed to test the hypothesis that exogenous
melatonin rhythmically applied can restore disrupted behavioral and cerebral rhythmicity. Pinealectomized house sparrows were
placed in constant dim light and allowed to become arrhythmic. Experimental birds received 0.86 mM melatonin in 0.01% ethanol (ETOH) to drink for 12 of every 24 h for 14 days. Control birds received 0.01% ETOH only. Behavioral
rhythmicity was restored by melatonin but not by ETOH. Birds were injected with 2DG 6 or 18 h following the beginning of melatonin
(for experimental birds: MT06 and MT18 respectively) or ETOH (for control birds: ET06 and ET18 respectively) administration,
allowed to survive 1 h and killed for 2DG and IMEL autoradiography. The data indicated 2DG rhythmicity such that uptake was
high at MT18 in vSCN and several visual, auditory and limbic system structures in birds receiving melatonin but not in birds
receiving ETOH. Similarly, IMEL binding rhythms were restored in vSCN and other visual, auditory and limbic system structures
in birds receiving melatonin but not in those receiving ETOH. These data indicate that melatonin cycles are responsible for
generating and/or driving a wide array of cerebral metabolic rhythms and that this influence is inhibitory. 相似文献
16.
Hakima Boujja‐Miljour Patrick A. Leighton Guy Beauchamp 《Ethology : formerly Zeitschrift fur Tierpsychologie》2017,123(8):526-531
In group‐foraging species with no alarm signals, the sudden departure of neighbours can be used to inform the rest of the group about the detection of a threat. However, sudden departures are ambiguous because they can be triggered by factors unrelated to predator detection. We evaluated how animals react to the sudden departure of neighbours in groups of foraging house sparrows (Passer domesticus). We focussed on false alarms that occurred for no apparent reasons to us because predation attempts were not frequent. Three factors can explain how the sudden departure of a neighbour can influence reaction times, namely group size, the distance between neighbours, and predation risk. We predicted reaction times to be longer in larger groups where individual vigilance levels are low, and when group members are further apart and cannot easily monitor each other. In addition, we expected reaction times to be longer when predation risk is lower. Departures that are more temporally clumped are also expected to be less ambiguous and should trigger faster reaction times. Our results show that sparrows reacted faster, not more slowly, to the sudden departures of neighbours in larger groups, and, as predicted, more slowly when neighbours were more distant from each other. Reaction times were longer in one of the two study years in which predation risk was deemed lower. Sparrows reacted more quickly when earlier departures were more temporally clumped. The results thus provided partial support for the predictions, and future work is needed to assess how individuals react to fleeing responses by their neighbours in species with no alarm signals. 相似文献
17.
18.
V A Tucker 《The Journal of experimental biology》1968,48(1):55-66
19.
The immune system requires energetic and nutritional resources to optimally defend organisms against pathogens and parasites. Because resources are typically limited, immune function may require a trade-off with other physiologically demanding activities. Here, we examined whether photoperiodically induced seasonal states (breeding, molting, or nonbreeding) affected the cutaneous immune response of captive male house sparrows (Passer domesticus). To assess immune function in these birds, we injected the mitogen phytohemagglutinin (PHA) into the patagium and measured the resulting wing web swelling. Molting and nonbreeding birds had similar immune responses to PHA injection. However, males in a breeding state showed lower immune responses than both molting and nonbreeding birds even though they did not actually breed. We tested whether this decrease in the PHA swelling response in birds in a breeding state was due to elevated plasma concentrations of testosterone (T) by administering T to birds in a nonbreeding state. Contrary to some evidence in the literature, T did not suppress the response to PHA in house sparrows. Our data show that passerine birds show seasonal modulation in immune function, even in benign environmental conditions. However, even though T is often cited as a strong immunosuppressant, it is not fully responsible for this seasonal modulation. 相似文献
20.
In a consistently urbanizing world, anthropogenic noise has become almost omnipresent, and there are increasing evidence that high noise levels can have major impacts on wildlife. While the effects of anthropogenic noise exposure on adult animals have been widely studied, surprisingly, there has been little consideration of the effects of noise pollution on developing organisms. Yet, environmental conditions experienced in early life can have dramatic lifelong consequences for fitness. Here, we experimentally manipulated the acoustic environment of free-living house sparrows (Passer domesticus) breeding in nest boxes. We focused on the impact of such disturbance on nestlings’ telomere length and fledging success, as telomeres (the protective ends of chromosomes) appear to be a promising predictor of longevity. We showed that despite the absence of any obvious immediate consequences (growth and fledging success), nestlings reared under traffic noise exposure exhibited reduced telomere lengths compared with their unexposed neighbours. Although the mechanisms responsible for this effect remain to be determined, our results provide the first experimental evidence that noise alone can affect a wild vertebrate''s early-life telomere length. This suggests that noise exposure may entail important costs for developing organisms. 相似文献