首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In some populations of the butterflies Acraea encedon and A. encedana, most females are infected with a bacterium that kills their sons. The resulting shortage of males is associated with females adopting a sex‐role‐reversed mating system, in which females swarm at landmarks such as hilltops and compete for males. We have observed the mating behaviour of Acraea species that are not known to be infected with the male‐killer. In over half of these species, males were found to aggregate on hilltops. It is likely that this behaviour was ancestral to the sex‐role‐reversed swarms of Acraea encedon and A. encedana, and we discuss how the spread of the male‐killing infection may have converted this mating system into sex‐role‐reversed swarming.  相似文献   

2.
Inherited bacteria which kill males during early development are widely distributed throughout the insects, but have been little studied outside of a single family of beetles, the Coccinellidae. We have investigated a male‐killing bacterium discovered in the butterfly Acraea encedana. This bacterium belongs to the genus Wolbachia and is identical in wsp gene sequence to a male‐killer in the closely related butterfly A. encedon, suggesting that it has either recently moved between host species or was inherited from a common ancestor of the butterflies. The prevalence of Wolbachia is remarkably high, 95% of females are infected and only 6% of wild caught butterflies are male. Measurements of the vertical transmission efficiency were used to calculate that this high prevalence is the result of infected females producing at least 1.79 times the number of surviving daughters as uninfected females (lower confidence limit is 1.25).  相似文献   

3.
Social insect sex and caste ratios are well‐studied targets of evolutionary conflicts, but the heritable factors affecting these traits remain unknown. To elucidate these factors, we carried out a short‐term artificial selection study on female caste ratio in the ant Monomorium pharaonis. Across three generations of bidirectional selection, we observed no response for caste ratio, but sex ratios rapidly became more female‐biased in the two replicate high selection lines and less female‐biased in the two replicate low selection lines. We hypothesized that this rapid divergence for sex ratio was caused by changes in the frequency of infection by the heritable bacterial endosymbiont Wolbachia, because the initial breeding stock varied for Wolbachia infection, and Wolbachia is known to cause female‐biased sex ratios in other insects. Consistent with this hypothesis, the proportions of Wolbachia‐infected colonies in the selection lines changed rapidly, mirroring the sex ratio changes. Moreover, the estimated effect of Wolbachia on sex ratio (~13% female bias) was similar in colonies before and during artificial selection, indicating that this Wolbachia effect is likely independent of the effects of artificial selection on other heritable factors. Our study provides evidence for the first case of endosymbiont sex ratio manipulation in a social insect.  相似文献   

4.
Maternally inherited bacteria of the genus Wolbachia are known to affect the physiology and reproduction of several arthropod and nematode hosts. This paper presents the effects of using tetracycline to eliminate Wolbachia on the oogenesis of its host uzifly Exorista sorbillans (Diptera: Tachinidae), a parasitoid of silkworm Bombyx mori L. Earlier we reported cytoplasmic incompatibility, nucleo‐cytoplasmic conflict, male biased sex ratio and reduction in fecundity upon curing of Wolbachia infection using an antibiotic. This paper presents the abnormal growth and proliferation of oocytes in the uninfected/cured uziflies. The anomalies include abnormal/arrested oocyte production with inhibition of normal functioning of nurse cell nuclei, malformation and agglutination in egg chambers, empty egg chambers due to arrested vitellogenesis and undeveloped ovarian tubules. These anomalies further lead to reduction in growth of the ovarian tubules, which resulted in a 20% reduction of fecundity. It is hypothesized that normal oocyte production in uzifly requires the infection of Wolbachia bacteria. Further, in the uzifly, infection is at transition stage from a facultative to an obligatory mode of symbiosis. In light of this, this paper discusses the relationship between Wolbachia and oocyte production.  相似文献   

5.
In some parasitoid wasps, infection by the micro‐organism Wolbachia leads to asexual reproduction. Within the Hymenoptera, the limits of distribution of parthenogenesis inducing Wolbachia have not yet been established. To address this issue, we screened all known thelytokous social hymenopteran species using a PCR assay. None was infected, and therefore we conclude that worker thelytoky evolves independently of Wolbachia in ants and bees. This supports the previously proposed hypothesis that a sex determining system based on heterozygosity may form a proximate limitation to Wolbachia‐induced parthenogenesis.  相似文献   

6.
Wolbachia infections have been described in several Drosophila species, but relatively few have been assessed for phenotypic effects. Cytoplasmic incompatibility (CI) is the most common phenotypic effect that has been detected, while some infections cause male killing or feminization, and many Wolbachia infections have few host effects. Here, we describe two new infections in a recently described species, Drosophila pandora, one of which causes near‐complete CI and near‐perfect maternal transmission (the “CI” strain). The other infection is a male killer (the “MK” strain), which we confirm by observing reinitiation of male production following tetracycline treatment. No incompatibility was detected in crosses between CI strain males and MK strain females, and rare MK males do not cause CI. Molecular analyses indicate that the CI and MK infections are distantly related and the CI infection is closely related to the wRi infection of Drosophila simulans. Two population surveys indicate that all individuals are infected with Wolbachia, but the MK infection is uncommon. Given patterns of incompatibility among the strains, the infection dynamics is expected to be governed by the relative fitness of the females, suggesting that the CI infection should have a higher fitness. This was evidenced by changes in infection frequencies and sex ratios in population cages initiated at different starting frequencies of the infections.  相似文献   

7.
The small brown planthopper Laodelphax striatellus (Hemiptera: Delphacidae) is reported to have the endosymbiont Wolbachia, which shows a strong cytoplasmic incompatibility (CI) between infected males and uninfected females. In the 2000s, female‐biased L. striatellus populations were found in Taiwan, and this sex ratio distortion was the result of male‐killing induced by the infection of another endosymbiont, Spiroplasma. Spiroplasma infection is considered to negatively affect both L. striatellus and Wolbachia because the male‐killing halves the offspring of L. striatellus and hinders the spread of Wolbachia infection via CI. Spiroplasma could have traits that increase the fitness of infected L. striatellus and/or coexisting organisms because the coinfection rates of Wolbachia and Spiroplasma were rather high in some areas. In this study, we investigated the influences of the infection of these two endosymbionts on the development, reproduction, and insecticide resistance of L. striatellus in the laboratory. Our results show that the single‐infection state of Spiroplasma had a negative influence on the fertility of L. striatellus, while the double‐infection state had no significant influence. At late nymphal and adult stages, the abundance of Spiroplasma was lower in the double‐infection state than in the single‐infection state. In the double‐infection state, the reduction of Spiroplasma density may be caused by competition between the two endosymbionts, and the negative influence of Spiroplasma on the fertility of host may be relieved. The resistance of L. striatellus to four insecticides was compared among different infection states of endosymbionts, but Spiroplasma infection did not contribute to increase insecticide resistance. Because positive influences of Spiroplasma infection were not found in terms of the development, reproduction, and insecticide resistance of L. striatellus, other factors improving the fitness of Spiroplasma‐infected L. striatellus may be related to the high frequency of double infection in some L. striatellus populations.  相似文献   

8.
Some lines of the butterfly Hypolimnas bolina L. (Lepidoptera: Nymphalidae) are characterized by their female‐biased sex ratio. In these lines, most males die before reaching the middle larval stage. However, the cause of the bias remains unclear. We detected the proteobacterium Wolbachia in all individuals in the female‐biased butterfly lines and in some of the lines with a normal sex ratio. Tetracycline treatment of adult females of a female‐biased line led to a significant increase in both the hatch rate of their eggs (F1) and the male‐to‐female ratio of F1 pupae. In addition, certain assays of tetracycline treatment on mother butterflies significantly increased the male to female ratio of F1 adults. Known bacterial sex ratio distorters other than Wolbachia were not detected by diagnostic PCR assay, nor by the sequencing of 16S rDNA amplified using general prokaryotic 16S rDNA primers. These results strongly suggest that the distortion of the sex ratio is due to the killing of males by the inherited Wolbachia. Sequences of the 16S rDNA amplified using Wolbachia‐specific primers, the cell division protein gene (ftsZ), the molecular chaperone groE genes (groE operon), and the Wolbachia surface protein gene (wsp) from Wolbachia in lines belonging to three subspecies of the butterfly (bolina, jacintha, and philippensis) revealed no variation among lines nor between female‐biased lines and a normal one.  相似文献   

9.
Various physiological effects of Wolbachia infection have been reported in invertebrates, but the impact of this infection on behavior and the consequences of these behavioral modifications on fitness have rarely been studied. Here, we investigate the effect of Wolbachia infection on the estimation of host nutritive resource quality in a parasitoid wasp. We compare decision‐making in uninfected and Wolbachia‐infected strains of Trichogramma brassicae Bezdenko (Hymenoptera: Trichogrammatidae) on patches containing either fresh or old host eggs. For both strains, fresh eggs were better hosts than older eggs, but the difference was smaller for the infected strain than for the uninfected strain. Oviposition behavior of uninfected wasps followed the predictions of optimal foraging theory. They behaved differently toward high‐ vs. low‐quality hosts, with more hosts visited and more ovipositions, fewer high‐quality hosts used for feeding or superparasitism, and a sex ratio that was more biased toward females in patches containing high‐quality hosts than in patches containing low‐quality ones. Uninfected wasps also displayed shorter acceptance and rejection times in high‐quality hosts than in hosts of lower quality. In contrast, infected wasps were less efficient in evaluating the nutritive quality of the host (fresh vs. old eggs) and had a reduced ability to discriminate between unparasitized and parasitized hosts. Furthermore, they needed more energy and therefore engaged in host feeding more often. This study highlights possible decision‐making manipulation by Wolbachia, and we discuss its consequences for Wolbachia fitness.  相似文献   

10.
Wolbachia are Gram‐negative endosymbionts that are known to cause embryonic lethality when infected male insects mate with uninfected females or with females carrying a different strain of Wolbachia, a situation characterized as cytoplasmic incompatibility (CI). However, the mechanism of CI is not yet fully understood, although recent studies on Drosophila melanogaster have achieved great progress. Here, we found that Wolbachia infection caused changes in the expressions of several immunity‐related genes, including significant upregulation of kenny (key), in the testes of D. melanogaster. Overexpression of key in fly testes led to a significant decrease in egg hatch rates when these flies mate with wild‐type females. Wolbachia‐infected females could rescue this embryonic lethality. Furthermore, in key overexpressing testes terminal deoxynucleotidyl transferase‐mediated dUTP‐biotin nick‐end labeling signal was significantly stronger than in the control testes, and the level of reactive oxygen species was significantly increased. Overexpression of key also resulted in alterations of some other immunity‐related gene expressions, including the downregulation of Zn72D. Knockdown of Zn72D in fly testes also led to a significant decrease in egg hatch rates. These results suggest that Wolbachia might induce the defect in male host fertility by immunity‐related pathways and thus cause an oxidative damage and cell death in male testes.  相似文献   

11.
A variety of genetic elements encode traits beneficial to their own transmission. Despite their ‘selfish’ behaviour, most of these elements are often found at relatively low frequencies in host populations. This is the case of intracytoplasmic Wolbachia bacteria hosted by the isopod Armadillidium vulgare that distort the host sex ratio towards females by feminizing the genetic males they infect. Here we tested the hypothesis that sexual selection against Wolbachia‐infected females could maintain a polymorphism of the infection in populations. The infected neo‐females (feminized males) have lower mating rates and received less sperm relative to uninfected females. Males exhibited an active choice: they interacted more with uninfected females and made more mating attempts. A female behavioural difference was also observed in response to male mating attempts: infected neo‐females more often exhibited behaviours that stop the mating sequence. The difference in mating rate was significant only when males could choose between the two female types. This process could maintain a polymorphism of the infection in populations. Genetic females experimentally infected with Wolbachia are not exposed to the same sexual selection pressure, so the infection alone cannot explain these differences.  相似文献   

12.
The increasing concentration of carbon dioxide in atmosphere is not only a major cause of global warming, but it also adversely affects the ecological diversity of invertebrates. This study was conducted to evaluate the effect of elevated CO2 concentration (ambient, 400 ppm and high, 800 ppm) and Wolbachia (Wolbachia‐infected, W+ and Wolbachia‐uninfected, W?) on Hylyphantes graminicola. The total survival rate, developmental duration, carapace width and length, body weight, sex ratio, net reproductive rate, nutrition content, and enzyme activity in H. graminicola were examined under four treatments: W? 400 ppm, W? 800 ppm, W+ 400 ppm, and W+ 800 ppm. Results showed that Wolbachia‐infected spiders had significantly decreased the total developmental duration. Different instars showed variations up to some extent, but no obvious effect was found under elevated CO2 concentration. Total survival rate, sex ratio, and net reproductive rate were not affected by elevated CO2 concentration or Wolbachia infection. The carapace width of Wolbachia‐uninfected spiders decreased significantly under elevated CO2 concentration, while the width, length and weight were not significantly affected in Wolbachia‐infected spiders reared at ambient CO2 concentration. The levels of protein, specific activities of peroxidase, and amylase were significantly increased under elevated CO2 concentration or Wolbachia‐infected spiders, while the total amino content was only increased in Wolbachia‐infected spiders. Thus, our current finding suggested that elevated CO2 concentration and Wolbachia enhance nutrient contents and enzyme activity of H. graminicola and decrease development duration hence explore the interactive effects of factors which were responsible for reproduction regulation, but it also gives a theoretical direction for spider's protection in such a dynamic environment. Increased activities of enzymes and nutrients caused by Wolbachia infection aids for better survival of H. graminicola under stress.  相似文献   

13.
14.
Recent studies on Wolbachia‐induced incompatibility in haplodiploid insects and mites have revealed a diversity of cytoplasmic incompatibility (CI) patterns among host species. Here, we report intraspecific diversity in CI expression among four strains of the arrhenotokous mite Tetranychus urticae and in T. turkestani. Variability of CI expression within T. urticae ranged from no CI to complete CI, and included either female embryonic mortality or male conversion types of CI. A fecundity cost attributed to the infection with the high‐CI Wolbachia strain was the highest ever recorded for Wolbachia (?80 to ?100% decrease). Sequence polymorphism at a 550‐bp‐portion of Wolbachia wsp gene revealed two clusters distant by 21%, one of which included three Wolbachia strains infecting mite populations sampled from the same host‐plant species, but showing distinct CI patterns. These data are discussed in the light of theoretical predictions on the evolutionary pathways followed in this symbiotic interaction.  相似文献   

15.
The Aedes albopictus mosquito has been involved as the principal vector of recent major outbreaks due to the chikungunya virus (CHIKV). The species is naturally infected by two strains of Wolbachia (wAlbA and wAlbB). Wolbachia infections are thought to have spread by manipulating the reproduction of their hosts; cytoplasmic incompatibility is the mechanism used by Wolbachia to invade natural populations of many insects including Ae. albopictus. Here, we report a study on the effects of removing Wolbachia from Ae. albopictus on CHIKV replication and examine the consequences of CHIKV infection on some life‐history traits (survival and reproduction) of Wolbachia‐free Ae. albopictus. We found that Wolbachia‐free mosquitoes maintained a highly heterogeneous CHIKV replication compared to Wolbachia‐infected individuals. In Wolbachia‐infected Ae. albopictus, the regular increase of CHIKV followed by a steady viral load from day 4 post‐infection onwards was concomitant with a decline in Wolbachia density. This profile was also detected when examining the two key organs for viral transmission, the midgut and the salivary glands. Moreover, Wolbachia‐free Ae. albopictus was not altered in life‐history traits such as survival, oviposition and hatching characteristics whether infected or not with CHIKV. We found that Wolbachia is not essential for viral replication, its presence could lead to optimize replication from day 4 post‐infection onwards, coinciding with a decrease in Wolbachia density. Wolbachia may regulate viral replication in Ae. albopictus, with consequences on survival and reproduction.  相似文献   

16.
In many species, males increase their reproductive success by choosing high‐quality females. In natural populations, they interact with both virgin and mated females, which can store sperm in their spermatheca. Therefore, males elaborate strategies to avoid sperm competition. In the terrestrial isopod Armadillidium vulgare, females can store sperm and produce several clutches. Moreover, this species can be parasitized by Wolbachia, which feminizes genetic males, transforming them into functional females. Our study compared attractiveness and mate choice when a male is exposed to both virgin and experienced females (i.e., females who have produced offspring and rested for 6 months), with or without Wolbachia. Our results revealed that males are more attracted to virgin females than experienced females, even if these virgin females are parasitized. Moreover, the chemical analysis highlighted different odors in females according to their reproductive and infection (Wolbachia‐free or vertically Wolbachia‐infected) status. Males attempted copulation more frequently and for longer with virgin females, even if Wolbachia‐infected, while experienced females refused further copulation. The evolutionary consequences of both male choice and female resistance on their fitness are discussed in this study.  相似文献   

17.
The bacterial symbiont Wolbachia can protect insects against viral pathogens, and the varying levels of antiviral protection are correlated with the endosymbiont load within the insects. To understand why Wolbachia strains differ in their antiviral effects, we investigated the factors controlling Wolbachia density in five closely related strains in their natural Drosophila hosts. We found that Wolbachia density varied greatly across different tissues and between flies of different ages, and these effects depended on the host–symbiont association. Some endosymbionts maintained largely stable densities as flies aged while others increased, and these effects in turn depended on the tissue being examined. Measuring Wolbachia rRNA levels in response to viral infection, we found that viral infection itself also altered Wolbachia levels, with Flock House virus causing substantial reductions in symbiont loads late in the infection. This effect, however, was virus‐specific as Drosophila C virus had little impact on Wolbachia in all of the five host systems. Because viruses have strong tissue tropisms and antiviral protection is thought to be cell‐autonomous, these effects are likely to affect the virus‐blocking phenomenon. However, we were unable to find any evidence of a correlation between Wolbachia and viral titres within the same tissues. We conclude that Wolbachia levels within flies are regulated in a complex host–symbiont–virus‐dependent manner and this trinity is likely to influence the antiviral effects of Wolbachia.  相似文献   

18.
The house fly, Musca domestica L., and the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), are cosmopolitan pests parasitized by a guild of more than two dozen species of wasps. Several species of these wasps have been commercialized as biocontrol agents or are being studied for this purpose. Wolbachia bacteria are known to infect at least some of these wasps and are of interest because infections can dramatically affect insect reproduction. A survey in this parasitoid–fly system detected Wolbachia in 15 of 21 species of wasps and in three of nine species of flies parasitized by these wasps. Phylogenetic analyses using wsp gene sequences identified single isolate infections in most cases. Infections of two and four isolates were detected in Nasonia vitripennis (Walker) and Spalangia cameroni Perkins (Hymenoptera: Pteromalidae), respectively. Laboratory experiments showed infections in S. cameroni to cause an incomplete form of female‐mortality (FM) type cytoplasmic incompatibility (CI). Crosses between uninfected female and infected male partners (♀×♂w) produced fewer progeny, which had a strong male‐biased sex ratio. Crosses between ♀×♂, ♀w×♂w, and ♀w×♂ produced more progeny, which had a female‐biased sex ratio. Developmental times of progeny were increased when the paternal parent was infected with Wolbachia, regardless of whether the maternal parent was infected or whether offspring developed from fertilized eggs. This result may reflect the action of Wolbachia on components of the seminal fluid that then affect the development of offspring from inseminated females. It is hoped that future studies of Wolbachia in this guild will facilitate the rearing and application of these wasps as biocontrol agents of house fly and stable fly.  相似文献   

19.
The European lantern fly, Dictyophara europaea, is an alternative vector of the Flavescence dorée phytoplasma (FDp) disease of grapevine in European vineyards, enabling infection initiation from wild reservoir compartment (Clematis vitalba). Heretofore recorded rate of D. europaea FDp‐infection has been very low (3%), making it less epidemiologically significant than would be expected based on reservoir plant infection rate (30%). In this study we present findings on a heavily FDp‐infected D. europaea population (>60%), on the natural Wolbachia infection of populations with low FDp‐infection rates (DeWo+) and on Wolbachia absence in highly FDp‐infected population (DeWo?). We examine several possible causes underlying the differences in vector infection rates: (a) population genetic characteristics of D. europaea and correlation with Wolbachia strain wEur natural infections, (b) Wolbachia effects on fitness components of DeWo+ laboratory colony and (c) rate of reservoir plant FDp‐infection and differences in FDp genotypes harboured by low and highly infected vector populations. The vector genetic diversity level was found to be lower in DeWo+ than in uninfected individuals and to exhibit a different evolution of fixed haplotypes. All DeWo+ populations were infected with the same strain of wEur. The FDp was found to be genetically diversified (five genotypes) but had no relation to infection rates. We did not find evidence of fitness upgrades with regard to Wolbachia infection status. Although more experimentation is needed, it seems that Wolbachia confers protection against FDp or is in competition with FDp according to the observed correlations: low FDp‐infected vector populations are infected with Wolbachia and vice versa.  相似文献   

20.
Infections with maternally inherited Wolbachia bacteria may have dramatic influences on reproductive traits and speciation patterns of their hosts. We here show that in the beetle genus Altica, infection has influenced phylogenetic patterns of the host's mtDNA and different strains led to repeated selective sweeps. By comparing a COI/II‐based phylogeny of the hosts with a phylogeny of the bacteria based on ftsZ, we show that cospeciation is rare and restricted to few recently diverged species. While in general each species apparently harbours a single Wolbachia strain, Altica lythri presents a strikingly different pattern: in the polyphyletic species, three highly divergent mtDNA haplotypes (2.1–4.6% p‐distance) are coupled with three different Wolbachia strains (wLytA1, wLytA2 and wLytB). These haplotypes and Wolbachia strains are widely distributed and mostly found in sympatry. A phylogeny based on microsatellite data supports the monophyly of A. lythri. The discrepancy between mtDNA and nuclear phylogeny may best be explained by interspecific hybridization that led to introgression of mtDNA coupled with a different Wolbachia strain. Selective sweeps apparently drove the introgressed haplotypes to widespread distribution. As for effects of Wolbachia on reproduction, infection with wLytA1 appears to be correlated with a substantial sex ratio distortion, which was most prominent in A. lythri.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号