首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In the tropics, some agricultural lands are abandoned for economic or technical reasons, leading to the recovery of woody vegetation. Our research aimed to identify the main drivers of spontaneous recovery of vegetation in a basin located in the Colombian Andes. This was done by combining spatially explicit environmental and socioeconomic variables at landscape (e.g. distances to human settlements, to roads, and to forests and mean annual precipitation) and local scales (e.g. depth of the organic layer, soil bulk density, and canopy openness). These variables were measured in 28 temporal plots of 500 m2 each, established in land cover transitions that showed the recovery of woody vegetation. The recovered woody vegetation between 1986 and 2012 exhibited a gregarious spatial pattern at the landscape scale. Ordination analysis showed distinct floristic composition among transitions and remnant forests, and species associated to each one through an indicator species analysis. Multivariate analyses revealed the relationship between the transitions and variables at both scales. Woody vegetation recovery occurred near remnant forests and far from human settlements at the landscape scale. The soil conditions (content and depth of the organic horizon and bulk density) were the main drivers at the local scale. Our findings also highlight the necessity to define different restoration approaches such as incorporation of sites where socioeconomic and environmental conditions favor the spontaneous recovery of vegetation into the existing network of protected areas in the region, and to implement active restoration projects in perturbed sites to accelerate the recovery process of Andean forests.  相似文献   

2.
Barrier islands provide the first line of defense against storms for millions of people living in coastal areas. Upland vegetation (that is, grassland, shrubland, and maritime forest) has received little attention, even though this land surface is most strongly affected by development pressures. We use remote-sensing analysis to assess state change on seven undeveloped Virginia barrier islands over 27 years (1984–2011) that are free from direct human influence. Our analysis highlights the spatial–temporally dynamic nature of barrier island upland land area and vegetation, with rapidly changing ecosystem states. Over the time period, upland vegetation was dramatically reduced by 29% whereas woody vegetation cover increased 40% across all islands. Although conversions between sand, grassland, and woody vegetation were variable within each island, three major patterns of vegetative land-cover change were apparent: overall loss of vegetative cover, frequent transitions between grass and woody cover, and gain in woody cover. These patterns are valuable for understanding natural evolution of barrier islands in response to sea-level rise. Evaluation of temporal dynamics in barrier upland is needed to characterize underlying processes including island resilience or chronic stress, and is a prerequisite to sustainable coastal management- and resilience-based planning, especially when implementing ecosystem-based solutions.  相似文献   

3.
Forest cover change directly affects biodiversity, the global carbon budget, and ecosystem function. Within Latin American and the Caribbean region (LAC), many studies have documented extensive deforestation, but there are also many local studies reporting forest recovery. These contrasting dynamics have been largely attributed to demographic and socio‐economic change. For example, local population change due to migration can stimulate forest recovery, while the increasing global demand for food can drive agriculture expansion. However, as no analysis has simultaneously evaluated deforestation and reforestation from the municipal to continental scale, we lack a comprehensive assessment of the spatial distribution of these processes. We overcame this limitation by producing wall‐to‐wall, annual maps of change in woody vegetation and other land‐cover classes between 2001 and 2010 for each of the 16,050 municipalities in LAC, and we used nonparametric Random Forest regression analyses to determine which environmental or population variables best explained the variation in woody vegetation change. Woody vegetation change was dominated by deforestation (?541,835 km2), particularly in the moist forest, dry forest, and savannas/shrublands biomes in South America. Extensive areas also recovered woody vegetation (+362,430 km2), particularly in regions too dry or too steep for modern agriculture. Deforestation in moist forests tended to occur in lowland areas with low population density, but woody cover change was not related to municipality‐scale population change. These results emphasize the importance of quantitating deforestation and reforestation at multiple spatial scales and linking these changes with global drivers such as the global demand for food.  相似文献   

4.
Tropical forest restoration is increasingly seen as an activity that may counteract or reduce biodiversity loss. However, few studies monitor fauna or consider measures of functional diversity to assess restoration success. We assessed the effect of a tropical montane forest restoration program on species and functional diversity, using amphibians as the target group. We compared amphibian assemblages in three types of land use: restoration areas, tropical montane cloud forest (TMCF; reference ecosystem) and cattle pastures (degraded ecosystem) in southern Mexico. We also described microclimate, microhabitat heterogeneity, woody vegetation structure and diversity for each type of land use, and their relationship to amphibian species and functional diversity. Compared to TMCF, restoration areas had similar environmental conditions. However, amphibian species richness was similar in the three types of land use and abundance was lower in the restoration areas. In TMCF, the amphibian assemblage was dominated by forest-specialist species, the pastures by generalist species, and the restoration areas by a combination of both species types. Interestingly, functional richness, functional evenness and functional divergence did not vary with land use, though the number of functional groups in restoration areas and TMCF was slightly higher. Overall, the results suggest that after seven years, active restoration provided habitat heterogeneity and recovered woody vegetation capable of maintaining amphibian species and functional groups similar to those inhabiting TMCF. Forest fragments adjacent to restoration areas seem to facilitate fauna recolonization and this emphasizes the importance of the conservation of the reference ecosystems to achieving restoration success.  相似文献   

5.

Background

Monitoring land change at multiple spatial scales is essential for identifying hotspots of change, and for developing and implementing policies for conserving biodiversity and habitats. In the high diversity country of Colombia, these types of analyses are difficult because there is no consistent wall-to-wall, multi-temporal dataset for land-use and land-cover change.

Methodology/Principal Findings

To address this problem, we mapped annual land-use and land-cover from 2001 to 2010 in Colombia using MODIS (250 m) products coupled with reference data from high spatial resolution imagery (QuickBird) in Google Earth. We used QuickBird imagery to visually interpret percent cover of eight land cover classes used for classifier training and accuracy assessment. Based on these maps we evaluated land cover change at four spatial scales country, biome, ecoregion, and municipality. Of the 1,117 municipalities, 820 had a net gain in woody vegetation (28,092 km2) while 264 had a net loss (11,129 km2), which resulted in a net gain of 16,963 km2 in woody vegetation at the national scale. Woody regrowth mainly occurred in areas previously classified as mixed woody/plantation rather than agriculture/herbaceous. The majority of this gain occurred in the Moist Forest biome, within the montane forest ecoregions, while the greatest loss of woody vegetation occurred in the Llanos and Apure-Villavicencio ecoregions.

Conclusions

The unexpected forest recovery trend, particularly in the Andes, provides an opportunity to expand current protected areas and to promote habitat connectivity. Furthermore, ecoregions with intense land conversion (e.g. Northern Andean Páramo) and ecoregions under-represented in the protected area network (e.g. Llanos, Apure-Villavicencio Dry forest, and Magdalena-Urabá Moist forest ecoregions) should be considered for new protected areas.  相似文献   

6.
Basic knowledge of the previous forest types or ecosystem present in an area ought to be an essential part of all landscape restoration. Here, we present a detailed study of forest and land use history over the past 2,000 years, from a large estate in southernmost Sweden, which is currently undergoing a restoration program. In particular, the aim was to identify areas with long continuity of important tree species and open woodland conditions. We employed a multidisciplinary approach using paleoecological analyses (regional and local pollen, plant macrofossil, tree ring) and historical sources (taxation documents, land surveys, forest inventories). The estate has been dominated by temperate broad‐leaved trees over most of the studied period. When a forest type of Tilia, Corylus, and Quercus started to decline circa 1,000 years ago, it was largely replaced by Fagus. Even though extensive planting of Picea started in mid‐nineteenth century, Fagus and Quercus have remained rather common on the estate up to present time. Both species show continuity on different parts of the estate from eighteenth century up to present time, but in some stands, for the entire 2,000 years. Our suggestions for restoration do not aim for previous “natural” conditions but to maintain the spatial vegetational pattern created by the historical land use. This study gives an example of the spatial and temporal variation of the vegetation that has historically occurred within one area and emphasizes that information from one methodological technique provides only limited information about an area’s vegetation history.  相似文献   

7.
退耕还林后陕西省植被覆盖度变化及其对气候的响应   总被引:3,自引:0,他引:3  
1999年起,陕西省实施了大规模的退耕还林、封山禁牧等生态建设和保护工程,使植被覆盖得到迅速恢复和增加。为了进一步跟踪评估植被覆盖变化,为生态建设和规划提供依据,本文基于2000-2017年MOD13Q1数据、气象数据,利用像元二分法估算陕西省18年间的植被覆盖度,通过空间插值方法、空间相关分析、统计学方法分区对其时空变化特征和对气候变化的响应进行了分析。结果表明:2000-2017年陕西省植被覆盖度呈现波动增加趋势,但增速逐年减少,2012年达到最大值后在高位波动;全省植被覆盖度增加区域面积占国土面积的82.4%,降低的区域仅占17.6%;陕北地区植被覆盖度显著增加,部分地区植被覆盖度达到最大值后出现下降趋势;植被覆盖度变异系数大的区域主要分布陕北长城沿线风沙区和丘陵沟壑区以及城市周边;陕西省植被覆盖度与降水量、气温在年尺度上相关系数均呈不显著的正相关;占全省98.4%的区域植覆盖度与降水、气温的复相关空间也未通过0.05显著水平检验;说明退耕还林等生态建设工程的实施,对植被恢复和生长具有重要的促进作用,一定程度上降低了植被生长对气候因子的敏感性;未来陕西省随着退耕还林等生态建设工程的环境资源的限制、土地利用程度的提高和城市用地的扩展,陕西省植被覆盖度将出现下降趋势。如何减缓这种下降趋势,是未来陕西省生态建设和保护的重大问题。  相似文献   

8.
We model future changes in land biogeochemistry and biogeography across East Africa. East Africa is one of few tropical regions where general circulation model (GCM) future climate projections exhibit a robust response of strong future warming and general annual‐mean rainfall increases. Eighteen future climate projections from nine GCMs participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment were used as input to the LPJ dynamic global vegetation model (DGVM), which predicted vegetation patterns and carbon storage in agreement with satellite observations and forest inventory data under the present‐day climate. All simulations showed future increases in tropical woody vegetation over the region at the expense of grasslands. Regional increases in net primary productivity (NPP) (18–36%) and total carbon storage (3–13%) by 2080–2099 compared with the present‐day were common to all simulations. Despite decreases in soil carbon after 2050, seven out of nine simulations continued to show an annual net land carbon sink in the final decades of the 21st century because vegetation biomass continued to increase. The seasonal cycles of rainfall and soil moisture show future increases in wet season rainfall across the GCMs with generally little change in dry season rainfall. Based on the simulated present‐day climate and its future trends, the GCMs can be grouped into four broad categories. Overall, our model results suggest that East Africa, a populous and economically poor region, is likely to experience some ecosystem service benefits through increased precipitation, river runoff and fresh water availability. Resulting enhancements in NPP may lead to improved crop yields in some areas. Our results stand in partial contradiction to other studies that suggest possible negative consequences for agriculture, biodiversity and other ecosystem services caused by temperature increases.  相似文献   

9.
不同植被类型对外界干扰和环境变化的敏感性不同。为厘清中国不同类型植被的动态变化特征及其对外界环境变化的响应,综合利用趋势分析、残差分析和情景模拟方法,在明确2000-2015年间我国不同植被类型归一化植被指数(NDVI)时空变化基础上,对气候变化和人类活动两大驱动要素在不同植被类型NDVI变化中的相对贡献进行了定量评估和归因。研究结果表明:(1)2000-2015年,我国植被NDVI整体呈增加趋势,且其空间占比高达84.1%。其中,森林植被的改善状况最佳,显著增加的面积占到了森林总面积的82.4%;而荒漠植被的改善状况相对较差,仅有22.3%的区域呈显著增加趋势。(2)人类活动在我国植被变化中占主导地位。植被改善区和植被退化区人类活动的相对贡献分别为76.4%和60.0%,且人类活动对植被的影响更多与管理方式而非土地利用类型转变有关。(3)不同类型植被对气候变化和人类活动的响应差异显著。对于植被改善区,除沼泽外,人类活动对各类型植被NDVI变化的贡献率均在70%以上,尤其是对农作物的贡献率最高,达到80.7%;对于植被退化区,人类活动影响较大的植被类型为沼泽和农作物,表明2000-2015年间我国沼泽受到了更强烈人类活动的负面影响。研究有助于增强对不同植被类型对全球变化响应机制的理解,并为促进生态建设和植被恢复工作的有效实施提供科学参考。  相似文献   

10.
A major global effort to enable cost‐effective natural regeneration is needed to achieve ambitious forest and landscape restoration goals. Natural forest regeneration can potentially play a major role in large‐scale landscape restoration in tropical regions. Here, we focus on the conditions that favor natural regeneration within tropical forest landscapes. We illustrate cases where large‐scale natural regeneration followed forest clearing and non‐forest land use, and describe the social and ecological factors that drove these local forest transitions. The self‐organizing processes that create naturally regenerating forests and natural regeneration in planted forests promote local genetic adaptation, foster native species with known traditional uses, create spatial and temporal heterogeneity, and sustain local biodiversity and biotic interactions. These features confer greater ecosystem resilience in the face of future shocks and disturbances. We discuss economic, social, and legal issues that challenge natural regeneration in tropical landscapes. We conclude by suggesting ways to enable natural regeneration to become an effective tool for implementing large‐scale forest and landscape restoration. Major research and policy priorities include: identifying and modeling the ecological and economic conditions where natural regeneration is a viable and favorable land‐use option, developing monitoring protocols for natural regeneration that can be carried out by local communities, and developing enabling incentives, governance structures, and regulatory conditions that promote the stewardship of naturally regenerating forests. Aligning restoration goals and practices with natural regeneration can achieve the best possible outcome for achieving multiple social and environmental benefits at minimal cost.  相似文献   

11.
气候变化和大规模的生态恢复使中国北方旱区植被发生了显著变化,量化气候变化和人类活动对植被动态的相对贡献,对于旱区生态系统管理和应对未来气候变化具有重要意义。目前,中国北方旱区植被变化影响因素的时间动态(2000年大规模生态恢复工程实施前后)和空间异质性(沿干旱梯度)仍需进一步的定量研究。基于多源数据,采用趋势分析、偏相关分析和随机森林模型等方法,分析了1981-2018年中国北方旱区气候和植被的时空变化规律,量化了2000年前后气候变化和人类活动对植被动态的相对贡献并分析其在干旱梯度上的空间差异性。结果表明:(1)1981-2018年期间,中国北方旱区的叶面积指数(LAI)平均增加速率为(0.0037±0.0443) a-1,且增加速率沿干旱梯度增大。2000年前仅10.46%(P<0.05)的地区显著变绿,而2000年后达到36.84%,且植被变绿主要归因于非树木植被。(2)2000年后降水对植被变绿的正效应在不同干旱梯度均增加,而在半干旱区和亚湿润干旱区,温度对植被变绿由正向促进转为负向抑制,而辐射在干旱区由负效应转向正效应。(3)2000年前后,气候变化均主导着植被的动态,贡献率分别为96.07%和73.72%,人类活动的贡献在2000年后进一步增强(从3.93%增加到26.28%),且沿着干旱梯度而增加,其中人类活动对植被变绿的贡献在半干旱地区增加最显著(+0.0289 m2 m-2 a-1,P<0.05)。研究结果可为未来气候变化下中国北方旱区的植被恢复和可持续发展提供科学依据。  相似文献   

12.
Key questions for understanding the resilience and variability of Mexican Neotropical cloud forest assemblages in current and future climate change include: How have human disturbances and climate change affected the dynamics of the cloud forest assemblage? What are the predominant processes responsible for its present day composition and distribution? Are the current conservation strategies for the cloud forest in accordance with preserving its natural variability through time? In this study, the temporal dynamics of the cloud forest in west‐central Mexico over the last ~1300 years were reconstructed using palaeoecological techniques. These included analyses of fossil pollen, microfossil charcoal, and sediment geochemistry. Results indicated that a cloud forest assemblage has been the predominant vegetation type in this region over the last ~1300 years. During this time, however, there have been changes in the vegetation with an apparent expansion of cloud forest from ~832 to 620 cal years bp and a decline from 1200 to 832 cal years bp . Climate change (intervals of aridity) and human disturbances through anthropogenic burning appear to have been the main factors influencing the dynamics of this cloud forest. The spatial heterogeneity reported for high‐altitude forests in this region, in concert with high beta diversity, appears to be a manifestation of the high temporal variability in species composition for these forests. Greater turnover in cloud forest taxa occurred during intervals of increased humidity and is probably representative of a higher temporal competition for resources among the cloud forest taxa. The present results support the current protection scheme for cloud forests in west‐central Mexico where areas are kept in exclusion zones to avoid timber extraction, grazing, and agriculture; this will maintain diversity within these forests, even if there are only a few individuals per species, and enable the forests to retain some resilience to current and future climate change.  相似文献   

13.
Defining the reference system for restoration projects in regions characterized by complex vegetation mosaics is challenging. Here we use the Cerrado region of Brazil as an example of the importance of clearly defining multiple natural and anthropogenically altered states in grassland‐savanna‐forest mosaics. We define three main, natural vegetation types–grassland, savanna, and scleromorphic (cerradão) forest–to (1) distinguish between original and degraded states and (2) set appropriate targets for and guide restoration. We contend that the differences in Cerrado vegetation composition originally were driven by soil conditions and secondarily by fire frequency and precipitation patterns that differ from the core to the edge of the Cerrado region. Grasslands are found on the shallowest, least fertile soils and/or in waterlogged soils; scleromorphic forests are generally located on deeper, more fertile soils; and savannas occupy an intermediate position. In recent decades, this biophysical template has been overlain by a range of human land‐use intensities that strongly affect resilience, resulting in alternative anthropogenic states. For example, areas that were originally scleromorphic forest are likely to regenerate naturally following low‐ or medium‐intensity land use due to extensive resprouting of woody plants, whereas grassland restoration requires reintroduction of grass and forb species that do not tolerate soil disturbance and exotic grass competition. Planting trees into historic grasslands results in inappropriate restoration targets and often restoration failure. Correctly identifying original vegetation types is critical to most effectively allocate scarce restoration funding.  相似文献   

14.
Climatic change may alter vegetation composition and structure, but the response to climatic change can be expected to be spatially heterogeneous. Tree populations in the alpine forest–tundra ecotone, for example, may find only certain locations to be favourable for regeneration and growth. If monitoring and detection of vegetation responses to climatic change is to be most successful, the monitoring system must be tuned to the locations where a response is most likely. We used the grass geographical information system ( gis ) to map population parameters indicating potential change throughout the forest–tundra ecotone (FTE) of Rocky Mountain National Park (RMNP). Seedling density in patch forest and krummholz openings, as well as annual krummholz height growth, were measured in the field. These parameters were then modelled over the heterogeneity of the FTE environment, using principle components regression analysis. The grass gis was used to extrapolate the resulting predictive equations to the entire RMNP FTE. Potential FTE responses to climate change were evaluated in the context of species-specific differences in how tree seedling density and krummholz height growth are associated with the present environment. For example, climate change leading towards moister conditions, causing currently xeric environments to become more mesic, might increase the spatial extent of existing tree invasion into patch forest openings. This would increase the potential for widespread conversion of patch forest to closed forest. Present population parameters extrapolated spatially may provide a useful guide to where future change is likely.  相似文献   

15.
陕西省生态恢复综合效益评估   总被引:1,自引:0,他引:1  
开展区域内生态恢复综合效益评估工作,将为地区生态恢复成果梳理及生态系统管理提供决策支持,为未来生态恢复工作的开展提供理论依据。以陕西省为研究区,基于空间遥感数据和生态模型模拟,从生态系统结构、质量和服务3个方面综合评估区域内2000-2015年生态恢复效益。研究结果表明:1)近16年间陕西省土地利用类型呈现林地增加,耕地减少的态势,同时关中地区建设用地大量增加。陕西省87.95%和72.72%的区域分别呈现植被覆盖和生态系统服务总值增加的趋势,尽管区域内人类活动占地增加,但整体生态恢复效果明显。2)陕南地区植被覆盖及生态系统服务总值相对较高,特别是秦岭地区,生态环境较为优越。陕北地区植被覆盖及生态系统服务均值虽相对较低,但均呈现显著增加趋势,未来区域范围内生态环境有着较大的发展潜力。3)尽管不同生态工程基本覆盖了陕西省全境,但受气象因素影响,生态系统服务总值在关中及陕南地区仍呈现出了一定的下降趋势。在未来相关区域的生态恢复资源投入中,应注意干旱环境对生态恢复效果的影响,因地制宜地选取适宜生态工程措施,以保证生态恢复的有效性和持续性,将生态恢复资源的成效最大化。  相似文献   

16.
向珈瑶  彭文甫  陶帅  银盈  刘华山 《生态学报》2023,43(4):1596-1609
国家实施天然林资源保护工程与退耕还林等生态建设工程,为构筑长江上游生态屏障、促进长江流域经济可持续发展做出了突出贡献;评估退耕还林等生态工程实施后植被恢复成效及影响因素是促进区域植被恢复优化与生态环境改善的关键一步。基于MODIS MOD13Q1数据,应用Theil Sen斜率与Mann-Kendall趋势检验、“基线”评价方法、时空地理加权回归模型等量化不同时间尺度的植被时空变化、恢复成效和恢复机制。结果表明(1)植被覆盖状况良好,截止2019年底,四川省91%的区域植被出现增长,四川盆地东北部、四川省南部地区以及东南部乌蒙山、川西北高原地区植被覆盖较高;成都市内以及周围市区植被覆盖率较低。(2)植被恢复成效时空差异显著,占全省面积98.68%的区域植被恢复成效明显,高值区面积占比71.47%,集中于除成都平原外的四川省绝大部分区域。(3)气候变化对植被变化的影响以不显著为主,气温、降水对四川省植被恢复影响微弱,海拔和>35°坡度面积比等地理环境因子则以弱抑制作用为主。(4)在相对平稳的气候背景下,人均财政支出、耕地面积与人均GDP所代表的社会经济因素是植被恢复成效改善的重要影...  相似文献   

17.
Tropical ecosystems are under increasing pressure from land‐use change and deforestation. Changes in tropical forest cover are expected to affect carbon and water cycling with important implications for climatic stability at global scales. A major roadblock for predicting how tropical deforestation affects climate is the lack of baseline conditions (i.e., prior to human disturbance) of forest–savanna dynamics. To address this limitation, we developed a long‐term analysis of forest and savanna distribution across the Amazon–Cerrado transition of central Brazil. We used soil organic carbon isotope ratios as a proxy for changes in woody vegetation cover over time in response to fluctuations in precipitation inferred from speleothem oxygen and strontium stable isotope records. Based on stable isotope signatures and radiocarbon activity of organic matter in soil profiles, we quantified the magnitude and direction of changes in forest and savanna ecosystem cover. Using changes in tree cover measured in 83 different locations for forests and savannas, we developed interpolation maps to assess the coherence of regional changes in vegetation. Our analysis reveals a broad pattern of woody vegetation expansion into savannas and densification within forests and savannas for at least the past ~1,600 years. The rates of vegetation change varied significantly among sampling locations possibly due to variation in local environmental factors that constrain primary productivity. The few instances in which tree cover declined (7.7% of all sampled profiles) were associated with savannas under dry conditions. Our results suggest a regional increase in moisture and expansion of woody vegetation prior to modern deforestation, which could help inform conservation and management efforts for climate change mitigation. We discuss the possible mechanisms driving forest expansion and densification of savannas directly (i.e., increasing precipitation) and indirectly (e.g., decreasing disturbance) and suggest future research directions that have the potential to improve climate and ecosystem models.  相似文献   

18.
Vertebrate fauna was studied over 10 years following revegetation of a Eucalyptus tereticornis ecosystem on former agricultural land. We compared four vegetation types: remnant forest, plantings of a mix of native tree species on cleared land, natural regeneration of partially cleared land after livestock removal, and cleared pasture land with scattered paddock trees managed for livestock production. Pasture differed significantly from remnant in both bird and nonbird fauna. Although 10 years of ecosystem restoration is relatively short term in the restoration process, in this time bird assemblages in plantings and natural regeneration had diverged significantly from pasture, but still differed significantly from remnant. After 10 years, 70 and 66% of the total vertebrate species found in remnant had been recorded in plantings and natural regeneration, respectively. Although the fauna assemblages within plantings and natural regeneration were tracking toward those of remnant, significant differences in fauna between plantings and natural regeneration indicated community development along different restoration pathways. Because natural regeneration contained more mature trees (dbh > 30 cm), native shrub species, and coarse woody debris than plantings from the beginning of the study, these features possibly encouraged different fauna to the revegetation areas from the outset. The ability of plantings and natural regeneration to transition to the remnant state will be governed by a number of factors that were significant in the analyses, including shrub cover, herbaceous biomass, tree hollows, time since fire, and landscape condition. Both active and passive restoration produced significant change from the cleared state in the short term.  相似文献   

19.
Aims Fujian Province has been one of the most severe soil erosion regions since Ming and Qing Dynasty in China. Recently, several ecological restoration projects have been implemented and they have significantly changed vegetation cover in this region. Methods We analyzed the four-decade vegetation cover change in Fujian Province using seven time-series data of Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), and Operational Land Imager (OLI) between 1975 and 2014. We further explored the possible drivers on vegetation cover change by incorporating statistical data of plantation, cropland and urbanized area. Important findings Vegetation coverage in Fujian Province has increased from 69.0% to 77.8% between 1975 and 2014. However, a slight decrease was observed between 1995 and 2005. Spatially, forest was the primary vegetation type in the northwest, where croplands and human settlements were scattered along rivers or oceans. Shrubs and bare lands were also scattered across the northwest. In southwest, the areas of bare land, shrub land and cropland decreased, while areas of forest and human settlements expanded. The vegetation coverage and urbanized area increased at the cost of cropland and bare land.  相似文献   

20.
To rehabilitate degraded forestlands and conserve the remaining forests in Kalimantan, effective measures are needed that accommodate various land uses in the landscape. We present a pragmatic model for prioritizing target areas for rehabilitation and discuss a potential approach, combining traditional reforestation and the forest management methods of local Dayak tribes with the operations of a commercial tree plantation venture, to promote the rehabilitation of elements of the tropical lowland rainforest. We characterized the vegetation and land use in the study area and assume that rehabilitation and conservation value will be maximized by concentrating rehabilitation efforts around forest patches with high cultural and economic value to the local Dayaks. We simulated potential enlargement of these culturally important forests and built a model to calculate a rehabilitation value for each forest fragment and fragment group with easily measurable criteria of vegetation and area. The model gives priority to areas where large continuous areas of culturally important forests already exist and/or will be created. The individual culturally important forest patches and their total area in the landscape are small, but even a small potential enlargement may be enough to establish relatively large concentrations. The potential matrix area for rehabilitation is dominated by young successional woody vegetation. Forested areas, although heavily degraded, connect several culturally important forest concentrations and are the most desirable target for rehabilitation. A well‐managed commercial tree plantation can enhance conditions for the protection and rehabilitation of degraded forestlands through traditional reforestation and forest management methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号