首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We analysed 123 white‐tailed sea eagles (Haliaeetus albicilla) from (primarily central) Europe with respect to variability and differentiation based on 499 bp of the mitochondrial control region and genotypes at seven unlinked nuclear microsatellites. Variability was high (overall expected heterozygosity, haplotype and nucleotide diversity being 0.70, 0.764 and 0.00698, respectively) and both marker systems showed a subdivision into two main genetic clusters (microsatellites) or haplogroups (mtDNA). In line with earlier analyses focusing on populations from northern and eastern Europe, as well as from Asia, we found a high level of admixture in Europe and no signs of a bottleneck – despite a severe decline of white‐tailed sea eagle populations during the 20th century. Europe is thus a global stronghold for this species not only with respect to the number of breeding pairs but also regarding the proportion of species‐wide genetic diversity. Our dense sampling revealed a possibly clinal variation within central Europe from north‐west to south‐east that was reflected by the distribution of mtDNA haplotypes as well as the two microsatellite‐based clusters. This population differentiation in central Europe probably originated from a geographically structured postglacial colonization and was later enhanced by recent demographic fluctuations. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 727–737.  相似文献   

2.
A unique community of four syntopic eagle species exists in north‐central Kazakhstan. Questions about behaviour and genetics in these four species would benefit from the development of microsatellite markers. We isolated eight polymorphic microsatellite repeats (AAAG)n from the eastern imperial eagle (Aquila heliaca) genome using a hybridization enrichment technique. These loci revealed moderate diversity in a local population of eastern imperial eagles (observed heterozygosity 0.26–0.78), and were also polymorphic in steppe eagles (A. nipalensis) and white‐tailed sea eagles (Haliaeetus albicilla). These primers may be polymorphic in other species of Aquila and Haliaeetus eagles.  相似文献   

3.
Relationships among multilocus genetic variation, geography, and environment can reveal how evolutionary processes affect genomes. We examined the evolution of an Australian bird, the eastern yellow robin Eopsaltria australis, using mitochondrial (mtDNA) and nuclear (nDNA) genetic markers, and bioclimatic variables. In southeastern Australia, two divergent mtDNA lineages occur east and west of the Great Dividing Range, perpendicular to latitudinal nDNA structure. We evaluated alternative scenarios to explain this striking discordance in landscape genetic patterning. Stochastic mtDNA lineage sorting can be rejected because the mtDNA lineages are essentially distinct geographically for > 1500 km. Vicariance is unlikely: the Great Dividing Range is neither a current barrier nor was it at the Last Glacial Maximum according to species distribution modeling; nuclear gene flow inferred from coalescent analysis affirms this. Female philopatry contradicts known female‐biased dispersal. Contrasting mtDNA and nDNA demographies indicate their evolutionary histories are decoupled. Distance‐based redundancy analysis, in which environmental temperatures explain mtDNA variance above that explained by geographic position and isolation‐by‐distance, favors a nonneutral explanation for mitochondrial phylogeographic patterning. Thus, observed mito‐nuclear discordance accords with environmental selection on a female‐linked trait, such as mtDNA, mtDNA–nDNA interactions or genes on W‐chromosome, driving mitochondrial divergence in the presence of nuclear gene flow.  相似文献   

4.
Aim Late Pleistocene glacial changes had a major impact on many boreal and temperate taxa, and this impact can still be detected in the present‐day phylogeographic structure of these taxa. However, only minor effects are expected in species with generalist habitat requirements and high dispersal capability. One such species is the white‐tailed eagle, Haliaeetus albicilla, and we therefore tested for the expected weak population structure at a continental level in this species. This also allowed us to describe phylogeographic patterns, and to deduce Ice Age refugia and patterns of postglacial recolonization of Eurasia. Location Breeding populations from the easternmost Nearctic (Greenland) and across the Palaearctic (Iceland, continental Europe, central and eastern Asia, and Japan). Methods Sequencing of a 500 base‐pair fragment of the mitochondrial DNA control region in 237 samples from throughout the distribution range. Results Our analysis revealed pronounced phylogeographic structure. Overall, low genetic variability was observed across the entire range. Haplotypes clustered in two distinct haplogroups with a predominantly eastern or western distribution, and extensive overlap in Europe. These two major lineages diverged during the late Pleistocene. The eastern haplogroup showed a pattern of rapid population expansion and colonization of Eurasia around the end of the Pleistocene. The western haplogroup had lower diversity and was absent from the populations in eastern Asia. These results suggest survival during the last glaciation in two refugia, probably located in central and western Eurasia, followed by postglacial population expansion and admixture. Relatively high genetic diversity was observed in northern regions that were ice‐covered during the last glacial maximum. This, and phylogenetic relationships between haplotypes encountered in the north, indicates substantial population expansion at high latitudes. Areas of glacial meltwater runoff and proglacial lakes could have provided suitable habitats for such population growth. Main conclusions This study shows that glacial climate fluctuations had a substantial impact on white‐tailed eagles, both in terms of distribution and demography. These results suggest that even species with large dispersal capabilities and relatively broad habitat requirements were strongly affected by the Pleistocene climatic shifts.  相似文献   

5.
The European sea bass Dicentrarchus labrax represents a historically and commercially valuable species in the north‐east Atlantic, although the demographic history and the patterns of geographical structure of the species in the north‐east Atlantic remain poorly understood. The present study investigates the population genetic structure of sea bass in north‐western European waters, employing different genetic markers [a portion of the mitochondrial (mt)DNA control region and 13 nuclear microsatellites] aiming to unravel demographic history and population connectivity. The results obtained show a previously unrecognized pattern of population divergence at mtDNA, with three strikingly different lineages identified. Extant sea bass populations, including the Mediterranean lineage, derive from an Atlantic ancestor. A much increased number of nuclear microsatellite loci (comparatively to previous studies) still fail to detect biologically meaningful patterns of spatial genetic structuring in the North Atlantic. Past Pleistocene glacial and interglacial events and some degree of female philopatry might be at the basis of the current geographical separation of the Atlantic lineages that has been identified. Signatures of sudden demographic expansions are more evident in the most recent mitochondrial lineages, and their slight, yet significant, geographical segregation leads to the hypothesis that present‐day spawning grounds for European sea bass may still to some extent be linked to their most recent glacial refugia. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 364–377.  相似文献   

6.
The ornate dog tick (Dermacentor reticulatus) shows a recently expanding geographic distribution. Knowledge on its intraspecific variability, population structure, rate of genetic diversity and divergence, including its evolution and geographic distribution, is crucial to understand its dispersal capacity. All such information would help to evaluate the potential risk of future spread of associated pathogens of medical and veterinary concern. A set of 865 D. reticulatus ticks was collected from 65 localities across 21 countries, from Portugal in the west to Kazakhstan and southern Russia in the east. Cluster analyses of 16 microsatellite loci were combined with nuclear (ITS2, 18S) and mitochondrial (12S, 16S, COI) sequence data to uncover the ticks’ population structures and geographical patterns. Approximate Bayesian computation was applied to model evolutionary relationships among the found clusters. Low variability and a weak phylogenetic signal showing an east–west cline were detected both for mitochondrial and nuclear sequence markers. Microsatellite analyses revealed three genetic clusters, where the eastern and western cluster gradient was supplemented by a third, northern cluster. Alternative scenarios could explain such a tripartite population structure by independent formation of clusters in separate refugia, limited gene flow connected with isolation by distance causing a “bipolar pattern”, and the northern cluster deriving from admixture between the eastern and western populations. The best supported demographic scenario of this tick species indicates that the northern cluster derived from admixture between the eastern and western populations 441 (median) to 224 (mode) generations ago, suggesting a possible link with the end of the Little Ice Age in Europe.  相似文献   

7.
The level of genetic differentiation within and between evolutionary lineages of the common vole (Microtus arvalis) in Europe was examined by analyzing mitochondrial sequences from the control region (mtDNA) and 12 nuclear microsatellite loci (nucDNA) for 338 voles from 18 populations. The distribution of evolutionary lineages and the affinity of populations to lineages were determined with additional sequence data from the mitochondrial cytochrome b gene. Our analyses demonstrated very high levels of differentiation between populations (overall FST: mtDNA 70%; nucDNA 17%). The affinity of populations to evolutionary lineages was strongly reflected in mtDNA but not in nucDNA variation. Patterns of genetic structure for both markers visualized in synthetic genetic maps suggest a postglacial range expansion of the species into the Alps, as well as a potentially more ancient colonization from the northeast to the southwest of Europe. This expansion is supported by estimates for the divergence times between evolutionary lineages and within the western European lineage, which predate the last glacial maximum (LGM). Furthermore, all measures of genetic diversity within populations increased significantly with longitude and showed a trend toward increase with latitude. We conclude that the detected patterns are difficult to explain only by range expansions from separate LGM refugia close to the Mediterranean. This suggests that some M. arvalis populations persisted during the LGM in suitable habitat further north and that the gradients in genetic diversity may represent traces of a more ancient colonization of Europe by the species.  相似文献   

8.
ABSTRACT

Powelliphanta is a genus of large carnivorous land snails endemic to New Zealand which display phenotypic variation within comparatively small geographic distances. The diversity within these snails has become a matter of high interest to conservation, as many lineages occupy small (or highly fragmented) ranges that render them vulnerable to ongoing habitat loss and predation by exotic pests. Combining Powelliphanta mitochondrial sequence data and genotypes of microsatellite loci we document the genetic structure within a species complex dubbed ‘Kawatiri’. All populations (with one exception) within the Kawatiri lineage are restricted to subalpine habitat (at elevations over 600?m above sea level). The ranges of some Kawatiri complex populations are adjacent to the congeneric lowland species Powelliphanta lignaria. Improved understanding of the distribution of this complex and the level and structure of genetic diversity provided a picture of a naturally fragmented lineage, restricted to a particular ecological zone. We identified six genetic clusters associated with population connectivity orientated north–south along mountain ranges, with east–west divisions between ranges. Future management should aim to retain the evolutionary potential within this young radiation by actively conserving the variation encompassed by each of the six clusters identified here.  相似文献   

9.
Many studies, using various marker systems, have been conducted on the genetic population structure of marine organisms to reveal connectivity among locations and dispersal capabilities. Although mitochondrial sequence markers are widely used, their accuracy is controversially discussed in the context of small scale population genetic discrimination. In the present study, the genetic population structure of the False Clown Anemonefish (Amphiprion ocellaris) in the Indo-Malay Archipelago was revealed by screening six microsatellite loci. Results were congruent to previous mitochondrial control region results, with three major genetic breaks within the Indo-Malay Archipelago. Similar to the mitochondrial DNA (mtDNA) analysis, microsatellite data showed a correlation of genetic structure to historical ocean basin separation during Pleistocene sea level low stands, geographic distance, and dominant current patterns. However, microsatellite divergences are not as deep as the mtDNA divergence, suggesting either that admixture of mtDNA lineages is slower than that of nuclear microsatellites, providing a rather historic picture of separation, or the stronger differentiation signal is due to lower effective population sizes presented by mtDNA. As well, the microsatellite analysis did not give a better resolution on the small scale as expected. This study showed that depending on the genetic markers used, different stages of population separation might be illuminated.  相似文献   

10.
Aim To analyse patterns of nuclear and mitochondrial genetic variation in the European chub, Squalius cephalus (Linnaeus, 1758), in order to understand the evolutionary history of this species and to test biogeographical hypotheses for the existence of co‐distributed European freshwater fish species. Location Rivers in Europe (Finland, Poland, Czech Republic, France, Bulgaria, Spain, Italy). Methods We genotyped 12 polymorphic microsatellite markers derived from 310 individuals collected from across the distribution of S. cephalus in Europe (including a total of 15 populations) and sequenced mitochondrial DNA (mtDNA) from a subset of 75 individuals. Sequences of mtDNA cytochrome b were analysed using both phylogenetic (median‐joining networks) and population genetic methods (tests for demographic history, mismatch distributions, Bayesian coalescent analysis). Geographical structure in microsatellite loci was examined using a distance method (FST), factorial correspondence analysis (FCA) and a Bayesian clustering method (structure ). Results The mtDNA network showed a clear split into four different haplogroup lineages: Western (separated into Atlantic and Danubian sublineages), Eastern, Aegean (occurring in two distinct sublineages in the Balkans and in Spain) and Adriatic. Our results indicate recent population expansion in the Eastern and Western Atlantic lineages and the admixture of two previously separate sublineages (Atlantic and Danubian) in the Western lineage. Bayesian structure analysis as well as FCA results roughly corresponded to the mtDNA‐based structure, separating the sampled individuals into almost non‐overlapping groups. Main conclusions Our results support hypotheses suggesting origins of extant lineages of freshwater fishes in multiple refugia and the subsequent post‐glacial colonization of Europe via different routes. We confirmed the previously proposed two‐step expansion scenario from the Danube refuge, the existence of a secondary (Atlantic) refuge during the last glaciation (probably in the Rhone River) and population expansion of this lineage. Conspicuous divergences among Mediterranean populations reflect their different origin, as well as their low contribution to the recent genetic pool of chub in central Europe.  相似文献   

11.
Mitochondrial DNA (mtDNA) nucleotide sequences of African origin have been found at low frequency (1%, in average) in different European populations. In the present study, data on mtDNA variability in populations of Eurasia and Africa are analyzed and search of African-specific lineages present in Europeans is conducted. The results of analysis indicate that, despite a high diversity of African mtDNA haplotypes found in Europeans, monophyletic clusters of African mtDNA lineages, arisen in Europe and characterized by long-term diversity, are nearly absent in Europe. Only two respective clusters (belonging to haplogroups L1b and L3b), which evolutionary age does not exceed 6.5 thousands years, were revealed. Comparative analysis of distribution of frequencies of autosomal microsatellite alleles found in Russian individuals, carrying the African-specific mitochondrial haplotypes, in populations of Europe and Africa has indicated that autosomal genotypes of those Russian individuals are characterized by the presence of alleles characteristic mostly for Europeans.  相似文献   

12.
Wu HL  Wan QH  Fang SG 《Biochemical genetics》2007,45(11-12):775-788
The black muntjac (Muntiacus crinifrons) is a rare deer found only in a restricted region in east China. Recent studies of mitochondrial DNA diversity have shown a markedly low level of nucleotide diversity for the species, and the Suichang population was genetically differentiated from the two other populations, in Huangshan and Tianmushan mountains. In this study, we extended the analysis of genetic diversity and population subdivision for the black muntjac using data from 11 highly polymorphic nuclear DNA microsatellite loci. Contrary to the results based on mtDNA data, the microsatellite loci revealed that the black muntjac retained a rather high nuclear genetic diversity (overall average H (E) = 0.78). Nevertheless, both types of markers supported the idea that the extant black muntjac population is genetically disrupted (overall phi (ST) = 0.16 for mtDNA and overall F (ST) = 0.053 for microsatellite, both P < 0.001). The correlation between genetic differentiation and geographic distance was not significant (Mantel test; P > 0.05), implying that the patterns of genetic differentiation observed in this study might result from recent habitat fragmentation or loss. Based on the results from the mtDNA and nuclear DNA data sets, two management units were defined for the species, Huangshan/Tianmushan and Suichang. We also recommend that a new captive population be established with individuals from the Suichang region as a founder source.  相似文献   

13.
Mesic southeastern Australia represents the continent's ancestral biome and is highly biodiverse, yet its phylogeographic history remains poorly understood. Here, we examine mitochondrial DNA (mtDNA) control region and microsatellite diversity in the brush‐tailed rock‐wallaby (Petrogale penicillata;= 279 from 31 sites), to assess historic evolutionary and biogeographic processes in southeastern Australia. Our results (mtDNA, microsatellites) confirmed three geographically discrete and genetically divergent lineages within brush‐tailed rock‐wallabies, whose divergence appears to date to the mid‐Pleistocene. These three lineages had been hypothesized previously but data were limited. While the Northern and Central lineages were separated by a known biogeographic barrier (Hunter Valley), the boundary between the Central and Southern lineages was not. We propose that during particularly cool glacial cycles, the high peaks of the Great Dividing Range and the narrow adjacent coastal plain resulted in a more significant north–south barrier for mesic taxa in southeastern Australia than has been previously appreciated. Similarly, located phylogeographic breaks in codistributed species highlight the importance of these regions in shaping the distribution of biodiversity in southeastern Australia and suggest the existence of three major refuge areas during the Pleistocene. Substructuring within the northern lineage also suggests the occurrence of multiple local refugia during some glacial cycles. Within the three major lineages, most brush‐tailed rock‐wallaby populations were locally highly structured, indicating limited dispersal by both sexes. The three identified lineages represent evolutionarily significant units and should be managed to maximize the retention of genetic diversity within this threatened species.  相似文献   

14.
The past processes that have shaped geographic patterns of genetic diversity may be difficult to infer from current patterns. However, in species with sex differences in dispersal, differing phylogeographic patterns between mitochondrial (mt) and nuclear (nu) DNA may provide contrasting insights into past events. Forest elephants (Loxodonta cyclotis) were impacted by climate and habitat change during the Pleistocene, which likely shaped phylogeographic patterns in mitochondrial (mt) DNA that have persisted due to limited female dispersal. By contrast, the nuclear (nu) DNA phylogeography of forest elephants in Central Africa has not been determined. We therefore examined the population structure of Central African forest elephants by genotyping 94 individuals from six localities at 21 microsatellite loci. Between forest elephants in western and eastern Congolian forests, there was only modest genetic differentiation, a pattern highly discordant with that of mtDNA. Nuclear genetic patterns are consistent with isolation by distance. Alternatively, male‐mediated gene flow may have reduced the previous regional differentiation in Central Africa suggested by mtDNA patterns, which likely reflect forest fragmentation during the Pleistocene. In species like elephants, male‐mediated gene flow erases the nuclear genetic signatures of past climate and habitat changes, but these continue to persist as patterns in mtDNA because females do not disperse. Conservation implications of these results are discussed.  相似文献   

15.
The genetic structure of contemporary populations can be shaped by both their history and current ecological conditions. We assessed the relative importance of postglacial colonization history and habitat type in the patterns and degree of genetic diversity and differentiation in northern European nine‐spined sticklebacks (Pungitius pungitius), using mitochondrial DNA (mtDNA) sequences and 12 nuclear microsatellite and insertion/deletion loci. The mtDNA analyses identified – and microsatellite analyses supported – the existence of two historically distinct lineages (eastern and western). The analyses of nuclear loci among 51 European sites revealed clear historically influenced and to minor degree habitat dependent, patterns of genetic diversity and differentiation. While the effect of habitat type on the levels of genetic variation (coastal > freshwater) and differentiation (freshwater > coastal) was clear, the levels of genetic variability and differentiation in the freshwater sites were independent of habitat type (viz. river, lake and pond). However, levels of genetic variability, together with estimates of historical effective population sizes, decreased dramatically and linearly with increasing latitude. These geographical patterns of genetic variability and differentiation suggest that the contemporary genetic structure of freshwater nine‐spined sticklebacks has been strongly impacted by the founder events associated with postglacial colonization and less by current ecological conditions (cf. habitat type). In general, the results highlight the strong and persistent effects of postglacial colonization history on genetic structuring of northern European fauna and provide an unparalleled example of latitudinal trends in levels of genetic diversity.  相似文献   

16.
An understanding of the genetic structure of populations in the wild is essential for long‐term conservation and stewardship in the face of environmental change. Knowledge of the present‐day distribution of genetic lineages (phylogeography) of a species is especially important for organisms that are exploited or utilize habitats that may be jeopardized by human intervention, including climate change. Here, we describe mitochondrial (mtDNA) and nuclear genetic (microsatellite) diversity among three populations of a migratory bird, the greater white‐fronted goose (Anser albifrons), which breeds discontinuously in western and southwestern Alaska and winters in the Pacific Flyway of North America. Significant genetic structure was evident at both marker types. All three populations were differentiated for mtDNA, whereas microsatellite analysis only differentiated geese from the Cook Inlet Basin. In sexual reproducing species, nonrandom mate selection, when occurring in concert with fine‐scale resource partitioning, can lead to phenotypic and genetic divergence as we observed in our study. If mate selection does not occur at the time of reproduction, which is not uncommon in long‐lived organisms, then mechanisms influencing the true availability of potential mates may be obscured, and the degree of genetic and phenotypic diversity may appear incongruous with presumed patterns of gene flow. Previous investigations revealed population‐specific behavioral, temporal, and spatial mechanisms that likely influence the amount of gene flow measured among greater white‐fronted goose populations. The degree of observed genetic structuring aligns well with our current understanding of population differences pertaining to seasonal movements, social structure, pairing behavior, and resource partitioning.  相似文献   

17.
The grey wolf (Canis lupus) is an iconic large carnivore that has increasingly been recognized as an apex predator with intrinsic value and a keystone species. However, wolves have also long represented a primary source of human–carnivore conflict, which has led to long‐term persecution of wolves, resulting in a significant decrease in their numbers, genetic diversity and gene flow between populations. For more effective protection and management of wolf populations in Europe, robust scientific evidence is crucial. This review serves as an analytical summary of the main findings from wolf population genetic studies in Europe, covering major studies from the ‘pre‐genomic era’ and the first insights of the ‘genomics era’. We analyse, summarize and discuss findings derived from analyses of three compartments of the mammalian genome with different inheritance modes: maternal (mitochondrial DNA), paternal (Y chromosome) and biparental [autosomal microsatellites and single nucleotide polymorphisms (SNPs)]. To describe large‐scale trends and patterns of genetic variation in European wolf populations, we conducted a meta‐analysis based on the results of previous microsatellite studies and also included new data, covering all 19 European countries for which wolf genetic information is available: Norway, Sweden, Finland, Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Germany, Belarus, Russia, Italy, Croatia, Bulgaria, Bosnia and Herzegovina, Greece, Spain and Portugal. We compared different indices of genetic diversity in wolf populations and found a significant spatial trend in heterozygosity across Europe from south‐west (lowest genetic diversity) to north‐east (highest). The range of spatial autocorrelation calculated on the basis of three characteristics of genetic diversity was 650?850 km, suggesting that the genetic diversity of a given wolf population can be influenced by populations up to 850 km away. As an important outcome of this synthesis, we discuss the most pressing issues threatening wolf populations in Europe, highlight important gaps in current knowledge, suggest solutions to overcome these limitations, and provide recommendations for science‐based wolf conservation and management at regional and Europe‐wide scales.  相似文献   

18.
Estimates of genetic diversity and phylogenetic affiliation represent an important resource for biodiversity assessment and a valuable guide to conservation and management. We have found a new population (Jawor—JW) of the common hamster Cricetus cricetus in western Poland that is remote from the nearest populations by 235–300 km. With the objective of genetically characterizing of this population, we compared it with other populations from Poland and Germany by taking into account sequences of four mitochondrial DNA genes and variation at 10 microsatellite loci. The JW population exhibited low levels of genetic diversity and allelic and haplotype richness, which likely reflects its extreme isolation. This factor, coupled with inbreeding and genetic drift, are major threats to JW. A neighbor-joining tree based on mtDNA haplotypes shows that JW clusters among samples representing the Central subgroup that is known from central Germany but that has not yet been identified in Poland. Findings presented here improve our understanding of the spread and diversification of the common hamster. We offer the following hypotheses to explain the observed pattern of mtDNA haplotype distribution: JW could be a byproduct of postglacial migrations or back-migrations from eastern refugia to the western part of Europe, or/and be a result of population and habitat fragmentation. We recommend translocation of individuals as an effective management strategy, both at the level of Central phylogeographic group and at the species level, to overcome the negative consequences of inbreeding and geographical isolation of the JW population.  相似文献   

19.
Gene flow promotes genetic homogeneity of species in time and space. Gene flow can be modulated by sex‐biased dispersal that links population genetics to mating systems. We investigated the phylogeography of the widely distributed Kentish plover Charadrius alexandrinus. This small shorebird has a large breeding range spanning from Western Europe to Japan and exhibits an unusually flexible mating system with high female breeding dispersal. We analysed genetic structure and gene flow using a 427‐bp fragment of the mitochondrial (mtDNA) control region, 21 autosomal microsatellite markers and a Z microsatellite marker in 397 unrelated individuals from 21 locations. We found no structure or isolation‐by‐distance over the continental range. However, island populations had low genetic diversity and were moderately differentiated from mainland locations. Genetic differentiation based on autosomal markers was positively correlated with distance between mainland and each island. Comparisons of uniparentally and biparentally inherited markers were consistent with female‐biased gene flow. Maternally inherited mtDNA was less structured, whereas the Z‐chromosomal marker was more structured than autosomal microsatellites. Adult males were more related than females within genetic clusters. Taken together, our results suggest a prominent role for polyandrous females in maintaining genetic homogeneity across large geographic distances.  相似文献   

20.
Previous studies have reported the occurrence of three differentiated mtDNA lineages within Patella rustica in the Mediterranean Sea. Two hypotheses have been proposed to explain these observations: (1) the maintenance of ancestral polymorphism within a single species; (2) the occurrence of cryptic species not identified previously. To distinguish between these hypotheses, we screened the genetic variability at nine allozyme loci, an intron from the α‐amylase gene and a mitochondrial gene for 187 individuals of P. rustica sampled from seven Mediterranean localities. Eight additional localities were screened for the last two markers to place the differentiated lineages in a clear geographic context. Our results demonstrate that the three mtDNA lineages correspond to three distinct nuclear genotype clusters and provide further details on their distribution: the cluster corresponding to the mtDNA lineage from the Atlantic and western Mediterranean extends as far as the south coast of Italy, whereas the remaining two clusters occur in sympatry in the eastern Mediterranean. One of the eastern Mediterranean clusters is highly differentiated and seems to be reproductively isolated from the codistributed form; we therefore suggest that it corresponds to a new species. The remaining two clusters are less differentiated and form a contact zone across south Italian shores. This three‐way contact zone constitutes an interesting model for the study of speciation in the marine realm. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 154–169.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号