首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental impacts of hybrid and electric vehicles—a review   总被引:2,自引:0,他引:2  

Purpose

A literature review is undertaken to understand how well existing studies of the environmental impacts of hybrid and electric vehicles (EV) address the full life cycle of these technologies. Results of studies are synthesized to compare the global warming potential (GWP) of different EV and internal combustion engine vehicle (ICEV) options. Other impacts are compared; however, data availability limits the extent to which this could be accomplished.

Method

We define what should be included in a complete, state-of-the-art environmental assessment of hybrid and electric vehicles considering components and life cycle stages, emission categories, impact categories, and resource use and compare the content of 51 environmental assessments of hybrid and electric vehicles to our definition. Impact assessment results associated with full life cycle inventories (LCI) are compared for GWP as well as emissions of other pollutants. GWP results by life cycle stage and key parameters are extracted and used to perform a meta-analysis quantifying the impacts of vehicle options.

Results

Few studies provide a full LCI for EVs together with assessment of multiple impacts. Research has focused on well to wheel studies comparing fossil fuel and electricity use as the use phase has been seen to dominate the life cycle of vehicles. Only very recently have studies begun to better address production impacts. Apart from batteries, very few studies provide transparent LCIs of other key EV drivetrain components. Estimates of EV energy use in the literature span a wide range, 0.10?C0.24?kWh/km. Similarly, battery and vehicle lifetime plays an important role in results, yet lifetime assumptions range between 150,000?C300,000?km. CO2 and GWP are the most frequently reported results. Compiled results suggest the GWP of EVs powered by coal electricity falls between small and large conventional vehicles while EVs powered by natural gas or low-carbon energy sources perform better than the most efficient ICEVs. EV results in regions dependant on coal electricity demonstrated a trend toward increased SO x emissions compared to fuel use by ICEVs.

Conclusions

Moving forward research should focus on providing consensus around a transparent inventory for production of electric vehicles, appropriate electricity grid mix assumptions, the implications of EV adoption on the existing grid, and means of comparing vehicle on the basis of common driving and charging patterns. Although EVs appear to demonstrate decreases in GWP compared to conventional ICEVs, high efficiency ICEVs and grid-independent hybrid electric vehicles perform better than EVs using coal-fired electricity.  相似文献   

2.
Use of biomass‐based electricity and hydrogen in alternative transport could provide environmentally sustainable transport options with possible improvements in greenhouse gas balance. We perform a life cycle assessment of electric vehicle (EV) and fuel cell vehicle (FCV) powered by bioelectricity and biohydrogen, respectively, derived from Norwegian boreal forest biomass, considering the nonclimate neutrality of biological carbon dioxide (CO2) emissions and alteration in surface albedo resulting from biomass harvesting—both with and without CO2 capture and storage (CCS)—while benchmarking these options against EVs powered by the average European electricity mix. Results show that with due consideration of the countering effects from global warming potential (GWP) factors for biogenic CO2 emissions and change in radiative forcing of the surface for the studied region, bioenergy‐based EVs and FCVs provide reductions of approximately 30%, as compared to the reference EV powered by the average European electricity mix. With CCS coupled to bioenergy production, the biomass‐based vehicle transport results in a net global warming impact reduction of approximately 110% to 120% (giving negative GWP and creating a climate‐cooling benefit from biomass use). Other environmental impacts vary from ?60% to +60%, with freshwater eutrophication showing maximum reductions (40% for the EV case and 60% for the FCV case) and photochemical oxidation showing a maximum increase (60% in the FCV value chain).  相似文献   

3.
Fuel economy has been an effective indicator of vehicle greenhouse gas (GHG) emissions for conventional gasoline‐powered vehicles due to the strong relationship between fuel economy and vehicle life cycle emissions. However, fuel economy is not as accurate an indicator of vehicle GHG emissions for plug‐in hybrid (PHEVs) and pure battery electric vehicles (EVs). Current vehicle labeling efforts by the U.S. Environmental Protection Agency (EPA) and Department of Transportation have been focused on providing energy and environmental information to consumers based on U.S. national average data. This article explores the effects of variations in regional grids and regional daily vehicle miles traveled (VMT) on the total vehicle life cycle energy and GHG emissions of electrified vehicles and compare these results with information reported on the label and on the EPA's fuel economy Web site. The model results suggest that only 25% of the life cycle emissions from a representative PHEV are reflected on current vehicle labeling. The results show great variation in total vehicle life cycle emissions due to regional grid differences, including an approximately 100 gram per mile life cycle GHG emissions difference between the lowest and highest electric grid regions and up to a 100% difference between the state‐specific emission values within the same electric grid regions. Unexpectedly, for two regional grids the life cycle GHG emissions were higher in electric mode than in gasoline mode. We recommend that labels include stronger language on their deficiencies and provide ranges for GHG emissions from vehicle charging in regional electricity grids to better inform consumers.  相似文献   

4.

Purpose

The rapid growth of vehicle sales and usage has highlighted the need for greenhouse gas (GHG) emission reduction in Macau, a special administrative region (SAR) of China. As the most primary vehicle type, light-duty vehicles (LDV, including light-duty gasoline vehicles (LDGVs) and light-duty diesel vehicles (LDDVs)) play a key role in promoting the GHG reduction and development of green transportation system in Macau.

Methods

This study, on the basis of real-world tested and statistical data, firstly performed a streamlined life-cycle assessment (SLCA) on LDVs, to evaluate the potential GHG emissions and reduction through shifting to hybrid electric vehicles (HEVs) and electric vehicles (EVs).

Results and discussion

The results show that the mean GHG emissions from the LDGVs, LDDVs, and HEVs per 100 km were 25.16, 20.30, and 15.00 kg CO2 eq, respectively. Under the current electricity mix in Macau, EVs with the emissions of 12.39 kg CO2 eq/100 km can achieve a significant GHG emission reduction of LDVs in Macau. The total GHG emissions from LDVs increased from 124.99 to 247.82 thousand metric tons over the periods 2001–2014, with a 5.42% annual growth rate. A scenario analysis indicated that the development of HEVs and EVs—especially EVs—has the potential to control the GHG emissions from LDVs. Under the electricity mix of natural gas (NG) and solar energy (SE), the GHG emissions from EVs would drop by about 22 and 28%, respectively, by 2030.

Conclusions

This study develops a useful approach to evaluate the potential GHG emissions and its reduction strategies in Macau. All the obtained results could be useful for decision makers, providing robust support for drawing up an appropriate plan for improving green transportation systems in Macau.
  相似文献   

5.
The Clean Air Act in the United States identifies diesel‐powered motor vehicles, including transit buses, as significant sources of several criteria pollutants that contribute to ground‐level ozone formation or smog. The effects of air pollution in urban areas are often more significant due to congestion and can lead to respiratory and cardiovascular health impacts. Life cycle assessment (LCA) has been utilized in the literature to compare conventional gasoline‐powered passenger cars with various types of electric and hybrid‐powered alternatives, however, no similarly detailed studies exist for mass transit buses. LCA results from this study indicate that the use phase, consisting of diesel production/combustion for the conventional bus and electricity generation for the electric bus, dominates most impact categories; however, the effects of battery production are significant for global warming, carcinogens, ozone depletion, and eco‐toxicity. There is a clear connection between the mix of power‐generation technologies and the preference for the diesel or electric bus. With the existing U.S. average grid, there is a strong preference for the conventional diesel bus over the electric bus when considering global warming impacts alone. Policy makers must consider regional variations in the electricity grid prior to recommending the use of battery electric buses to reduce carbon dioxide (CO2) emissions. This study found that the electric bus was preferable in only eight states, including Washington and Oregon. Improvements in battery technology reduce the life cycle impacts from the electric bus, but the electricity grid makeup is the dominant variable.  相似文献   

6.
Electric vehicles (EVs) have no tailpipe emissions, but the production of their batteries leads to environmental burdens. In order to avoid problem shifting, a life cycle perspective should be applied in the environmental assessment of traction batteries. The aim of this study was to provide a transparent inventory for a lithium‐ion nickel‐cobalt‐manganese traction battery based on primary data and to report its cradle‐to‐gate impacts. The study was carried out as a process‐based attributional life cycle assessment. The environmental impacts were analyzed using midpoint indicators. The global warming potential of the 26.6 kilowatt‐hour (kWh), 253‐kilogram battery pack was found to be 4.6 tonnes of carbon dioxide equivalents. Regardless of impact category, the production impacts of the battery were caused mainly by the production chains of battery cell manufacture, positive electrode paste, and negative current collector. The robustness of the study was tested through sensitivity analysis, and results were compared with preceding studies. Sensitivity analysis indicated that the most effective approach to reducing climate change emissions would be to produce the battery cells with electricity from a cleaner energy mix. On a per‐kWh basis, cradle‐to‐gate greenhouse gas emissions of the battery were within the range of those reported in preceding studies. Contribution and structural path analysis allowed for identification of the most impact‐intensive processes and value chains. This article provides an inventory based mainly on primary data, which can easily be adapted to subsequent EV studies, and offers an improved understanding of environmental burdens pertaining to lithium‐ion traction batteries.  相似文献   

7.
Plug‐in hybrid electric vehicles (PHEVs) combine electric and conventional propulsion. Official fuel consumption values of PHEVs are based on standardized driving cycles, which show a growing discrepancy with real‐world fuel consumption. However, no comprehensive empirical results on PHEV fuel consumption are available, and the discrepancy between driving cycle and empirical fuel consumption has been conjectured to be large for PHEV. Here, we analyze real‐world fuel consumption data from 2,005 individual PHEVs of five PHEV models and observe large variations in individual fuel consumption with deviation from test‐cycle values in the range of 2% to 120% for PHEV model averages. Deviations are larger for short‐ranged PHEVs. Among others, range and vehicle power are influencing factors for PHEV model fuel consumption with average direct carbon dioxide (CO2) emissions decreasing by 2% to 3% per additional kilometer (km) of electric range. Additional simulations show that PHEVs recharged from renewable electricity can noteworthily reduce well‐to‐wheel CO2 emissions of passenger cars, but electric ranges should not exceed 200 to 300 km since battery production is CO2‐intense. Our findings indicate that regulations should (1) be based on real‐world fuel consumption measurements for PHEV, (2) take into account charging behavior and annual mileages, and (3) incentivize long‐ranged PHEV.  相似文献   

8.
The environmental characterization of the charging infrastructure required to operate electric vehicles (EVs) is usually overlooked in the literature. Only rudimentary life cycle inventories of EV charging facilities are available. This lack of information is especially noticeable in environmental studies of the environmental performance of electric two‐wheelers (E2Ws), none of which have included an analysis of charging facilities, even though they constitute the most successful electric‐drive market in the world. This article focuses on characterizing the life cycle of the global warming potential (GWP) and primary energy demand (PED) of two conventional charging facility designs that are widely implemented for charging E2Ws in public spaces. The relative environmental relevance of charging facilities per kilowatt‐hour (kWh) supplied to E2Ws is determined by considering a range of use scenarios (variability in the service ratio) and the effect of upgrading the electricity mix to include more renewable energy sources. Savings of over 3 metric tons (tonnes) of carbon dioxide equivalent emissions and 56 equivalent gigajoules can be achieved by implementing an optimized charging facility design. The internalization of the relative environmental burden from the charging facility per kWh supplied to E2Ws can increase the GWP of E2Ws’ use phase from 1% to 20% and the PED from 1% to 13%. Although the article focuses on one particular case scenario, the research is intended to provide complementary criteria for further research on the life cycle management of electric mobility systems. Thus, a series of factors that can influence the environmental performance of EV charging networks at the macro scale are discussed.  相似文献   

9.
Wu M  Wu Y  Wang M 《Biotechnology progress》2006,22(4):1012-1024
We conducted a mobility chains, or well-to-wheels (WTW), analysis to assess the energy and emission benefits of cellulosic biomass for the U.S. transportation sector in the years 2015-2030. We estimated the life-cycle energy consumption and emissions associated with biofuel production and use in light-duty vehicle (LDV) technologies by using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. Analysis of biofuel production was based on ASPEN Plus model simulation of an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity. Our study revealed that cellulosic biofuels as E85 (mixture of 85% ethanol and 15% gasoline by volume), FTD, and DME offer substantial savings in petroleum (66-93%) and fossil energy (65-88%) consumption on a per-mile basis. Decreased fossil fuel use translates to 82-87% reductions in greenhouse gas emissions across all unblended cellulosic biofuels. In urban areas, our study shows net reductions for almost all criteria pollutants, with the exception of carbon monoxide (unchanged), for each of the biofuel production option examined. Conventional and hybrid electric vehicles, when fueled with E85, could reduce total sulfur oxide (SO(x)) emissions to 39-43% of those generated by vehicles fueled with gasoline. By using bio-FTD and bio-DME in place of diesel, SO(x) emissions are reduced to 46-58% of those generated by diesel-fueled vehicles. Six different fuel production options were compared. This study strongly suggests that integrated heat and power co-generation by means of gas turbine combined cycle is a crucial factor in the energy savings and emission reductions.  相似文献   

10.

Purpose

The purpose of this study is to compare the environmental impact differences of four types of vehicles on a life cycle assessment (LCA) perspective: a conventional gasoline vehicle, a pure electric vehicle, a plug-in hybrid gasoline-electric vehicle, and a plug-in hybrid fuel cell-battery vehicle. The novelty of the approach is to consider the different powertrains—electric and hybrids—as a repowering of the conventional powertrain. This way, the attention can be focused only on the powertrain differences and inefficiencies, with the added value of avoiding further assumptions, which could cause the analysis to be somehow rough.

Methods

Thus, we compared four powertrain scenarios maintaining the same vehicle chassis, and we compared the impacts from the powertrain production, vehicle use phase, and powertrain end of life only. Hence, special attention was paid to the inventory for powertrain construction and use phase. For the powertrain components, an accurate literature survey has been carried out for the life cycle inventory. For the use phase, several driving cycles, both standardized and real-world type, have been simulated in order to properly evaluate the effect on the fuel/electricity consumption. For the comparison, environmental indicators according to cumulative energy demand (CED) and ReCiPe Midpoint methods have been used. This way, an analysis of the environmental impact, based on a life cycle impact assessment approach, is provided, which allows thoroughly comparing the systems based on the different powertrains. Moreover, a sensitivity analysis on different energy mixes has been included, which represents also a way to take into account changes in electricity production.

Results and discussion

Results are presented according to life cycle impact assessment, which examines the mass and energy inventory input and output data for a product system to translate these data to better identify their possible environmental relevance and significance. In the case of the climate change (CC), fuel depletion (FD), and CED indicators, the lowest value corresponds to the plug-in hybrid gasoline-electric vehicle, followed by the plug-in hybrid fuel cell-battery vehicle, the pure electric, and finally the conventional gasoline vehicle. Substituting a conventional gasoline powertrain with the corresponding pure electric one offers the lowest reduction, but still of valuable amount. In our analysis, for the considered systems, the reduction of the value of CC is about 15%, the reduction of the value of CED is about 12%, and the reduction of FD value is about 28%. This analysis underlines the weakness of a tank-to-wheel comparison, according to which the pure electric powertrain, having a very high average efficiency, results in being the less consuming, followed by the hybrid gasoline-electric and fuel cell-battery vehicles, respectively, and then by the conventional vehicle. Instead, in terms of CED, the bad influence of the low average efficiency of the Italian electricity production is highlighted. The LCA approach also stresses out the importance of the battery inventory, which can make the environmental performance of the system based on the pure electric vehicle significantly worse than those based on the conventional vehicle. Of a great significance is the presence of a group of indicators—including human toxicity, eutrophication, and acidification—with lower values in the case of conventional gasoline vehicle than in the electric and hybrid ones, which further confirms that the potential of electrified vehicles strictly depends on an efficient production and recycling of the battery.

Conclusions

The analysis underlines an alarming list of environmental impact indicators, usually neglected, which are worsened by the powertrains electrification. Operating on the production processes, used materials and recycling phase can possibly mitigate these worsening effects. Also, the type of electricity is shown to strongly affect the results. Thus, performing specific evaluations for different countries is crucial and a sensitivity analysis, involving drastically different energy mixes, can allow for taking into account possible changes in the future electricity production.
  相似文献   

11.
中国省级火电供应生命周期清单分析   总被引:2,自引:0,他引:2  
丁宁  杨建新  吕彬 《生态学报》2016,36(22):7192-7201
应用生命周期评价方法,建立了我国各省区的火电供应生命周期清单。清单分析结果表明,我国各省区单位火电供应的生命周期清单之间,及与全国单位火电供应的生命周期清单之间均存在一定差异,以总能源投入和全球变暖潜值为例进行了分析。在全球变暖潜值方面,我国单位火电供应的平均值为1.05kg/k Wh。云南等15个省区的单位火电全球变暖潜值与全国平均水平相差±10%以上。如果基于全国单位火电供应的平均全球变暖潜值计算各省火电总量全球变暖潜值,与基于各省单位火电全球变暖潜值计算的结果相比,也存在一定的差距。15个省区与基于全国平均值计算的结果相差±10%以上,表明了核算各省区火电清单的必要性。中国省级火电供应生命周期清单为省区级别的材料、产品、产业等生命周期评价提供数据支撑,也为各省区电力节能减排提供了理论基础。  相似文献   

12.
Under some circumstances, electric vehicles (EVs) can reduce overall environmental impacts by displacing internal combustion engine vehicles (ICEVs) and by enabling more intermittent renewable energy sources (RES) by charging with surplus power in periods of low demand. However, the net effects on greenhouse gas (GHG) emissions of adding EVs into a national or regional electricity system are complex and, for a system with significant RES, are affected by the presence of storage capacity, such as pumped hydro storage (PHS). This article takes the Portuguese electricity system as a specific example, characterized by relatively high capacities of wind generation and PHS. The interactions between EVs and PHS are explored, using life cycle assessment to compare changes in GHG emissions for different scenarios with a fleet replacement model to describe the introduction of EVs. Where there is sufficient storage capacity to ensure that RES capacity is exploited without curtailment, as in Portugal, any additional demand, such as introduction of EVs, must be met by the next marginal technology. Whether this represents an average increase or decrease in GHG emissions depends on the carbon intensity of the marginal generating technology and on the fuel efficiency of the ICEVs displaced by the EVs, so that detailed analysis is needed for any specific energy system, allowing for future technological improvements. A simple way to represent these trade‐offs is proposed as a basis for supporting strategic policies on introduction of EVs.  相似文献   

13.
玉米秸秆基纤维素乙醇生命周期能耗与温室气体排放分析   总被引:2,自引:0,他引:2  
生命周期评价是目前分析产品或工艺的环境负荷唯一标准化工具,利用其生命周期分析方法可以有效地研究纤维素乙醇生命周期能耗与温室气体排放问题。为了定量解释以玉米秸秆为原料的纤维素乙醇的节能和温室气体减排潜力,利用生命周期分析方法对以稀酸预处理、酶水解法生产的玉米秸秆基乙醇进行了生命周期能耗与温室气体排放分析,以汽车行驶1 km为功能单位。结果表明:与汽油相比,纤维素乙醇E100 (100%乙醇) 和E10 (乙醇和汽油体积比=1∶9) 生命周期化石能耗分别减少79.63%和6.25%,温室气体排放分别减少53.98%和6.69%;生物质阶段化石能耗占到总化石能耗68.3%,其中氮肥和柴油的生命周期能耗贡献最大,分别占到生物质阶段的45.78%和33.26%;工厂电力生产过程的生命周期温室气体排放最多,占净温室气体排放量的42.06%,提升技术减少排放是降低净排放的有效措施。  相似文献   

14.

1 Background

The U.S. Government has encouraged shifting from internal combustion engine vehicles (ICEVs) to alternatively fueled vehicles such as electric vehicles (EVs) for three primary reasons: reducing oil dependence, reducing greenhouse gas emissions, and reducing Clean Air Act criteria pollutant emissions. In comparing these vehicles, there is uncertainty and variability in emission factors and performance variables, which cause wide variation in reported outputs.

2 Objectives

A model was developed to demonstrate the use of Monte Carlo simulation to predict life cycle emissions and energy consumption differences between the ICEV versus the EV on a per kilometer (km) traveled basis. Three EV technologies are considered: lead-acid, nickel-cadmium, and nickel metal hydride batteries.

3 Methods

Variables were identified to build life cycle inventories between the EVs and ICEV. Distributions were selected for each of the variables and input to Monte Carlo Simulation soft-ware called Crystal Ball 2000®.

4 Results and Discussion

All three EV options reduce U.S. oil dependence by shifting to domestic coal. The life cycle energy consumption per kilometer (km) driven for the EVs is comparable to the ICEV; however, there is wide variation in predicted energy values. The model predicts that all three EV technologies will likely increase oxides of sulfur and nitrogen as well as particulate matter emissions on a per km driven basis. The model shows a high probability that volatile organic compounds and carbon monoxide emissions are reduced with the use of EVs. Lead emissions are also predicted to increase for lead-acid battery EVs. The EV will not reduce greenhouse gas emissions substantially and may even increase them based on the current U.S. reliance on coal for electricity generation. The EV may benefit public health by relocating air pollutants from urban centers, where traffic is concentrated, to rural areas where electricity generation and mining generally occur. The use of Monte Carlo simulation in life cycle analysis is demonstrated to be an effective tool to provide further insight on the likelihood of emission outputs and energy consumption.  相似文献   

15.
We provide a quantitative assessment of the prospects for current and future biomass feedstocks for bioenergy in Australia, and associated estimates of the greenhouse gas (GHG) mitigation resulting from their use for production of biofuels or bioelectricity. National statistics were used to estimate current annual production from agricultural and forest production systems. Crop residues were estimated from grain production and harvest index. Wood production statistics and spatial modelling of forest growth were used to estimate quantities of pulpwood, in‐forest residues, and wood processing residues. Possible new production systems for oil from algae and the oil‐seed tree Pongamia pinnata, and of lignocellulosic biomass production from short‐rotation coppiced eucalypt crops were also examined. The following constraints were applied to biomass production and use: avoiding clearing of native vegetation; minimizing impacts on domestic food security; retaining a portion of agricultural and forest residues to protect soil; and minimizing the impact on local processing industries by diverting only the export fraction of grains or pulpwood to bioenergy. We estimated that it would be physically possible to produce 9.6 GL yr?1 of first generation ethanol from current production systems, replacing 6.5 GL yr?1 of gasoline or 34% of current gasoline usage. Current production systems for waste oil, tallow and canola seed could produce 0.9 GL yr?1 of biodiesel, or 4% of current diesel usage. Cellulosic biomass from current agricultural and forestry production systems (including biomass from hardwood plantations maturing by 2030) could produce 9.5 GL yr?1 of ethanol, replacing 6.4 GL yr?1 of gasoline, or ca. 34% of current consumption. The same lignocellulosic sources could instead provide 35 TWh yr?1, or ca. 15% of current electricity production. New production systems using algae and P. pinnata could produce ca. 3.96 and 0.9 GL biodiesel yr?1, respectively. In combination, they could replace 4.2 GL yr?1 of fossil diesel, or 23% of current usage. Short‐rotation coppiced eucalypt crops could provide 4.3 GL yr?1 of ethanol (2.9 GL yr?1 replacement, or 15% of current gasoline use) or 20.2 TWh yr?1 of electricity (9% of current generation). In total, first and second generation fuels from current and new production systems could mitigate 26 Mt CO2‐e, which is 38% of road transport emissions and 5% of the national emissions. Second generation fuels from current and new production systems could mitigate 13 Mt CO2‐e, which is 19% of road transport emissions and 2.4% of the national emissions lignocellulose from current and new production systems could mitigate 48 Mt CO2‐e, which is 28% of electricity emissions and 9% of the national emissions. There are challenging sustainability issues to consider in the production of large amounts of feedstock for bioenergy in Australia. Bioenergy production can have either positive or negative impacts. Although only the export fraction of grains and sugar was used to estimate first generation biofuels so that domestic food security was not affected, it would have an impact on food supply elsewhere. Environmental impacts on soil, water and biodiversity can be significant because of the large land base involved, and the likely use of intensive harvest regimes. These require careful management. Social impacts could be significant if there were to be large‐scale change in land use or management. In addition, although the economic considerations of feedstock production were not covered in this article, they will be the ultimate drivers of industry development. They are uncertain and are highly dependent on government policies (e.g. the price on carbon, GHG mitigation and renewable energy targets, mandates for renewable fuels), the price of fossil oil, and the scale of the industry.  相似文献   

16.
The life cycle greenhouse gas (GHG) reduction benefits of vehicle lightweighting (LW) were evaluated in a companion article. This article provides an economic assessment of vehicle LW with aluminum and high‐strength steel. Relevant cost information taken from the literature is synthesized, compiled, and formed into estimates of GHG reduction costs through LW. GHG emissions associated with vehicle LW scenarios between 6% and 23% are analyzed alongside vehicle life cycle costs to achieve these LW levels. We use this information to estimate the cost to remove GHG emissions per metric ton by LW, and we further calculate the difference between added manufacturing cost and fuel cost savings from LW. The results show greater GHG savings derived from greater LW and added manufacturing costs as expected. The associated production costs are, however, disproportionately higher than the fuel cost savings associated with higher LW options. A sensitivity analysis of different vehicle classes confirms that vehicle LW is more cost‐effective for larger vehicles. Also, the cost of GHG emissions reductions through lightweighting is compared with alternative GHG emissions reduction technologies for passenger vehicles, such as diesel, hybrid, and plug‐in hybrid electric powertrains. The results find intensive LW to be a competitive and complementary approach relative to the technological alternatives within the automotive industry but more costly than GHG mitigation strategies available to other industries.  相似文献   

17.
Petroleum from unconventional reserves is making an increasingly important contribution to the transportation fuel supply, but is generally more expensive and has greater environmental burdens than petroleum from conventional sources. Life cycle assessments (LCAs) of alternative fuel‐vehicle technologies typically consider conventional internal combustion engine vehicles fueled by gasoline produced from the average petroleum slate used in refineries as a baseline. Large‐scale deployment of alternative fuel‐vehicle technologies will decrease petroleum demand and lead to decreased production at the economic margin (unconventional oil), but this is not considered in most current LCAs. If marginal petroleum resources have larger impacts than average petroleum resources, the environmental benefits of petroleum demand reduction are underestimated by the current modeling approaches. Often, models include some consequential‐based impacts (such as indirect land‐use change for biofuels), but exclude others (such as avoided unconventional oil production). This approach is inconsistent and does not provide a robust basis for public policy and private investment strategy decisions. We provide an example to illustrate the potential scale of these impacts, but further research is needed to establish and quantify these marginal effects and incorporate them into LCAs of both conventional and alternative fuel‐vehicle technologies.  相似文献   

18.
A model of the use of the platinum group metals (PGMs) platinum, palladium, and rhodium in Europe has been developed and combined with a model of the environmental pressures related to PGM production. Compared to the base case presented in Part I of this pair of articles, potential changes in PGM production and use are quantified with regard to cumulative and yearly environmental impacts and PGM resource use, for the period 2005–2020. Reducing sulfur dioxide (SO2) emissions of PGM producer Norilsk Nickel could cut the cumulative SO2 emissions associated with the use of PGMs in Europe by 35%. Cleaner electricity generation in South Africa could reduce cumulative SO2 emissions by another 9%. Increasing the recycling rate of end-of-life catalytic converters to 70% in 2020 could save 15% of the cumulative primary PGM input into car catalysts and 10% of the SO2 emissions associated with PGM production. In 2020, PGM requirements and SO2 emissions would be, respectively, 40% and 22% lower than the base case.
Substituting palladium for part of the platinum in diesel catalysts, coupled with a probable palladium price increase, could imply 15% more cumulative SO2 emissions if recycling rates do not increase.
A future large-scale introduction of fuel cell vehicles would require technological improvements to significantly reduce the PGM content of the fuel cell stack. The basic design of such vehicles greatly influences the vehicle power, a key parameter in determining the total PGM requirement.  相似文献   

19.
Albedo change during feedstock production can substantially alter the life cycle climate impact of bioenergy. Life cycle assessment (LCA) studies have compared the effects of albedo and greenhouse gases (GHGs) based on global warming potential (GWP). However, using GWP leads to unequal weighting of climate forcers that act on different timescales. In this study, albedo was included in the time‐dependent LCA, which accounts for the timing of emissions and their impacts. We employed field‐measured albedo and life cycle emissions data along with time‐dependent models of radiative transfer, biogenic carbon fluxes and nitrous oxide emissions from soil. Climate impacts were expressed as global mean surface temperature change over time (?T) and as GWP. The bioenergy system analysed was heat and power production from short‐rotation willow grown on former fallow land in Sweden. We found a net cooling effect in terms of ?T per hectare (?3.8 × 10–11 K in year 100) and GWP100 per MJ fuel (?12.2 g CO2e), as a result of soil carbon sequestration via high inputs of carbon from willow roots and litter. Albedo was higher under willow than fallow, contributing to the cooling effect and accounting for 34% of GWP100, 36% of ?T in year 50 and 6% of ?T in year 100. Albedo dominated the short‐term temperature response (10–20 years) but became, in relative terms, less important over time, owing to accumulation of soil carbon under sustained production and the longer perturbation lifetime of GHGs. The timing of impacts was explicit with ?T, which improves the relevance of LCA results to climate targets. Our method can be used to quantify the first‐order radiative effect of albedo change on the global climate and relate it to the climate impact of GHG emissions in LCA of bioenergy, alternative energy sources or land uses.  相似文献   

20.
To ensure a sustainable food supply for the growing population, the challenge is to find agricultural systems that can meet production requirements within environmental constraints and demands. This study compares the impacts of winter wheat production on energy use, land use and 100 years Global Warming Potential (GWP100) under different arable farming systems and farming practices. Life cycle assessment was used to simulate the impacts of organic, conventional and integrated farming (IF) systems along the production chain from input production up to the farm gate. The IF system models were designed to combine the best practices from organic and conventional systems to reduce negative environmental impacts without significant yield reductions. An integrated system that used food waste digestate as a fertiliser, and utilised pesticides and no‐tillage had the lowest energy use and GWP per functional unit of 1000 kg wheat output. When the impacts of some specific practices for reducing energy use and GWP were compared, the highest energy use reductions were achieved by replacing synthetic nitrogen fertilisers with anaerobically treated food waste or nitrogen fixing crops, increasing yields through crop breeding and using no‐tillage instead of ploughing. The highest GWP reductions were achieved by using nitrification inhibitors, replacing synthetic nitrogen fertilisers and increasing yields. The major contributors to the uncertainty range of energy use were associated with machinery fuel use and the assumed crop yields. For GWP results, the main source of uncertainty related to the N2O emissions. In conclusion, farming systems that combine the best practices from organic and conventional systems have potential to reduce negative environmental impacts while maintaining yield levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号