首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Few studies have determined whether formal estimates of selection explain patterns of trait divergence among populations, yet this is one approach for evaluating whether the populations are in equilibria. If adaptive divergence is complete, directional selection should be absent and stabilizing selection should prevail. We estimated natural selection, due to bear predation, acting on the body size and shape of male salmon in three breeding populations that experience differing predation regimes. Our approach was to (1) estimate selection acting within each population on each trait based on an empirical estimate of reproductive activity, (2) test for trait divergence among populations, and (3) test whether selection coefficients were correlated with trait divergence among populations. Stabilizing selection was never significant, indicating that these populations have yet to attain equilibria. Directional selection varied among populations in a manner consistent with trait divergence, indicating ongoing population differentiation. Specifically, the rank order of the creeks in terms of patterns of selection paralleled the rank order in terms of size and shape. The shortest and least deep-bodied males had the highest reproductive activity in the creek with the most intense predation and longer and deeper-bodied males were favored in the creeks with lower predation risk.  相似文献   

2.
The desaturase-2 (desat2) locus of Drosophila melanogaster has two alleles whose frequencies vary geographically: one (the "Z" allele) is found primarily in east Africa and the Caribbean, and the other (the "M" allele) occurs in other parts of the world. It has been suggested that these alleles not only cause sexual isolation between races, but that their distribution reflects differential adaptation to climate: Z alleles are supposedly adapted to tropical conditions and M alleles to temperate ones. This has thus been viewed as a case of reproductive isolation evolving as a pleiotropic byproduct of adaptation. Here we reinvestigate this presumed climatic adaptation, using transgenic lines differing in the nature of their desat2 alleles. We were unable to replicate earlier results showing that carriers of M alleles are uniformly more cold resistant and less starvation resistant than carriers of Z alleles. It is thus doubtful whether the distribution of these alleles reflects natural selection involving climate. Mating studies of transgenic lines show some evidence for sexual isolation due to desat2. However, work on other, wild-type lines, as well as observations on the nature of sexual isolation, suggest that this conclusion--and thus the relationship between this locus and mating discrimination between races of D. melanogaster--may also be doubtful.  相似文献   

3.
Recent studies with Drosophila have suggested that there is extensive genetic variability for phenotypic plasticity of body size versus food level. If true, we expect that the outcome of evolution at very different food levels should yield genotypes whose adult size show different patterns of phenotypic plasticity. We have tested this prediction with six independent populations of Drosophila melanogaster kept at extreme densities for 125 generations. We found that the phenotypic plasticity of body size versus food level is not affected by selection or the presence of competitors of a different genotype. However, we document increasing among population variation in phenotypic plasticity due to random genetic drift. Several reasons are explored to explain these results including the possibility that the use of highly inbred lines to make inferences about the evolution of genetically variable populations may be misleading.  相似文献   

4.
Highland populations of several Drosophila species in Argentina were active early in the afternoon in the field as opposed to populations from a much warmer lowland site, where flies were mainly active in the early evening prior to sunset. For one of these species, Drosophila buzzatii, we tested for a genetic component of activity differences by carrying out crosses within and between populations and measuring oviposition activity of the progeny in the laboratory. We found that activity in the highland population exceeded that in the lowland one during the midafternoon, whereas activity in the lowland population exceeded that in the highland one prior to the beginning of the dark period. Oviposition activity for the period corresponding to the field observations was regressed on the proportion of the genome derived from the highland population. This variable significantly predicted oviposition activity between 1400 and 1600 and between 2000 and 2200 h. Activity of both reciprocal crosses was intermediate and not significantly different from each other, suggesting that nuclear genetic, rather than cytoplasmic factors contribute to differences in oviposition activity between the populations. Two morphological, one genetic, and one stress resistance trait were also scored to examine whether temperature differences between environments were associated with other differences between populations. Wing length of wild-caught and laboratory-reared flies from the highland population significantly exceeded that in the lowland. Thorax length of laboratory-reared flies from the highland population also significantly exceeded that from the lowland. Chromosomal inversion frequencies differed significantly between the two populations with a fivefold reduction in the frequency of arrangement 2st in the highland as compared to the lowland population. This arrangement is known for its negative dose effect on size, and thus, the highland population has experienced a genetic change, perhaps as a result of adaptation to the colder environment, where body size and the frequency of arrangement 2st have changed in concert. Finally, a heat knockdown test revealed that the lowland population was significantly more resistant to high temperature than the highland one. In conclusion, we suggest that temperature has been an important selective agent causing adaptive differentiation between these two populations. We also suggest that the activity rhythms of the two populations have diverged as a consequence of behavioral evolution, that is, through avoidance of stressful temperatures as a mean of thermal adaptation.  相似文献   

5.
Reaction norms of wing length, thorax length, and ovariole number were studied according to growth temperature in the circumtropical Drosophila ananassae, and compared to similar data from the cosmopolitan D. melanogaster. In the two species convex reaction norms were observed, but they were not parallel and sometimes exhibited intersections either at high (wing) or at low (thorax) temperature. On average, D. ananassae may be considered as a species with a bigger thorax but shorter wings than D. melanogaster. The shapes of reaction norms were analyzed and compared after quadratic polynomial adjustments. Significant differences were observed, in several cases between polynomial parameters, and in all cases between characteristic points that is, Maximum Value (MV) and Temperature of Maximum Value (TMV). The wing/thorax ratio may also be considered as a specific trait related to wing loading. Major differences were observed between the two species for the mean value and the shape of the response curves of this trait. The main observation of this work was however a shift of TMVs for wing and thorax length and ovariole number in D. ananassae toward higher temperatures. These variations in the reaction norms corresponded to a shift in the species thermal range, suggesting that temperature adaptation was accompanied by a modification of the shape of the response curves.  相似文献   

6.
Asymmetric sibling competition arises when siblings with different competitive abilities share a limited resource. Such competition occurs in species with postnatal parental care and may also occur when mothers provision embryos between fertilization and birth (matrotrophy). We hypothesized that the combination of matrotrophy and the simultaneous provisioning of embryos in different stages of development (superfetation) leads to asymmetric competition between sibling embryos. Moreover, we expect the intensity of this competition to increase with the level of superfetation as high levels of superfetation result in greater temporal overlap between broods. This hypothesis predicts that offspring from early broods, which predominantly compete with less‐developed siblings, will be larger at birth than offspring from later broods, which experience competition from more and less‐developed siblings. Data on offspring size at birth from two populations of the highly matrotrophic fish, Heterandria formosa, and similar studies of poeciliid fish spanning a range of life histories are consistent with our hypothesis. Together these results suggest that sibling competition is a direct consequence of the evolution of matrotrophy and superfetation in poeciliid fish.  相似文献   

7.
In a recent paper, Wright et al. (2003) argue for the hypothesis that greater biologically available energy elevates the rate of molecular evolution. However, their results are also consistent with alternative hypotheses that invoke either environmentally driven variation in effective population sizes, or natural selection, or both. The available energy gradient cited by Wright et al. is linearly correlated with temperature fluctuations, and the observed rate heterogeneity could be a consequence of this environmental variability. The distribution of phylogenetic branch lengths alone is insufficient to distinguish between the hypotheses, and complementary approaches are suggested.  相似文献   

8.
A study was conducted using small effective population size as an experimental design to test selective neutrality of seven isozyme polymorphisms. Loci varied as to the degree to which the decay of heterozygosity over 21 generations was retarded. Selection for heterozygotes, overdominance, is implicated for at least four of seven loci. Of these ADH gave the largest heterozygote excess in the presence of inbreeding. An interaction between the small population size treatment and excess heterozygosity suggests that (1) the loci studied may be selectively neutral and linked to other loci which are under the influence of selection or (2) the selection coefficients for the loci studied are not independent of the background genotype. In either case four of the seven enzymes studied are signaling the operation of selection. The problem of distinguishing the effect of a single marker from that of a chromosome segment is emphasized. The identification of the genetic unit of selection is crucial to any interpretation of the meaning of enzyme polymorphisms.  相似文献   

9.
Wolbachia popcorn ( w MelPop), a life-shortening strain of Wolbachia, has been proposed as an agent for suppressing transmission of dengue fever following infection of the vectoring mosquito Aedes aegypti . However, evolutionary changes in the host and Wolbachia genomes might attenuate any life span effects mediated by w MelPop. Here we test for attenuation by selecting strains of Drosophila melanogaster infected with w MelPop for early and late reproduction in three independent outcrossed populations. Selection caused divergence among the lines in longevity. This divergence was mostly associated with the host genetic background rather than the Wolbachia infection, although there were also interactions between the host and Wolbachia genomes. Development time, viability, and productivity were not altered by selection. The implications of these results are discussed in light of the intended use of w MelPop for suppressing disease transmission.  相似文献   

10.
The frequency of colony formation in monolayers of cultured frog cell lines treated with puromycin was compared in (a) haploid and heteroploid lines and (b) mutagen-treated and nontreated haploid lines. Evidence that resistant colonies result from gene mutation was negative, since the colony frequency is independent of both ploidy and mutagen treatment. A study of five frog cell lines showed that colony formation in puromycin depends on (a) the concentration of puromycin, (b) preselection of the population with puromycin, and, particularly, (c) the capacity of the treated population to survive some exposure to puromycin. One haploid and one heteroploid strain showing stable resistance to puromycin have been isolated; comparison of those variants with sensitive populations has shown that resistance to puromycin is correlated with the cells' capacity to exclude the drug. The evidence for different levels of membrane permeability, combined with evidence for many degrees of resistance among and within cell populations, suggests a model of self-determining membrane units. The evolution of a resistant phenotype may result from changes in the proportion of specific units in the membrane population.  相似文献   

11.
SUMMARY

It is nearly sixty years since the first studies were undertaken on the nutrient chemistry of African lakes. There have been numerous studies on the chemical composition of African waters in the intervening years. Yet as recently as five years ago it was stated that little was known about nutrient cycling in lakes. Nutrient ‘species’ simply formed an additional list compiled along with lists of species of algae, zooplankton, aquatic plants and fish. A spate of monographs, papers and reports in recent years, however, has begun to fill some of the gaps in our knowledge of nutrient cycling in African lake ecosystems. This paper reviews the recent literature of nutrients in African lakes from the point of view of nutrient sources, in-lake nutrient kinetics and nutrient sinks, with particular reference to nitrogen and phosphorus, and their cycling rates into and out of various biotic and abiotic compartments. The principle conclusions that can be drawn from the review are as follows:

  1. Allochthonous inputs, particularly in terms of external nutrient loading, have been relatively well-studied in recent years, but little is known of autochthonous nutrient inputs, despite numerous observations that nutrient regeneration is likely to be substantial in African lakes.

  2. The rôle of microbial processes in nutrient cycling in African lakes is almost totally unknown, except in relation to nitrification and denitrification.

  3. Recent studies have begun to examine the kinetics of the uptake of phosphorus by algae in African lakes; nitrogen uptake, other than nitrification, and nutrient release have only rarely been examined.

  4. Nutrient uptake and release by aquatic macrophytes is reasonably well known, especially in the ‘nuisance’ weed species.

  5. The role of zooplankton, zoobenthos and fish in nutrient cycling in African lakes has largely been ignored.

  6. A great deal of study has been devoted to the rôle of abiotic process, particularly at the sediment-water interface, in the nutrient dynamics of African lakes.

As yet, little emphasis has been placed on inter-compartmental exchanges in studies on nutrient cycles but it would appear that these processes are now beginning to receive attention and, as nutrient cycling in African lake ecosystems becomes better known, research will tend toward a more numerical approach.  相似文献   

12.
Phenotypic plasticity of abdomen pigmentation was investigated in populations of the sibling species Drosophila melanogaster and D. simulans, living in sympatry in two French localities. Ten isofemale lines of each population and species were grown at different constant temperatures spanning their complete thermal range from 12 to 31°C. Genetic variability between isofemale lines was not affected by growth temperature, but was consistently less in D. simulans. For all traits, the dark pigmentation of the abdominal segments decreased according to growth temperature, in agreement with the thermal budget adaptive hypothesis. The shapes of the response curves were different between the abdominal segments, but for a given segment, quite similar in the two species. On average D. simulans was lighter than D. melanogaster, but the difference was mainly expressed at higher temperatures. An interesting result was the difference observed between the two localities: flies from the colder locality (Villeurbanne) were found to be darker than flies from the warmer locality (Bordeaux). Interestingly, this difference was expressed only at low temperatures, 21°C and below, that is, at temperatures encountered in natural conditions. This suggests an adaptive response resulting in a change of the shape of reaction norm and involving genotype-environment interactions. When comparing the genetic structure of geographic populations for quantitative traits, several laboratory environments should be preferred to a single one.  相似文献   

13.
Mutation rates vary significantly within the genome and across species. Recent studies revealed a long suspected replication-timing effect on mutation rate, but the mechanisms that regulate the increase in mutation rate as the genome is replicated remain unclear. Evidence is emerging, however, that DNA repair systems, in general, are less efficient in late replicating heterochromatic regions compared to early replicating euchromatic regions of the genome. At the same time, mutation rates in both vertebrates and invertebrates have been shown to vary with generation time (GT). GT is correlated with genome size, which suggests a possible nucleotypic effect on species-specific mutation rates. These and other observations all converge on a role for DNA replication checkpoints in modulating generation times and mutation rates during the DNA synthetic phase (S phase) of the cell cycle. The following will examine the potential role of the intra-S checkpoint in regulating cell cycle times (GT) and mutation rates in eukaryotes. This article was published online on August 5, 2011. An error was subsequently identified. This notice is included in the online and print versions to indicate that both have been corrected October 4, 2011.  相似文献   

14.
Length and position of breakpoints are characteristics of inversions that can be precisely determined on the polytene chromosomes of Drosophila species, and they provide crucial information about the processes that govern the origin and evolution of inversions. Eighty-six paracentric inversions described in the Drosophila buzzatii species complex and 18 inversions induced by introgressive hybridization in D. buzzatii were analyzed. In contrast to previous studies, inversion length and breakpoint distribution have been considered simultaneously. We conclude that: (1) inversion length is a selected trait; rare inversions are predominantly small while evolutionarily successful inversions, polymorphic and fixed, are predominantly intermediate in length; a nearly continuous variation in length, from small to medium sized, is found between less and more successful inversions; (2) there exists a significant negative correlation between length and number of polymorphic inversions per species which explains 39% of the inversion length variance; (3) natural selection on inversion length seems the main factor determining the relative position of breakpoints along the chromosomes; (4) the distribution of breakpoints according to their band location is non-random, with chromosomal segments that accumulate up to eight breakpoints.  相似文献   

15.
Evolutionary change in New World Monkey (NWM) skulls occurred primarily along the line of least resistance defined by size (including allometric) variation ( gmax ). Although the direction of evolution was aligned with this axis, it was not clear whether this macroevolutionary pattern results from the conservation of within population genetic covariance patterns (long‐term constraint) or long‐term selection along a size dimension, or whether both, constraints and selection, were inextricably involved. Furthermore, G ‐matrix stability can also be a consequence of selection, which implies that both, constraints embodied in gmax and evolutionary changes observed on the trait averages, would be influenced by selection. Here, we describe a combination of approaches that allows one to test whether any particular instance of size evolution is a correlated by‐product due to constraints ( gmax ) or is due to direct selection on size and apply it to NWM lineages as a case study. The approach is based on comparing the direction and amount of evolutionary change produced by two different simulated sets of net‐selection gradients ( β ), a size (isometric and allometric size) and a nonsize set. Using this approach it is possible to distinguish between the two hypotheses (indirect size evolution due to constraints or direct selection on size), because although both may produce an evolutionary response aligned with gmax , the amount of change produced by random selection operating through the variance/covariance patterns (constraints hypothesis) will be much smaller than that produced by selection on size (selection hypothesis). Furthermore, the alignment of simulated evolutionary changes with gmax when selection is not on size is not as tight as when selection is actually on size, allowing a statistical test of whether a particular observed case of evolution along the line of least resistance is the result of selection along it or not. Also, with matrix diagonalization (principal components [PC]) it is possible to calculate directly the net‐selection gradient on size alone (first PC [PC1]) by dividing the amount of phenotypic difference between any two populations by the amount of variation in PC1, which allows one to benchmark whether selection was on size or not.  相似文献   

16.
The Bateman principle, which holds that oocytes are the limiting gamete in reproduction, is violated in a variety of species. Self-fertilizing hermaphrodites of the nematode Caenorhabditis elegans provide an example of a system in which sperm number limits lifetime reproductive output, in this species due to the protandrous nature of sperm production that in turn delays the onset of fertilization. This reproductive delay forms the basis of a trade-off between generation time and total fecundity, in which sperm number plays a pivotal role. I use an age-structured population model to describe the number of sperm that maximize fitness, given larval development time and rates of gamete production. The model predicts the evolution of sperm numbers that are consistent with empirical data for C. elegans provided that precocious larval sperm production is taken into account. Several testable hypotheses follow from the model regarding how natural selection and environmental variation may influence patterns of sperm production among populations or species with a similar mode of reproduction.  相似文献   

17.
Reproductive isolation increases with genetic distance between species. Although sexual selection may drive divergence of sexual signals and traits, causing rapid evolution of sexual isolation, quantitative data supporting this idea are rare. We examine the rates of divergence of a species-specific courtship signal, sexual isolation, and postmating isolation in the Drosophila willistoni group. Both types of isolation increase with genetic distance and postmating isolation is the most strongly correlated with genetic divergence, suggesting this has the least variable divergence rate. Song divergence is not correlated with genetic divergence. Homoplasy in song pattern results in poorly resolved phylogenies that are different from molecular phylogenies. Song evolves more quickly than sexual isolation, which evolves more quickly than postmating isolation.  相似文献   

18.
Coevolution is thought to be a major factor in shaping plant-pollinator interactions. Alternatively, plants may have evolved traits that fitted pre-existing preferences or morphologies in the pollinators. Here, we test these two scenarios in the plant family of Araceae and scarab beetles (Coleoptera, Scarabaeidae) as pollinators. We focused on floral volatile organic compounds (VOCs) and production/detection of VOCs by scarab beetles. We found phylogenetic structure in the production/detection of methoxylated aromatics in scarabs, but not plants. Within the plants, most of the compounds showed a well-supported pattern of correlated evolution with scarab-beetle pollination. In contrast, the scarabs showed no correlation between VOC production/detection and visitation to Araceae flowers, with the exception of the VOC skatole. Moreover, many VOCs were found in nonpollinating beetle groups (e.g., Melolonthinae) that are ancestors of pollinating scarabs. Importantly, none of the tested VOCs were found to have originated in pollinating taxa. Our analysis indicates a Jurassic origin of VOC production/detection in scarabs, but a Cretaceous/Paleocene origin of floral VOCs in plants. Therefore, we argue against coevolution, instead supporting the scenario of sequential evolution of floral VOCs in Araceae driven by pre-existing bias of pollinators.  相似文献   

19.
Introgression from a resident species into an invading one is predicted to occur through the demographic process of "allele surfing," and to particularly affect genomic regions transmitted by the lower migrating sex, such as mtDNA. This could explain that northern Iberian populations of Lepus granatensis harbor high frequencies of mtDNA from L. timidus, an arctic hare it replaced there after deglaciation. We report that variation of introgressed timidus-like mtDNA reflects several predicted effects of this process: increasing frequency and diversity in the direction of expansion, strong perpendicular phylogeographic structure and signs of postglacial demographic growth. However, demographic inferences for the granatensis and timidus-like mtDNA lineages suggest the latter may have outcompeted the former in northern Iberia. Autosomal introgression occurs at low frequencies and species-wide rather than only in the north. If this difference with mtDNA resulted from sex-biased migration, an intermediate pattern should prevail for the X-chromosome, but we report species-wide and high-frequency introgression of an X-fragment. Either selection favored this ubiquitous X-introgression, or more complex postglacial expansion patterns prevailed, with different consequences depending on the genomic and geographic region. This illustrates the difficulty of distinguishing demographic and selective effects and the need for genome and species-wide based demographic models.  相似文献   

20.
Body size and shape are primary determinants of reproductive output in a variety of taxa, so selection favoring specific body sizes and shapes may, in turn, have a direct affect on reproductive output, and ultimately fitness. In reptiles, species that occupy rocky habitats are often flattened, a morphological character that aids locomotion and life on rocks, but which may constrain reproductive output by reducing the amount of abdominal space available to fill with eggs or offspring. Using 20 species of tropical skink from a wide range of habitats, we quantified habitat use, body height, body volume, and reproductive output, to determine whether the evolution of a flattened body was correlated with a reduction in abdominal volume, and, in turn, with reduced reproductive output. In this group of lizards, the occupation of rocky habitats has led (1) to the evolution of a flattened body, and this shift in body shape has (2) caused a reduction in abdominal volume. Despite this reduction in abdominal volume reproductive output was unaffected, as flatter species compensate by being more "full" of eggs. Thus, we demonstrate that morphological adaptation for enhanced performance in specific habitats did not cause a reduction in instantaneous reproductive output.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号