首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Climate-driven and biodiversity effects on the structure and functioning of ecosystems are increasingly studied as multiple stressors, which subsequently may influence species invasions. We used a mesocosm experiment to test how increases in temperature and CO2 partial pressure (pCO2) interact with functional diversity of resident macroalgal assemblages and affect the invasion success of the non-indigenous macroalga Sargassum muticum. Early settlement of S. muticum germlings was assessed in the laboratory under common environmental conditions across three monocultures and a polyculture of functional groups of native macroalgae, which had previously grown for 3 weeks under crossed treatments of temperature and pCO2. Functional diversity was a key driver shaping early settlement of the invader, with significant identity and richness effects: higher settlement occurred in low-diversity and low-stature assemblages, even after accounting for treatment biomass. Overall, early survivorship of settled germlings responded to an interaction of temperature and pCO2 treatments, with survivorship enhanced in one treatment (high pCO2 at ambient Temperature) after 3 days, and reduced in another (ambient pCO2 at high Temperature) after 10 days, although size was enhanced in this same treatment. After 6 months in the field, legacy effects of laboratory treatments remained, with S. muticum reaching higher cover in most assemblages previously subjected to ambient pCO2, but ephemeral green algae appearing disproportionately after elevated-pCO2 treatment. These results caution that invasion outcomes may change at multiple points in the life cycle under higher-CO2, higher-temperature conditions, in addition to supporting a role for intact, functionally diverse assemblages in limiting invader colonization.  相似文献   

2.
3.
Tait LW  Schiel DR 《PloS one》2011,6(10):e26986
Macroalgal assemblages are some of the most productive systems on earth and they contribute significantly to nearshore ecosystems. Globally, macroalgal assemblages are increasingly threatened by anthropogenic activities such as sedimentation, eutrophication and climate change. Despite this, very little research has considered the potential effects of canopy loss on primary productivity, although the literature is rich with evidence showing the ecological effects of canopy disturbance. In this study we used experimental removal plots of habitat-dominating algae (Order Fucales) that had been initiated several years previously to construct a chronosequence of disturbed macroalgal communities and to test if there were legacy effects of canopy loss on primary productivity. We used in situ photo-respirometry to test the primary productivity of algal assemblages in control and removal plots at two intertidal elevations. In the mid tidal zone assemblage, the removal plots at two sites had average primary productivity values of only 40% and 60% that of control areas after 90 months. Differences in productivity were associated with lower biomass and density of the fucoid algal canopy and lower taxa richness in the removal plots after 90 months. Low-shore plots, established three years earlier, showed that the loss of the large, dominant fucoid resulted in at least 50% less primary productivity of the algal assemblage than controls, which lasted for 90 months; other smaller fucoid species had recruited but they were far less productive. The long term reduction in primary productivity following a single episode of canopy loss of a dominant species in two tidal zones suggests that these assemblages are not very resilient to large perturbations. Decreased production output may have severe and long-lasting consequences on the surrounding communities and has the potential to alter nutrient cycling in the wider nearshore environment.  相似文献   

4.
Perennial ryegrass swards were grown in large containers on a soil and were exposed during two years to elevated (700 L L-1) or ambient atmospheric CO2 concentration at outdoor temperature and to a 3 °C increase in air temperature in elevated CO2. The nitrogen nutrition of the grass sward was studied at two sub-optimal (160 and 530 kg N ha-1 y-1) and one non-limiting (1000 kg N ha-1 y-1) N fertilizer supplies. At cutting date, elevated CO2 reduced by 25 to 33%, on average, the leaf N concentration per unit mass. Due to an increase in the leaf blade weight per unit area in elevated CO2, this decline did not translate for all cuts in a lower N concentration per unit leaf blade area. With the non-limiting N fertilizer supply, the leaf N concentration (% N) declined with the shoot dry-matter (DM) according to highly significant power models in ambient (% N=4.9 DM-0.38) and in elevated (%N=5.3 DM-0.52) CO2. The difference between both regressions was significant and indicated a lower critical leaf N concentration in elevated than in ambient CO2 for high, but not for low values of shoot biomass. With the sub-optimal N fertilizer supplies, the nitrogen nutrition index of the grass sward, calculated as the ratio of the actual to the critical leaf N concentration, was significantly lowered in elevated CO2. This indicated a lower inorganic N availability for the grass plants in elevated CO2, which was also apparent from the significant declines in the annual nitrogen yield of the grass sward and in the nitrate leaching during winter. For most cuts, the harvested fraction of the plant dry-matter decreased in elevated CO2 due, on average, to a 45–52% increase in the root phytomass. In the same way, a smaller share of the plant total nitrogen was harvested by cutting, due, on average, to a 25–41% increase in the N content of roots. The annual means of the DM and N harvest indices were highly correlated to the annual means of the nitrogen nutrition index. Changes in the harvest index and in the nitrogen nutrition index between ambient and elevated CO2 were also positively correlated. The possible implication of changes in the soil introgen cycle and of a limitation in the shoot growth potential of the grass in elevated. CO2 is discussed.Abbreviations 350 outdoor climate - 700 outdoor climate +350 L L-1[CO2] - 700+ outdoor climate +350 L L-1 (CO2) and +3 °C - N-- low N fertilizer supply - N+ high N fertilizer supply - N++ non-limiting N fertilizer supply - DM dry-matter  相似文献   

5.
Wheat is the main food for the majority of Iran’s population. Precise estimation of wheat yield change in future is essential for any possible revision of management strategies. The main objective of this study was to evaluate the effects of climate change, CO2 concentration, technology development and their integrated effects on wheat production under future climate change. This study was performed under two scenarios of the IPCC Special Report on Emission Scenarios (SRES): regional economic (A2) and global environmental (B1). Crop production was projected for three future time periods (2020, 2050 and 2080) in comparison with a baseline year (2005) for Khorasan province located in the northeast of Iran. Four study locations in the study area included Mashhad, Birjand, Bojnourd and Sabzevar. The effect of technology development was calculated by fitting a regression equation between the observed wheat yields against historical years considering yield potential increase and yield gap reduction as technology development. Yield relative increase per unit change of CO2 concentration (1 ppm?1) was considered 0.05 % and was used to implement the effect of elevated CO2. The HadCM3 general circulation model along with the CSM-CERES-Wheat crop model were used to project climate change effects on wheat crop yield. Our results illustrate that, among all the factors considered, technology development provided the highest impact on wheat yield change. Highest wheat yield increase across all locations and time periods was obtained under the A2 scenario. Among study locations, Mashhad showed the highest change in wheat yield. Yield change compared to baseline ranged from ?28 % to 56 % when the integration of all factors was considered across all locations. It seems that achieving higher yield of wheat in future may be expected in northeast Iran assuming stable improvements in production technology.  相似文献   

6.
7.
A nonequilibrium, dynamic, global vegetation model, Hybrid v4.1, with a subdaily timestep, was driven by increasing CO2 and transient climate output from the UK Hadley Centre GCM (HadCM2) with simulated daily and interannual variability. Three IPCC emission scenarios were used: (i) IS92a, giving 790 ppm CO2 by 2100, (ii) CO2 stabilization at 750 ppm by 2225, and (iii) CO2 stabilization at 550 ppm by 2150. Land use and future N deposition were not included. In the IS92a scenario, boreal and tropical lands warmed 4.5 °C by 2100 with rainfall decreased in parts of the tropics, where temperatures increased over 6 °C in some years and vapour pressure deficits (VPD) doubled. Stabilization at 750 ppm CO2 delayed these changes by about 100 years while stabilization at 550 ppm limited the rise in global land surface temperature to 2.5 °C and lessened the appearance of relatively hot, dry areas in the tropics. Present‐day global predictions were 645 PgC in vegetation, 1190 PgC in soils, a mean carbon residence time of 40 years, NPP 47 PgC y?1 and NEP (the terrestrial sink) about 1 PgC y?1, distributed at both high and tropical latitudes. With IS92a emissions, the high latitude sink increased to the year 2100, as forest NPP accelerated and forest vegetation carbon stocks increased. The tropics became a source of CO2 as forest dieback occurred in relatively hot, dry areas in 2060–2080. High VPDs and temperatures reduced NPP in tropical forests, primarily by reducing stomatal conductance and increasing maintenance respiration. Global NEP peaked at 3–4 PgC y?1 in 2020–2050 and then decreased abruptly to near zero by 2100 as the tropical source offset the high‐latitude sink. The pattern of change in NEP was similar with CO2 stabilization at 750 ppm, but was delayed by about 100 years and with a less abrupt collapse in global NEP. CO2 stabilization at 550 ppm prevented sustained tropical forest dieback and enabled recovery to occur in favourable years, while maintaining a similar time course of global NEP as occurred with 750 ppm stabilization. By lessening dieback, stabilization increased the fraction of carbon emissions taken up by the land. Comparable studies and other evidence are discussed: climate‐induced tropical forest dieback is considered a plausible risk of following an unmitigated emissions scenario.  相似文献   

8.
Effects of climate change on species occupying distinct areas during their life cycle are still unclear. Moreover, although effects of climate change have widely been studied at the species level, less is known about community responses. Here, we test whether and how the composition of wader (Charadrii) assemblages, breeding in high latitude and wintering from Europe to Africa, is affected by climate change over 33 years. We calculated the temporal trend in the community temperature index (CTI), which measures the balance between cold and hot dwellers present in species assemblages. We found a steep increase in the CTI, which reflects a profound change in assemblage composition in response to recent climate change. This study provides, to our knowledge, the first evidence of a strong community response of migratory species to climate change in their wintering areas.  相似文献   

9.
Australian Institute of Marine Science Contribution no. 436.  相似文献   

10.
Previous assessments of the impacts of climate change on heat-related mortality use the “delta method” to create temperature projection time series that are applied to temperature–mortality models to estimate future mortality impacts. The delta method means that climate model bias in the modelled present does not influence the temperature projection time series and impacts. However, the delta method assumes that climate change will result only in a change in the mean temperature but there is evidence that there will also be changes in the variability of temperature with climate change. The aim of this paper is to demonstrate the importance of considering changes in temperature variability with climate change in impacts assessments of future heat-related mortality. We investigate future heat-related mortality impacts in six cities (Boston, Budapest, Dallas, Lisbon, London and Sydney) by applying temperature projections from the UK Meteorological Office HadCM3 climate model to the temperature–mortality models constructed and validated in Part 1. We investigate the impacts for four cases based on various combinations of mean and variability changes in temperature with climate change. The results demonstrate that higher mortality is attributed to increases in the mean and variability of temperature with climate change rather than with the change in mean temperature alone. This has implications for interpreting existing impacts estimates that have used the delta method. We present a novel method for the creation of temperature projection time series that includes changes in the mean and variability of temperature with climate change and is not influenced by climate model bias in the modelled present. The method should be useful for future impacts assessments. Few studies consider the implications that the limitations of the climate model may have on the heat-related mortality impacts. Here, we demonstrate the importance of considering this by conducting an evaluation of the daily and extreme temperatures from HadCM3, which demonstrates that the estimates of future heat-related mortality for Dallas and Lisbon may be overestimated due to positive climate model bias. Likewise, estimates for Boston and London may be underestimated due to negative climate model bias. Finally, we briefly consider uncertainties in the impacts associated with greenhouse gas emissions and acclimatisation. The uncertainties in the mortality impacts due to different emissions scenarios of greenhouse gases in the future varied considerably by location. Allowing for acclimatisation to an extra 2°C in mean temperatures reduced future heat-related mortality by approximately half that of no acclimatisation in each city.  相似文献   

11.
Large seaweeds are often structurally dominant in subtidal and intertidal rocky shore benthic communities of the N.W. Atlantic. The mechanisms by which these algal assemblages are maintained are surprisingly different in the two habitats. In the subtidal community, kelps are dominant space competitors in the absence of strong grazing interactions. In contrast, the large perennial seaweeds of intertidal zones (fucoids and Chondrus crispus) are competitively inferior to both sessile filter feeders and ephemeral, pioneer algal species. Intertidal seaweed beds are maintained by carnivory of whelks, which reduces filter feeder populations, and by herbivorous periwinkles which reduce ephemeral algal populations. Through most of the intertidal zone, disturbance, both biological and physical, dictates which species shall compete and equilibrium conditions obtain subsequently.The roles of subtidal consumers are quite different. Sea urchins are the major algal herbivores and these voracious animals maintain an equilibrium state in which large tracts of subtidal coralline pavement are kept free of kelp forests. Urchins do not seem to play a successional facilitative role for kelps in the way that periwinkles do for fucoids in the intertidal. Control of herbivore populations is thus a key to the maintenance of subtidal foliose algal beds. It is clear that parasitic amoebas can decimate sea urchin populations so that kelp forest dominance is assured. However, the importance of carnivory in limiting urchins in the subtidal community is unclear in the absence of appropriate manipulation experiments. It is possible that carnivorous decapods and fin fish control sea urchin populations and hence foliose algal abundance, but this must remain speculative. The seaweed-dominated state of the subtidal system is an alternative equilibrium condition to the urchin/coralline alga configuration. The structure of the kelp beds is relatively uniform in responding to frequent small-scale, infrequent large-scale, or no, disturbance.  相似文献   

12.
Allen M. Solomon 《Oecologia》1986,68(4):567-579
Summary The temporal response of forests to CO2-induced climate changes was examined for eastern North America. A forest stand simulation model was used with the assumption that climate will change at a constant rate as atmospheric CO2 doubles, and then as CO2 doubles again. Before being used to project future vegetation trends, the simulation model FORENA was verified by its ability to reproduce long, temporal sequences of plant community change recorded by fossil pollen and by its ability to reproduce today's vegetation. The simulated effects of changing monthly temperature and precipitation included a distinctive dieback of extant trees at most locations, with only partial recovery of biomass in areas of today's temperate deciduous forest. In the southern portion of today's deciduous-coniferous transition forests the simulated dieback was indistinct and recovery by deciduous tree species was rapid. In more northerly transition areas, the dieback not only was clearly expressed, but occurred twice, when new dominant species replaced extant conifers, then were themselves replaced, as climate change continued. Boreal conifers also underwent diebacks and were replaced by deciduous hardwoods more slowly in the north than in the south. Transient responses in species composition and carbon storage continued as much as 300 years after simulated climate changes ceased.Environmental Sciences Division Publication No. 2625  相似文献   

13.
Climate-mediated shifts in species’ phenologies are expected to alter species interactions, but predicting the consequences of this is difficult because phenological shifts may be driven by different climate factors that may or may not be correlated. Temperature could be an important factor determining effects of phenological shifts by altering species’ growth rates and thereby the relative size ratios of interacting species. We tested this hypothesis by independently manipulating temperature and the relative hatching phenologies of two competing amphibian species. Relative shifts in hatching time generally altered the strength of competition, but the presence and magnitude of this effect was temperature dependent and joint effects of temperature and hatching phenology were non-additive. Species that hatched relatively early or late performed significantly better or worse, respectively, but only at higher temperatures and not at lower temperatures. As a consequence, climate-mediated shifts in hatching phenology or temperature resulted in stronger or weaker effects than expected when both factors acted in concert. Furthermore, consequences of phenological shifts were asymmetric; arriving relatively early had disproportional stronger (or weaker) effects than arriving relatively late, and this varied with species identity. However, consistent with recent theory, these seemingly idiosyncratic effects of phenological shifts could be explained by species-specific differences in growth rates across temperatures and concordant shifts in relative body size of interacting species. Our results emphasize the need to account for environmental conditions when predicting the effects of phenological shifts, and suggest that shifts in size-structured interactions can mediate the impact of climate change on natural communities.  相似文献   

14.
Mangroves are intertidal ecosystems that are particularly vulnerable to climate change. At the low tidal limits of their range, they face swamping by rising sea levels; at the high tidal limits, they face increasing stress from desiccation and high salinity. Facilitation theory may help guide mangrove management and restoration in the face of these threats by suggesting how and when positive intra- and interspecific effects may occur: such effects are predicted in stressed environments such as the intertidal, but have yet to be shown among mangroves. Here, we report the results of a series of experiments at low and high tidal sites examining the effects of mangrove density and species mix on seedling survival and recruitment, and on the ability of mangroves to trap sediment and cause surface elevation change. Increasing density significantly increased the survival of seedlings of two different species at both high and low tidal sites, and enhanced sediment accretion and elevation at the low tidal site. Including Avicennia marina in species mixes enhanced total biomass at a degraded high tidal site. Increasing biomass led to changed microenvironments that allowed the recruitment and survival of different mangrove species, particularly Ceriops tagal.  相似文献   

15.
16.
Lau JA  Peiffer J  Reich PB  Tiffin P 《Oecologia》2008,158(1):141-150
Global environmental changes can have immediate impacts on plant growth, physiology, and phenology. Long-term effects that are only observable after one or more generations are also likely to occur. These transgenerational effects can result either from maternal environmental effects or from evolutionary responses to novel selection pressures and are important because they may alter the ultimate ecological impact of the environmental change. Here, we show that transgenerational effects of atmospheric carbon dioxide (CO2) and soil nitrogen (N) treatments influence the magnitude of plant growth responses to elevated CO2 (eCO2). We collected seeds from Lupinus perennis, Poa pratensis, and Schizachyrium scoparium populations that had experienced five growing seasons of ambient CO2 (aCO2) or eCO2 treatments and ambient or increased N deposition and planted these seeds into aCO2 or eCO2 environments. We found that the offspring eCO2 treatments stimulated immediate increases in L. perennis and P. pratensis growth and that the maternal CO2 environment influenced the magnitude of this growth response for L. perennis: biomass responses of offspring from the eCO2 maternal treatments were only 54% that of the offspring from the aCO2 maternal treatments. Similar trends were observed for P. pratensis and S. scoparium. We detected some evidence that long-term N treatments also altered growth responses to eCO2; offspring reared from seed from maternal N-addition treatments tended to show greater positive growth responses to eCO2 than offspring from ambient N maternal treatments. However, the effects of long-term N treatments on offspring survival showed the opposite pattern. Combined, our results suggest that transgenerational effects of eCO2 and N-addition may influence the growth stimulation effects of eCO2, potentially altering the long-term impacts of eCO2 on plant populations.  相似文献   

17.
Large intact soil cores of nearly pure stands of Pascopyrum smithii (western wheatgrass, C3) and Bouteloua gracilis (blue grama, C4) were extracted from the Central Plains Experimental Range in northeastern Colorado, USA and transferred to controlled environment chambers. Cores were exposed to a variety of water, temperature and CO2 regimes for a total of four annual growth cycles. Root subsamples were harvested after the completion of the second and fourth growth cycles at a time corresponding to late winter, and were examined microscopically for the presence of mycorrhizae. After two growth cycles in the growth chambers, 54% of the root length was colonized in P. smithii, compared to 35% in blue grama. Field control plants had significantly lower colonization. Elevation of CO2 increased mycorrhizal colonization in B. gracilis by 46% but had no effect in P. smithii. Temperatures 4° C higher than normal decreased colonization in P. smithii by 15%. Increased annual precipitation decreased colonization in both species. Simulated climate change conditions of elevated CO2, elevated temperature and lowered precipitation decreased colonization in P. smithii but had less effect on B. gracilis. After four growth cycles in P. smithii, trends of treatments remained similar, but overall colonization rate decreased.  相似文献   

18.
Perennial ryegrass swards were grown in large containers ona soil, at two N fertilizer supplies and were exposed duringtwo years in highly ventilated plastic tunnels to elevated (700µl l–1 [CO2) or ambient atmospheric CO2 concentrationat outdoor temperature and to a 3C increase in air temperaturein elevated CO2. The irrigation was adjusted to obtain a soilwater deficit during summer. The daily net C assimilation wasincreased in elevated CO2 by 29 and 36% at the low and highN supplies, respectively. Canopies grown in elevated CO2 for14 to 27 months photosynthetized significantly less rapidly,in both elevated and normal CO2 concentrations, than their counterpartsdeveloped in ambient CO2 but the magnitude of this effect wassmall (–8% to –13%). Elevated CO2 resulted in alarge increase in the fructan concentration in the pseudostemsand laminae (+46% and +189%, respectively). In elevated CO2,the hexose and sucrose pool increased by 28% in the laminae,whereas it did not vary significantly in the pseudo-stems. A3C temperature increase in elevated CO2 did not affect significantlythe average WSC concentrations in the pseudostems and laminae.The elevated CO2 effects on the net C assimilation and on thenocturnal shoot respiration were greater in summer than in spring.On average, a 35% increase in the below-ground respiration wasmeasured in elevated CO2. At the high N supply, a 3C increasein air temperature led to a decline in the below-ground respirationdue to a low soil moisture. The below-ground carbon storagewas increased by 32% and 96% in elevated CO2 at the low andhigh N supplies, respectively, with no significant increasedtemperature effect. The role for the below-ground carbon storageof CO2-induced changes in the root fraction of the grass andof temperature-induced changes in the moisture content of thesoil are discussed. Key words: Climate change, grassland, gas exchange, carbohydrates, carbon cycle  相似文献   

19.
Some single-factor experiments suggest that elevated CO2 concentrations can increase soil carbon, but few experiments have examined the effects of interacting environmental factors on soil carbon dynamics. We undertook studies of soil carbon and nitrogen in a multi-factor (CO2 × temperature × soil moisture) climate change experiment on a constructed old-field ecosystem. After four growing seasons, elevated CO2 had no measurable effect on carbon and nitrogen concentrations in whole soil, particulate organic matter (POM), and mineral-associated organic matter (MOM). Analysis of stable carbon isotopes, under elevated CO2, indicated between 14 and 19% new soil carbon under two different watering treatments with as much as 48% new carbon in POM. Despite significant belowground inputs of new organic matter, soil carbon concentrations and stocks in POM declined over four years under soil moisture conditions that corresponded to prevailing precipitation inputs (1,300 mm yr?1). Changes over time in soil carbon and nitrogen under a drought treatment (approximately 20% lower soil water content) were not statistically significant. Reduced soil moisture lowered soil CO2 efflux and slowed soil carbon cycling in the POM pool. In this experiment, soil moisture (produced by different watering treatments) was more important than elevated CO2 and temperature as a control on soil carbon dynamics.  相似文献   

20.
Biodiversity and Conservation - In arid and semi-arid regions worldwide, grassland plant species richness is highly sensitive to climate change. Studies assessing local grassland richness patterns...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号