首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ongoing changes in natural diversity due to anthropogenic activities can alter ecosystem functioning. Particular attention has been given to research on biodiversity loss and how those changes can affect the functioning of ecosystems, and, by extension, human welfare. Few studies, however, have addressed how increased diversity due to establishment of nonindigenous species (NIS) may affect ecosystem function in the recipient communities. Marine algae have a highly important role in sustaining nearshore marine ecosystems and are considered a significant component of marine bioinvasions. Here, we examined the patterns of respiration and light‐use efficiency across macroalgal assemblages with different levels of species richness and evenness. Additionally, we compared our results between native and invaded macroalgal assemblages, using the invasive brown macroalga Sargassum muticum (Yendo) Fensholt as a model species. Results showed that the presence of the invader increased the rates of respiration and production, most likely as a result of the high biomass of the invader. This effect disappeared when S. muticum lost most of its biomass after senescence. Moreover, predictability–diversity relationships of macroalgal assemblages varied between native and invaded assemblages. Hence, the introduction of high‐impact invasive species may trigger major changes in ecosystem functioning. The impact of S. muticum may be related to its greater biomass in the invaded assemblages, although species interactions and seasonality influenced the magnitude of the impact.  相似文献   

2.
The macroalgal assemblages at the low intertidal zone were studied at three localities on the north coast of Spain between 1977 and 2002. Two of these localities were invaded at the end of the 1980s by the brown seaweed Sargassum muticum (Yendo) Fensholt (Phaeophyta, Sargassaceae), whereas the third locality remained free of the invader. In 2002, distinct algal assemblages were noticed in invaded and noninvaded localities. No major changes were detected in the noninvaded locality. Apart from the obvious presence of S. muticum, the changes observed in the invaded localities included a significant reduction in abundance of the previous dominant species (the red alga Gelidium spinosum (S. G. Gmelin) P. C. Silva) as well as an increased number of species and diversity, increased primary productivity, and variations in the seasonal abundance patterns of some species. We speculate that the arrival of S. muticum had a negative effect on the dominant native G. spinosum, probably related to competition for light. This resulted in indirect positive effects on other species of the assemblage (such as Bifurcaria bifurcata R. Ross). Other small epiphytic opportunistic species might also have been benefited from the presence of S. muticum, because the invader has a rich associated epiphytic assemblage.  相似文献   

3.
Climate-driven and biodiversity effects on the structure and functioning of ecosystems are increasingly studied as multiple stressors, which subsequently may influence species invasions. We used a mesocosm experiment to test how increases in temperature and CO2 partial pressure (pCO2) interact with functional diversity of resident macroalgal assemblages and affect the invasion success of the non-indigenous macroalga Sargassum muticum. Early settlement of S. muticum germlings was assessed in the laboratory under common environmental conditions across three monocultures and a polyculture of functional groups of native macroalgae, which had previously grown for 3 weeks under crossed treatments of temperature and pCO2. Functional diversity was a key driver shaping early settlement of the invader, with significant identity and richness effects: higher settlement occurred in low-diversity and low-stature assemblages, even after accounting for treatment biomass. Overall, early survivorship of settled germlings responded to an interaction of temperature and pCO2 treatments, with survivorship enhanced in one treatment (high pCO2 at ambient Temperature) after 3 days, and reduced in another (ambient pCO2 at high Temperature) after 10 days, although size was enhanced in this same treatment. After 6 months in the field, legacy effects of laboratory treatments remained, with S. muticum reaching higher cover in most assemblages previously subjected to ambient pCO2, but ephemeral green algae appearing disproportionately after elevated-pCO2 treatment. These results caution that invasion outcomes may change at multiple points in the life cycle under higher-CO2, higher-temperature conditions, in addition to supporting a role for intact, functionally diverse assemblages in limiting invader colonization.  相似文献   

4.
The impact of the invasive seaweed Sargassum muticum (Yendo) Fensholt on a low intertidal macroalgal assemblage was assessed at a semiexposed rocky shore in northern Spain between 2002 and 2004. Sargassum muticum plants were removed from the mature macroalgal assemblage and from those occurring along the successional process of the assemblage. Biomass, richness, diversity, and percentage cover of macroalgae in experimental plots were compared with unmanipulated controls. The effect of S. muticum removal on the macroalgal assemblage more than 2 years after the beginning of the experiment was negligible. Moreover, no differences between treatments were detected in the general patterns of succession. Only significant differences in S. muticum abundance were detected between treatments at the end of the experiment. We suggest that the low abundance of S. muticum at this intertidal level and its pseudoperennial life cycle may limit competition with native macroalgae. However, long‐term removal experiments may be a more indicator of the impact of S. muticum at the upper limit of its vertical distribution.  相似文献   

5.
Biological invasions, nutrient enrichment and ocean warming are known to threaten biodiversity and ecosystem functioning. The independent effects of these ecological stressors are well studied, however, we lack understanding of their cumulative effects, which may be additive, antagonistic or synergistic. For example, the impacts of biological invasions are often determined by environmental context, which suggests that the effects of invasive species may vary with other stressors such as pollution or climate change. This study examined the effects of an invasive seaweed (Sargassum muticum) on the structure and functioning of a synthetic macroalgal assemblage and tested explicitly whether these effects varied with nutrient enrichment and ocean warming. Overall, the presence of S. muticum increased assemblage productivity rates and warming altered algal assemblage structure, which was characterised by a decrease in kelp and an increase in ephemeral green algae. The effects of S. muticum on total algal biomass accumulation, however, varied with nutrient enrichment and warming, producing antagonistic cumulative effects on total algal biomass accumulation. These findings show that the nature of stressor interactions may vary with stressor intensity and among response variables, which leads to less predictable consequences for the structure and functioning of communities.  相似文献   

6.
Abstract. Ecklonia radiata (C. Agardh) J. Agardh kelp beds — a characteristic feature of the nearshore environment along the south‐west Australian coastline — contribute significantly to the coastal biodiversity in temperate Australia, yet, little is known about the organization of these macroalgal assemblages. By compiling existing and new data sets from habitat surveys, we have characterized and compared the structure of kelp‐associated macroalgal assemblages in three regions (Marmion Lagoon, Hamelin Bay and the marine environment neighbouring the Fitzgerald River National Park) across more than 1000 kilometres of the south‐west Australian coastline. 152 macroalgal taxa had been recognized within the three regions and this is in the range of species richness reported from other Australian and African kelp beds. The kelp‐associated algal assemblages were regionally distinct, 66% of all taxa were only found in one region and only 17 taxa were found in all three regions. Adjacent regions shared an additional 13–15 taxa. The regional shifts in assemblage structure were evident in species composition of both canopy and understorey. The organization of assemblages followed a spatial hierarchy where differences in assemblage structure were larger among regions (hundreds of kilometres apart) than among sites within regions (kilometres apart) and differences among sites within region were larger than differences among quadrats within sites (metres apart). Despite this hierarchy each level of nesting contributed approximately the same to total variation in assemblage structure and these spatial patterns were stronger than temporal differences from seasons to 2–3 years. Our results suggest that local and small‐scale processes contribute considerably to heterogeneity in macroalgal assemblages throughout south‐western Australia, and, in particular, our results are consistent with E. radiata exerting a strong influence on macroalgal assemblage structure. Further, our study contradicts the existence of a general south‐west Australian kelp assemblage, although a few species may form the core of E. radiata associations across regions.  相似文献   

7.
Seaweeds are important components of near-shore ecosystems as primary producers, foundation species, and biogeochemical engineers. Seaweed communities are likely to alter under predicted climate change scenarios. We tested the physiological responses of three perennial, turf-building, intertidal rhodophytes, Mastocarpus stellatus, Osmundea pinnatifida, and the calcified Ellisolandia elongata, to elevated pCO2 over 6 weeks. Responses varied between these three species. E. elongata was strongly affected by high pCO2, whereas non-calcified species were not. Elevated pCO2 did not induce consistent responses of photosynthesis and respiration across these three species. While baseline photophysiology differed significantly between species, we found few clear effects of elevated pCO2 on this aspect of macroalgal physiology. We found effects of within-species variation in elevated pCO2 response in M. stellatus, but not in the other species. Overall, our data confirm the sensitivity of calcified macroalgae to elevated pCO2, but we found no evidence suggesting that elevated pCO2 conditions will have a strong positive or negative impact on photosynthetic parameters in non-calcified macroalgae.  相似文献   

8.
As atmospheric CO2 concentrations rise, associated ocean warming (OW) and ocean acidification (OA) are predicted to cause declines in reef‐building corals globally, shifting reefs from coral‐dominated systems to those dominated by less sensitive species. Sponges are important structural and functional components of coral reef ecosystems, but despite increasing field‐based evidence that sponges may be ‘winners’ in response to environmental degradation, our understanding of how they respond to the combined effects of OW and OA is limited. To determine the tolerance of adult sponges to climate change, four abundant Great Barrier Reef species were experimentally exposed to OW and OA levels predicted for 2100, under two CO2 Representative Concentration Pathways (RCPs). The impact of OW and OA on early life‐history stages was also assessed for one of these species to provide a more holistic view of species impacts. All species were generally unaffected by conditions predicted under RCP6.0, although environmental conditions projected under RCP8.5 caused significant adverse effects: with elevated temperature decreasing the survival of all species, increasing levels of tissue necrosis and bleaching, elevating respiration rates and decreasing photosynthetic rates. OA alone had little adverse effect, even under RCP8.5 concentrations. Importantly, the interactive effect of OW and OA varied between species with different nutritional modes, with elevated pCO2 exacerbating temperature stress in heterotrophic species but mitigating temperature stress in phototrophic species. This antagonistic interaction was reflected by reduced mortality, necrosis and bleaching of phototrophic species in the highest OW/OA treatment. Survival and settlement success of Carteriospongia foliascens larvae were unaffected by experimental treatments, and juvenile sponges exhibited greater tolerance to OW than their adult counterparts. With elevated pCO2 providing phototrophic species with protection from elevated temperature, across different life stages, climate change may ultimately drive a shift in the composition of sponge assemblages towards a dominance of phototrophic species.  相似文献   

9.
Anthropogenic climate change compromises reef growth as a result of increasing temperatures and ocean acidification. Scleractinian corals vary in their sensitivity to these variables, suggesting species composition will influence how reef communities respond to future climate change. Because data are lacking for many species, most studies that model future reef growth rely on uniform scleractinian calcification sensitivities to temperature and ocean acidification. To address this knowledge gap, calcification of twelve common and understudied Caribbean coral species was measured for two months under crossed temperatures (27, 30.3 °C) and CO2 partial pressures (pCO2) (400, 900, 1300 μatm). Mixed‐effects models of calcification for each species were then used to project community‐level scleractinian calcification using Florida Keys reef composition data and IPCC AR5 ensemble climate model data. Three of the four most abundant species, Orbicella faveolata, Montastraea cavernosa, and Porites astreoides, had negative calcification responses to both elevated temperature and pCO2. In the business‐as‐usual CO2 emissions scenario, reefs with high abundances of these species had projected end‐of‐century declines in scleractinian calcification of >50% relative to present‐day rates. Siderastrea siderea, the other most common species, was insensitive to both temperature and pCO2 within the levels tested here. Reefs dominated by this species had the most stable end‐of‐century growth. Under more optimistic scenarios of reduced CO2 emissions, calcification rates throughout the Florida Keys declined <20% by 2100. Under the most extreme emissions scenario, projected declines were highly variable among reefs, ranging 10–100%. Without considering bleaching, reef growth will likely decline on most reefs, especially where resistant species like S. siderea are not already dominant. This study demonstrates how species composition influences reef community responses to climate change and how reduced CO2 emissions can limit future declines in reef calcification.  相似文献   

10.
Isoprene (C5H8) emissions by terrestrial vegetation vary with temperature and light intensity, and play an important role in biosphere–chemistry–climate interactions. Such interactions were probably substantially modified by Pleistocene climate and CO2 cycles. Central to understanding the nature of these modifications is assessment and analysis of how emissions changed under glacial environmental conditions. Currently, even the net direction of change is difficult to predict because a CO2‐depleted atmosphere may have stimulated emissions compensating for the negative impacts of a cooler climate. Here, we address this issue and attempt to determine the direction of change from an experimental standpoint by investigating the interaction between isoprene emissions and plant growth of two known isoprene‐emitting herbaceous species (Mucuna pruriens and Arundo donax) grown at glacial (180 ppm) to present (366 ppm) CO2 levels. We found a significant enhancement of isoprene emissions per unit leaf area in M. pruriens under subambient CO2 concentrations relative to ambient controls but not for A. donax. In contrast, canopy emissions remained unaltered for both plant species because enhanced leaf emissions were offset by reductions in biomass and leaf area. Separate growth experiments with M. pruriens revealed that lowering day/night temperatures by 5°C decreased canopy isoprene emissions irrespective of the CO2 level. Incorporation of these results into a simple canopy emissions model highlights their potential to attenuate reductions in the total isoprene flux from forests under glacial conditions predicted by standard models.  相似文献   

11.
Changes in the atmospheric concentration of carbon dioxide ([CO2]), nutrient availability and biotic diversity are three major drivers of the ongoing global change impacting terrestrial ecosystems worldwide. While it is well established that soil nutrient heterogeneity exerts a strong influence on the development of plant individuals and communities, it is virtually unknown how nutrient heterogeneity and global change drivers interact to affect plant performance and ecosystem functioning. We conducted a microcosm experiment to evaluate the effect of simultaneous changes in [CO2], nutrient heterogeneity (NH), nutrient availability (NA) and species evenness on the biomass and nutrient uptake patterns of assemblages formed by Lolium perenne, Plantago lanceolata and Holcus lanatus. When the nutrients were heterogeneously supplied, assemblages exhibited precise root foraging patterns, and had higher above‐ and belowground biomass (average increases of 32% and 29% for above‐ and belowground biomass, respectively). Nutrient heterogeneity also modulated the effects of NA on biomass production, complementarity in nitrogen uptake and below: aboveground ratio, as well as those of [CO2] on the nutrient use efficiency at the assemblage level. Our results show that nutrient heterogeneity has the potential to influence the response of plant assemblages to simultaneous changes in [CO2], nutrient availability and biotic diversity, and suggest that it is an important environmental factor to interpret and assess plant assemblage responses to global change.  相似文献   

12.
The study evaluated different macroalgal invasions in the main Mediterranean coastal habitats on hard bottom. Biodiversity, species composition and structure of macroalgal assemblages were compared among non-invaded areas and areas invaded by the Chlorophyta Caulerpa racemosa var. cylindracea and by the turf-forming Rhodophyta Womersleyella setacea in three different habitats: shallow rocky bottom, deep rocky bottom and dead matte of the seagrass Posidonia oceanica. Results showed that alien macroalgae constituted a relevant component of benthic assemblages in invaded areas of the Mediterranean Sea. Assemblages invaded by Womersleyella setacea and Caulerpa racemosa showed lower values of diversity and large differences in the structure and species composition related to non-nvaded assemblages. The species that mostly suffered from invasion were erect species reproducing sexually; moreover, the dominance of W. setacea led to low abundance of native filamentous algae, while C. racemosa colonization seemed particularly threatening for encrusting algae. All the studied habitats appeared highly invasible by alien macroalgae, even if W. setacea appeared more invasive in deeper habitats, while colonization of C. racemosa seemed more serious in shallower habitats; the dead matte of P. oceanica represented a suitable substrate for the spread of both species. Differences among assemblages in different habitats were reduced in invaded areas.  相似文献   

13.
Carbon exchange rates (CER) and whole-plant carbon balances of beech (Fagus grandifolia) and sugar maple (Acer saccharum) were compared for seedlings grown under low irradiance to determine the effects of atmospheric CO2 enrichment on shade-tolerant seedlings of co-dominant species. Under contemporary atmospheric CO2, photosynthetic rate per unit mass of beech was lower than for sugar maple, and atmospheric CO2 enrich ment enhanced photosynthesis for beech only. Aboveground respiration per unit mass decreased with CO2 enrichment for both species while root respiration per unitmass decreased for sugar maple only. Under contemporary atmoapheric CO2, beech had lower C uptake per plant than sugar maple, while C losses per plant to nocturnal aboveground and root respiration were similar for both species. Under elevated CO2, C uptake per plant was similar for both species, indicating a significant relative increase in whole-seedling CER with CO2 enrich ment for beech but not for sugar maple. Total C loss per plant to aboveground respiration was decreased for beech only because increase in sugar maple leaf mass counterbalanced a reduction in respiration rates. Carbon loss to root respiration per plant was not changed by CO2 enrichment for either species. However, changes in maintenance respiration cost and nitrogen level suggest changes in tissue composition with elevated CO2. Beech had a greater net daily C gain with CO2 enrichment than did sugar maple in contrast to a lower one under contemporary CO2. Elevated CO2 preferentially enhances the net C balance of beech by increasing photosynthesis and reducing respiration cost. In all cases, the greatest C lost was by roots, indicating the importance of belowground biomass in net C gain. Relative growth rate estimated from biomass accumulation was not affected by CO2 enrichment for either species possibly because of slow growth under low light. This study indicates the importance of direct effects of CO2 enrichment when predicting potential change in species distribution with global climate change.  相似文献   

14.
The role of acclimation of dark respiration to temperature and CO2 concentration and its relationship to growth are critical in determining plant response to predicted global change. We explored temperature acclimation of respiration in seedlings of tree species of the North American boreal forest. Populus tremuloides, Betula papyrifera, Larix laricina, Pinus banksiana, and Picea mariana plants were grown from seed in controlled-environments at current and elevated concentrations of CO2 (370 and 580 μmol mol–1) in combination with three temperature treatments of 18/12, 24/18, and 30/24 °C (light/dark period). Specific respiration rates of roots and shoots acclimated to temperature, damping increases in rates across growth-temperature environments compared to short-term temperature responses. Compared at a standard temperature, root and shoot respiration rates were, on average, 40% lower in plants grown at the highest compared to lowest growth temperature. Broad-leaved species had a lower degree of temperature acclimation of respiration than did the conifers. Among species and treatment combinations, rates of respiration were linearly related to size and relative growth rate, and relationships were comparable among growth environments. Specific respiration rates and whole-plant respiratory CO2 efflux as a proportion of daily net CO2 uptake increased at higher growth temperatures, but were minimally affected by CO2 concentration. Whole-plant specific respiration rates were two to three times higher in broad-leaved than coniferous species. However, compared to faster-growing broad-leaved species, slower-growing conifers lost a larger proportion of net daily CO2 uptake as respiratory CO2 efflux, especially in roots. Interspecific variation in acclimation responses of dark respiration to temperature is more important than acclimation of respiration to CO2 enrichment in modifying tree seedling growth responses to projected increases in CO2 concentration and temperature.  相似文献   

15.
Similar nonsteady‐state automated chamber systems were used to measure and partition soil CO2 efflux in contrasting deciduous (trembling aspen) and coniferous (black spruce and jack pine) stands located within 100 km of each other near the southern edge of the Boreal forest in Canada. The stands were exposed to similar climate forcing in 2003, including marked seasonal variations in soil water availability, which provided a unique opportunity to investigate the influence of climate and stand characteristics on soil CO2 efflux and to quantify its contribution to the net ecosystem CO2 exchange (NEE) as measured with the eddy‐covariance technique. Partitioning of soil CO2 efflux between soil respiration (including forest‐floor vegetation) and forest‐floor photosynthesis showed that short‐ and long‐term temporal variations of soil CO2 efflux were related to the influence of (1) soil temperature and water content on soil respiration and (2) below‐canopy light availability, plant water status and forest‐floor plant species composition on forest‐floor photosynthesis. Overall, the three stands were weak to moderate sinks for CO2 in 2003 (NEE of ?103, ?80 and ?28 g C m?2 yr?1 for aspen, black spruce and jack pine, respectively). Forest‐floor respiration accounted for 86%, 73% and 75% of annual ecosystem respiration, in the three respective stands, while forest‐floor photosynthesis contributed to 11% and 14% of annual gross ecosystem photosynthesis in the black spruce and jack pine stands, respectively. The results emphasize the need to perform concomitant measurements of NEE and soil CO2 efflux at longer time scales in different ecosystems in order to better understand the impacts of future interannual climate variability and vegetation dynamics associated with climate change on each component of the carbon balance.  相似文献   

16.
Eddy covariance and sapflow data from three Mediterranean ecosystems were analysed via top‐down approaches in conjunction with a mechanistic ecosystem gas‐exchange model to test current assumptions about drought effects on ecosystem respiration and canopy CO2/H2O exchange. The three sites include two nearly monospecific Quercus ilex L. forests – one on karstic limestone (Puéchabon), the other on fluvial sand with access to ground water (Castelporziano) – and a typical mixed macchia on limestone (Arca di Noè). Estimates of ecosystem respiration were derived from light response curves of net ecosystem CO2 exchange. Subsequently, values of ecosystem gross carbon uptake were computed from eddy covariance CO2 fluxes and estimates of ecosystem respiration as a function of soil temperature and moisture. Bulk canopy conductance was calculated by inversion of the Penman‐Monteith equation. In a top‐down analysis, it was shown that all three sites exhibit similar behaviour in terms of their overall response to drought. In contrast to common assumptions, at all sites ecosystem respiration revealed a decreasing temperature sensitivity ( Q 10) in response to drought. Soil temperature and soil water content explained 70–80% of the seasonal variability of ecosystem respiration. During the drought, light‐saturated ecosystem gross carbon uptake and day‐time averaged canopy conductance declined by up to 90%. These changes were closely related to soil water content. Ecosystem water‐use efficiency of gross carbon uptake decreased during the drought, regardless whether evapotranspiration from eddy covariance or transpiration from sapflow had been used for the calculation. We evidence that this clearly contrasts current models of canopy function which predict increasing ecosystem water‐use efficiency (WUE) during the drought. Four potential explanations to those results were identified (patchy stomatal closure, changes in physiological capacities of photosynthesis, decreases in mesophyll conductance for CO2, and photoinhibition), which will be tested in a forthcoming paper. It is suggested to incorporate the new findings into current biogeochemical models after further testing as this will improve estimates of climate change effects on (semi)arid ecosystems' carbon balances.  相似文献   

17.
The possible responses of ecosystem processes to rising atmospheric CO2 concentration and climate change are illustrated using six dynamic global vegetation models that explicitly represent the interactions of ecosystem carbon and water exchanges with vegetation dynamics. The models are driven by the IPCC IS92a scenario of rising CO2 ( Wigley et al. 1991 ), and by climate changes resulting from effective CO2 concentrations corresponding to IS92a, simulated by the coupled ocean atmosphere model HadCM2‐SUL. Simulations with changing CO2 alone show a widely distributed terrestrial carbon sink of 1.4–3.8 Pg C y?1 during the 1990s, rising to 3.7–8.6 Pg C y?1 a century later. Simulations including climate change show a reduced sink both today (0.6–3.0 Pg C y?1) and a century later (0.3–6.6 Pg C y?1) as a result of the impacts of climate change on NEP of tropical and southern hemisphere ecosystems. In all models, the rate of increase of NEP begins to level off around 2030 as a consequence of the ‘diminishing return’ of physiological CO2 effects at high CO2 concentrations. Four out of the six models show a further, climate‐induced decline in NEP resulting from increased heterotrophic respiration and declining tropical NPP after 2050. Changes in vegetation structure influence the magnitude and spatial pattern of the carbon sink and, in combination with changing climate, also freshwater availability (runoff). It is shown that these changes, once set in motion, would continue to evolve for at least a century even if atmospheric CO2 concentration and climate could be instantaneously stabilized. The results should be considered illustrative in the sense that the choice of CO2 concentration scenario was arbitrary and only one climate model scenario was used. However, the results serve to indicate a range of possible biospheric responses to CO2 and climate change. They reveal major uncertainties about the response of NEP to climate change resulting, primarily, from differences in the way that modelled global NPP responds to a changing climate. The simulations illustrate, however, that the magnitude of possible biospheric influences on the carbon balance requires that this factor is taken into account for future scenarios of atmospheric CO2 and climate change.  相似文献   

18.
The relationships of mycorrhizal fungal respiration and productivity to climate and atmospheric chemistry remain under characterized. We quantified mycorrhizal sporocarp and hyphal respiration, as well as growing season net hyphal production, under ambient and elevated carbon dioxide (CO2) and ozone (O3) in relation to natural temperature and moisture variation. Hyphal respiration did not respond significantly to elevated CO2 and O3. Sporocarp respiration was affected by temperature and moisture content while hyphal respiratory response to temperature was undetected over the narrower range of soil temperatures captured. Hyphal respiration comprised 31 % of soil respiration, and the ratio of hyphal respiration to soil respiration declined with elevated CO2. Hyphal biomass was reduced under all treatments though not statistically significant. Given the large fraction of soil respiration represented by mycorrhizal fungi and its sensitivity to climate, a small change in fungal respiration could strongly affect carbon budgets and cycling under climate change.  相似文献   

19.
There is concern that changes in climate and land use could increase rates of decomposition in peatlands, leading to release of stored C to the atmosphere. Rates of decomposition are driven by abiotic factors such as temperature and moisture, but also by biotic factors such as changes in litter quality resulting from vegetation change. While effects of litter species identity and diversity on decomposition processes are well studied, the impact of changes in relative abundance (evenness) of species has received less attention. In this study we investigated effects of changes in short-term peatland plant species evenness on decomposition in mixed litter assemblages, measured as litter weight loss, respired CO2 and leachate C and N. We found that over the 307-day incubation period, higher levels of species evenness increased rates of decomposition in mixed litters, measured as weight loss and leachate dissolved organic N. We also found that the identity of the dominant species influenced rates of decomposition, measured as weight loss, CO2 flux and leachate N. Greatest rates of decomposition were when the dwarf shrub Calluna vulgaris dominated litter mixtures, and lowest rates when the bryophyte Pleurozium schreberi dominated. Interactions between evenness and dominant species identity were also detected for litter weight loss and leachate N. In addition, positive non-additive effects of mixing litter were observed for litter weight loss. Our findings highlight the importance of changes in the evenness of plant community composition for short-term decomposition processes in UK peatlands.  相似文献   

20.
Tait LW  Schiel DR 《PloS one》2011,6(10):e26986
Macroalgal assemblages are some of the most productive systems on earth and they contribute significantly to nearshore ecosystems. Globally, macroalgal assemblages are increasingly threatened by anthropogenic activities such as sedimentation, eutrophication and climate change. Despite this, very little research has considered the potential effects of canopy loss on primary productivity, although the literature is rich with evidence showing the ecological effects of canopy disturbance. In this study we used experimental removal plots of habitat-dominating algae (Order Fucales) that had been initiated several years previously to construct a chronosequence of disturbed macroalgal communities and to test if there were legacy effects of canopy loss on primary productivity. We used in situ photo-respirometry to test the primary productivity of algal assemblages in control and removal plots at two intertidal elevations. In the mid tidal zone assemblage, the removal plots at two sites had average primary productivity values of only 40% and 60% that of control areas after 90 months. Differences in productivity were associated with lower biomass and density of the fucoid algal canopy and lower taxa richness in the removal plots after 90 months. Low-shore plots, established three years earlier, showed that the loss of the large, dominant fucoid resulted in at least 50% less primary productivity of the algal assemblage than controls, which lasted for 90 months; other smaller fucoid species had recruited but they were far less productive. The long term reduction in primary productivity following a single episode of canopy loss of a dominant species in two tidal zones suggests that these assemblages are not very resilient to large perturbations. Decreased production output may have severe and long-lasting consequences on the surrounding communities and has the potential to alter nutrient cycling in the wider nearshore environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号