首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tropospheric ozone is considered the most detrimental air pollutant for vegetation at the global scale, with negative consequences for both provisioning and climate regulating ecosystem services. In spite of recent developments in ozone exposure metrics, from a concentration‐based to a more physiologically relevant stomatal flux‐based index, large‐scale ozone risk assessment is still complicated by a large and unexplained variation in ozone sensitivity among tree species. Here, we explored whether the variation in ozone sensitivity among woody species can be linked to interspecific variation in leaf morphology. We found that ozone tolerance at the leaf level was closely linked to leaf dry mass per unit leaf area (LMA) and that whole‐tree biomass reductions were more strongly related to stomatal flux per unit leaf mass (r2 = 0.56) than to stomatal flux per unit leaf area (r2 = 0.42). Furthermore, the interspecific variation in slopes of ozone flux–response relationships was considerably lower when expressed on a leaf mass basis (coefficient of variation, CV = 36%) than when expressed on a leaf area basis (CV = 66%), and relationships for broadleaf and needle‐leaf species converged when using the mass‐based index. These results show that much of the variation in ozone sensitivity among woody plants can be explained by interspecific variation in LMA and that large‐scale ozone impact assessment could be greatly improved by considering this well‐known and easily measured leaf trait.  相似文献   

2.
Species extinctions and declines are occurring globally and commonly have cascading effects on ecosystems. In Australia, mammal extinctions have been extensive, particularly in arid areas, where precipitation drives ecosystems. Many ecologically extinct mammals feed on soil‐dwelling insects. However, how this top‐down pressure affected their prey and how this contrasts with the bottom‐up impacts of fluctuating precipitation remains unclear. We constructed a long‐term exclusion experiment in a multi‐species mammal reintroduction zone in semi‐arid Australia to test how top‐down (reintroduced mammals) and bottom‐up (precipitation) factors affect root‐feeding chafer beetles (Coleoptera: Melolonthinae). We used emergence traps in ten replicate 20 × 20 m plots of control, exclusion and procedural control treatments to trap chafers biannually from 2009 to 2015. Annual precipitation during this period varied from 173 to 481 mm. Mammal exclusion did not affect chafers, indicating that top‐down regulation was not important. Instead, chafer abundance, species density and biomass increased with precipitation. Chafer body size and assemblage composition were best predicted by sampling year, suggesting that random drift determined species abundances. Increased resource availability therefore favoured all species similarly. We thus found no evidence that mammal predation alters chafer populations and conclude that they may be driven primarily by bottom‐up processes. Further research should determine if the cascading effects of species loss are less important for herbivores generally than for higher level trophic groups and the role of ecosystem stability in mediating these patterns.  相似文献   

3.
Efficient approaches to increase plant lipid production are necessary to meet current industrial demands for this important resource. While Jatropha curcas cell culture can be used for in vitro lipid production, scaling up the system for industrial applications requires an understanding of how growth conditions affect lipid metabolism and yield. Here we present a bottom‐up metabolic reconstruction of J. curcas supported with labeling experiments and biomass characterization under three growth conditions. We show that the metabolic model can accurately predict growth and distribution of fluxes in cell cultures and use these findings to pinpoint energy expenditures that affect lipid biosynthesis and metabolism. In addition, by using constraint‐based modeling approaches we identify network reactions whose joint manipulation optimizes lipid production. The proposed model and computational analyses provide a stepping stone for future rational optimization of other agronomically relevant traits in J. curcas.  相似文献   

4.
In arthropod community ecology, species richness studies tend to be prioritised over those investigating patterns of abundance. Consequently, the biotic and abiotic drivers of arboreal arthropod abundance are still relatively poorly known. In this cross‐continental study, we employ a theoretical framework in order to examine patterns of covariance among herbivorous and predatory arthropod guilds. Leaf‐chewing and leaf‐mining herbivores, and predatory ants and spiders, were censused on > 1000 trees in nine 0.1 ha forest plots. After controlling for tree size and season, we found no negative pairwise correlations between guild abundances per plot, suggestive of weak signals of both inter‐guild competition and top‐down regulation of herbivores by predators. Inter‐guild interaction strengths did not vary with mean annual temperature, thus opposing the hypothesis that biotic interactions intensify towards the equator. We find evidence for the bottom‐up limitation of arthropod abundances via resources and abiotic factors, rather than for competition and predation.  相似文献   

5.
Life cycle assessment (LCA) has been applied for assessing emerging technologies, where large‐scale production data are generally lacking. This study introduces a standardized scheme for technology and manufacturing readiness levels to contextualize a technology's development stage. We applied the scheme to a carbon nanotube (CNT) LCA and found that, regardless of synthesis technique, CNT manufacturing will become less energy intensive with increased levels of readiness. We examined the influence of production volume on LCA results using primary data from a commercial CNT manufacturer with approximately 100 grams per day production volume and engineering design of a scaled‐up process with 1 tonne per day production capacity. The results show that scaling up could reduce 84% to 94% of its cradle‐to‐gate impacts, mainly as a result of the recycling of feedstock that becomes economically viable only beyond certain minimum production volume. This study shows that LCAs on emerging technologies based on immature data should be interpreted in conjunction with their technology and manufacturing readiness levels and reinforces the need of standardizing and communicating information on these readiness levels and scale of production in life cycle inventory practices.  相似文献   

6.
The degree to which ecosystems are regulated through bottom‐up, top‐down, or direct physical processes represents a long‐standing issue in ecology, with important consequences for resource management and conservation. In marine ecosystems, the role of bottom‐up and top‐down forcing has been shown to vary over spatio‐temporal scales, often linked to highly variable and heterogeneously distributed environmental conditions. Ecosystem dynamics in the Northeast Pacific have been suggested to be predominately bottom‐up regulated. However, it remains unknown to what extent top‐down regulation occurs, or whether the relative importance of bottom‐up and top‐down forcing may shift in response to climate change. In this study, we investigate the effects and relative importance of bottom‐up, top‐down, and physical forcing during changing climate conditions on ecosystem regulation in the Southern California Current System (SCCS) using a generalized food web model. This statistical approach is based on nonlinear threshold models and a long‐term data set (~60 years) covering multiple trophic levels from phytoplankton to predatory fish. We found bottom‐up control to be the primary mode of ecosystem regulation. However, our results also demonstrate an alternative mode of regulation represented by interacting bottom‐up and top‐down forcing, analogous to wasp‐waist dynamics, but occurring across multiple trophic levels and only during periods of reduced bottom‐up forcing (i.e., weak upwelling, low nutrient concentrations, and primary production). The shifts in ecosystem regulation are caused by changes in ocean‐atmosphere forcing and triggered by highly variable climate conditions associated with El Niño. Furthermore, we show that biota respond differently to major El Niño events during positive or negative phases of the Pacific Decadal Oscillation (PDO), as well as highlight potential concerns for marine and fisheries management by demonstrating increased sensitivity of pelagic fish to exploitation during El Niño.  相似文献   

7.
Terrestrial photosynthesis is the largest and one of the most uncertain fluxes in the global carbon cycle. We find that near‐infrared reflectance of vegetation (NIRV), a remotely sensed measure of canopy structure, accurately predicts photosynthesis at FLUXNET validation sites at monthly to annual timescales (R2 = 0.68), without the need for difficult to acquire information about environmental factors that constrain photosynthesis at short timescales. Scaling the relationship between gross primary production (GPP) and NIRV from FLUXNET eddy covariance sites, we estimate global annual terrestrial photosynthesis to be 147 Pg C/year (95% credible interval 131–163 Pg C/year), which falls between bottom‐up GPP estimates and the top‐down global constraint on GPP from oxygen isotopes. NIRV‐derived estimates of GPP are systematically higher than existing bottom‐up estimates, especially throughout the midlatitudes. Progress in improving estimated GPP from NIRV can come from improved cloud screening in satellite data and increased resolution of vegetation characteristics, especially details about plant photosynthetic pathway.  相似文献   

8.
Clément Lagrue  Robert Poulin 《Oikos》2015,124(12):1639-1647
Theory predicts the bottom–up coupling of resource and consumer densities, and epidemiological models make the same prediction for host–parasite interactions. Empirical evidence that spatial variation in local host density drives parasite population density remains scarce, however. We test the coupling of consumer (parasite) and resource (host) populations using data from 310 populations of metazoan parasites infecting invertebrates and fish in New Zealand lakes, spanning a range of transmission modes. Both parasite density (no. parasites per m2) and intensity of infection (no. parasites per infected hosts) were quantified for each parasite population, and related to host density, spatial variability in host density and transmission mode (egg ingestion, contact transmission or trophic transmission). The results show that dense and temporally stable host populations are exploited by denser and more stable parasite populations. For parasites with multi‐host cycles, density of the ‘source’ host did not matter: only density of the current host affected parasite density at a given life stage. For contact‐transmitted parasites, intensity of infection decreased with increasing host density. Our results support the strong bottom–up coupling of consumer and resource densities, but also suggest that intraspecific competition among parasites may be weaker when hosts are abundant: high host density promotes greater parasite population density, but also reduces the number of conspecific parasites per individual host.  相似文献   

9.
1. Understanding the degree to which populations and communities are limited by both bottom‐up and top‐down effects is still a major challenge for ecologists, and manipulation of plant quality, for example, can alter herbivory rates in plants. In addition, biotic defence by ants can directly influence the populations of herbivores, as demonstrated by increased rates of herbivory or increased herbivore density after ant exclusion. The aim of this study was to evaluate bottom‐up and top‐down effects on herbivory rates in a mutualistic ant‐plant. 2. In this study, the role of Azteca alfari ants as biotic defence in individuals of Cecropia pachystachya was investigated experimentally with a simultaneous manipulation of both bottom‐up (fertilisation) and top‐down (ant exclusion) factors. Four treatments were used in a fully factorial design, with 15 replicates for each treatment: (i) control plants, without manipulation; (ii) fertilised plants, ants not manipulated; (iii) unfertilised plants and excluded ants and (iv) fertilised plants and ants excluded. 3. Fertilisation increased the availability of foliar nitrogen in C. pachystachya, and herbivory rates by chewing insects were significantly higher in fertilised plants with ants excluded. 4. Herbivory, however, was more influenced by bottom‐up effects – such as the quality of the host plant – than by top‐down effects caused by ants as biotic defences, reinforcing the crucial role of leaf nutritional quality for herbivory levels experienced by plants. Conditionality in ant defence under increased nutritional quality of leaves through fertilisation might explain increased levels of herbivory in plants with higher leaf nitrogen.  相似文献   

10.
We report the assembly of seven different antibodies (and two antigens) into functional supramolecular structures that are specifically designed to facilitate integration into devices using entirely biologically based bottom‐up fabrication. This is enabled by the creation of an engineered IgG‐binding domain (HG3T) with an N‐terminal hexahistidine tag that facilitates purification and a C‐terminal enzyme‐activatable pentatyrosine “pro‐tag” that facilitates covalent coupling to the pH stimuli‐responsive polysaccharide, chitosan. Because we confer pH‐stimuli responsiveness to the IgG‐binding domain, it can be electrodeposited or otherwise assembled into many configurations. Importantly, we demonstrate the loading of both HG3T and antibodies can be achieved in a linear fashion so that quantitative assessment of antibodies and antigens is feasible. Our demonstration formats include: conventional multiwell plates, micropatterned electrodes, and fiber networks. We believe biologically based fabrication (i.e., biofabrication) provides bottom‐up hierarchical assembly of a variety of nanoscale components for applications that range from point‐of‐care diagnostics to smart fabrics. Biotechnol. Bioeng. 2009;103: 231–240. © 2008 Wiley Periodicals, Inc.  相似文献   

11.
The large numbers of samples processed in breeding and biodiversity programmes require the development of efficient methods for the nondestructive evaluation of basic seed properties. Near‐infrared spectroscopy is the state‐of‐the‐art solution for this analytical demand, but it also has some limitations. Here, we present a novel, rapid, accurate procedure based on time domain‐nuclear magnetic resonance (TD‐NMR), designed to simultaneously quantify a number of basic seed traits without any seed destruction. Using a low‐field, benchtop 1H‐NMR instrument, the procedure gives a high‐accuracy measurement of oil content (R2 = 0.98), carbohydrate content (R2 = 0.99), water content (R2 = 0.98) and both fresh and dry weight of seeds/grains (R2 = 0.99). The method requires a minimum of ~20 mg biomass per sample and thus enables to screen individual, intact seeds. When combined with an automated sample delivery system, a throughput of ~1400 samples per day is achievable. The procedure has been trialled as a proof of concept on cereal grains (collection of ~3000 accessions of Avena spp. curated at the IPK genebank). A mathematical multitrait selection approach has been designed to simplify the selection of outlying (most contrasting) accessions. To provide deeper insights into storage oil topology, some oat accessions were further analysed by three‐dimensional seed modelling and lipid imaging. We conclude that the novel TD‐NMR‐based screening tool opens perspectives for breeding and plant biology in general.  相似文献   

12.
An epigenetic profile defining the DNA methylation age (DNAm age) of an individual has been suggested to be a biomarker of aging, and thus possibly providing a tool for assessment of health and mortality. In this study, we estimated the DNAm age of 378 Danish twins, age 30–82 years, and furthermore included a 10‐year longitudinal study of the 86 oldest‐old twins (mean age of 86.1 at follow‐up), which subsequently were followed for mortality for 8 years. We found that the DNAm age is highly correlated with chronological age across all age groups (r = 0.97), but that the rate of change of DNAm age decreases with age. The results may in part be explained by selective mortality of those with a high DNAm age. This hypothesis was supported by a classical survival analysis showing a 35% (4–77%) increased mortality risk for each 5‐year increase in the DNAm age vs. chronological age. Furthermore, the intrapair twin analysis revealed a more‐than‐double mortality risk for the DNAm oldest twin compared to the co‐twin and a ‘dose–response pattern’ with the odds of dying first increasing 3.2 (1.05–10.1) times per 5‐year DNAm age difference within twin pairs, thus showing a stronger association of DNAm age with mortality in the oldest‐old when controlling for familial factors. In conclusion, our results support that DNAm age qualifies as a biomarker of aging.  相似文献   

13.
Plant architecture is crucial to pollination and mating in wind‐pollinated species. We investigated the effect of crown architecture on pollen dispersal, mating system and offspring quality, combining phenotypic and genotypic analyses in a low‐density population of the endangered species Abies pinsapo. A total of 598 embryos from three relative crown height levels (bottom, middle and top) in five mother plants were genotyped using eleven nuclear microsatellite markers (nSSRs). Paternity analysis and mating system models were used to infer mating and pollen dispersal parameters. In addition, seeds were weighed (= 16 110) and germinated (= 736), and seedling vigour was measured to assess inbreeding depression. Overall, A. pinsapo shows a fat‐tailed dispersal kernel, with an average pollen dispersal distance of 113–227 m, an immigration rate of 0.84–26.92%, and a number of effective pollen donors (Nep) ranging between 3.5 and 11.9. We found an effect of tree height and relative crown height levels on mating parameters. A higher proportion of seeds with embryo (about 50%) and a higher rate of self‐fertilization (about 60%) were found at the bottom level in comparison with the top level. Seed weight and seedling vigour are positively related. Nevertheless, no differences were found in seed weight or in seedling‐related variables such as weight and length of aerial and subterranean parts among the different relative crown height levels, suggesting that seeds from the more strongly inbred bottom level are not affected by inbreeding depression. Our results point to vertical isotropy for outcross‐pollen and they suggest that self‐pollen may ensure fertilization when outcross‐pollen is not available in low‐density population.  相似文献   

14.
The sensitivity of Venturia inaequalis to trifloxystrobin and difenoconazole was studied in Uruguay. Populations of V. inaequalis were collected from apple orchards with different histories of trifloxystrobin use. Sensitivity of populations to trifloxystrobin was analysed using a method for testing spore germination published by FRAC, using a discriminatory concentration of 2.0 mg a.i./l. Resistance to trifloxystrobin was widespread in the region of commercial apple production with resistance detected in all orchards examined, the incidences ranging from 3% to 95%. The highest frequencies were found in orchards with the most intensive use of Quinone outside inhibitors (QoI) fungicides. Sensitivities of isolates of V. inaequalis to difenoconazole were assessed at five concentrations using a mycelial growth assay on isolates (33 isolates per orchard) from one non‐commercial (baseline orchard) and two commercial orchards having differing histories of difenoconazole use. Populations in both commercial orchards exhibited reduced sensitivities to difenoconazole compared to the baseline orchard. Resistance factor (RF) values of 6.6 and 11.74 were measured in the orchards with moderate (up to 4 sprays per season) and intensive use (more than 5 sprays per season) of difenoconazole, respectively. A single‐assessment concentration (SAC) was identified for assessing difenoconazole sensitivity of V. inaequalis isolates by fitting linear regressions between log10 EC50 and relative growth (RG) of the isolates at each fungicide concentration testing, and comparing the goodness‐of‐fit of the regression lines. Comparable results were obtained based on EC50 values and RG values at a SAC of 0.05 mg of active ingredient per litre (a.i. per l). Populations from both commercial orchards differed from the baseline population, in that isolates with RG ≥70 were present at substantial levels in the former but absent from the latter.  相似文献   

15.
Existing life cycle assessment (LCA) studies for furniture focus on single pieces of furniture and use a bottom‐up approach based on their bill of materials (BOM) to build up the data inventories. This approach does not ensure completeness regarding material and energy fluxes and representativeness regarding the product portfolio. Integrating material and energy fluxes collected at company level into product LCA (top‐down approach) over‐rides this drawback. This article presents a method for systematic LCA of industrially produced furniture that merges the top‐down approach and bottom‐up approach. The developed method assigns data collected at the company level to the different products while, at the same time, considering that wood‐based furniture is a complex product. Hence, several classifications to reduce the complexity to a manageable level have been developed. Simultaneously, a systematic calculation routine was established. The practical implementation of the developed method for systematic LCA is carried out in a case study within the German furniture industry. The system boundary was set in accord with the EN 15804 specification cradle‐to‐gate‐with‐options. The analysis therefore includes the manufacturing phase supplemented by an end‐of‐life scenario. The case study shows that the manufacturing of semifinished products (especially wood‐based panels and metal components) as well as the electric energy demand in furniture manufacturing account for a notable share of the environmental impacts. A sensitivity analysis indicates that up to roughly 10% of the greenhouse gas emissions are not recorded when conducting an LCA based on a BOM instead of applying the developed approach.  相似文献   

16.
This paper provides spatial estimates of potentially available biomass for bioenergy in Australia in 2010, 2030 and 2050 (under clearly stated assumptions) for the following biomass sources: crop stubble, native grasses, pulpwood and residues (created either during forest harvesting or wood processing) from plantations and native forests, bagasse, organic municipal solid waste and new short‐rotation tree crops. For each biomass type, we estimated annual potential availability at the finest scale possible with readily accessible data, and then aggregated to make estimates for each of 60 Statistical Divisions (administrative areas) across Australia. The potentially available lignocellulosic biomass is estimated at approximately 80 Mt per year, with the major contributors of crop stubble (27.7 Mt per year), grasses (19.7 Mt per year) and forest plantations (10.9 Mt per year). Over the next 20–40 years, total potentially available biomass could increase to 100–115 Mt per year, with new plantings of short‐rotation trees being the major source of the increase (14.7 Mt per year by 2030 and 29.3 Mt per year by 2050). We exclude oilseeds, algae and ‘regrowth’, that is woody vegetation naturally regenerating on previously cleared land, which may be important in several regions of Australia (Australian Forestry 77 , 2014, 1; Global Change Biology Bioenergy 7 , 2015, 497). We briefly discuss some of the challenges to providing a reliable and sustainable supply of the large amounts of biomass required to build a bioenergy industry of significant scale. More detailed regional analyses, including of the costs of delivered biomass, logistics and economics of harvest, transport and storage, competing markets for biomass and a full assessment of the sustainability of production are needed to underpin investment in specific conversion facilities (e.g. Opportunities for forest bioenergy: An assessment of the environmental and economic opportunities and constraints associated with bioenergy production from biomass resources in two prospective regions of Australia, 2011a).  相似文献   

17.
As a consequence of Earth's surface oxygenation, ocean geochemistry changed from ferruginous (iron(II)‐rich) into more complex ferro‐euxinic (iron(II)‐sulphide‐rich) conditions during the Paleoproterozoic. This transition must have had profound implications for the Proterozoic microbial community that existed within the ocean water and bottom sediment; in particular, iron‐oxidizing bacteria likely had to compete with emerging sulphur‐metabolizers. However, the nature of their coexistence and interaction remains speculative. Here, we present geochemical and microbiological data from the Arvadi Spring in the eastern Swiss Alps, a modern model habitat for ferro‐euxinic transition zones in late Archean and Proterozoic oceans during high‐oxygen intervals, which enables us to reconstruct the microbial community structure in respective settings for this geological era. The spring water is oxygen‐saturated but still contains relatively elevated concentrations of dissolved iron(II) (17.2 ± 2.8 μM) and sulphide (2.5 ± 0.2 μM) with simultaneously high concentrations of sulphate (8.3 ± 0.04 mM). Solids consisting of quartz, calcite, dolomite and iron(III) oxyhydroxide minerals as well as sulphur‐containing particles, presumably elemental S0, cover the spring sediment. Cultivation‐based most probable number counts revealed microaerophilic iron(II)‐oxidizers and sulphide‐oxidizers to represent the largest fraction of iron‐ and sulphur‐metabolizers in the spring, coexisting with less abundant iron(III)‐reducers, sulphate‐reducers and phototrophic and nitrate‐reducing iron(II)‐oxidizers. 16S rRNA gene 454 pyrosequencing showed sulphide‐oxidizing Thiothrix species to be the dominating genus, supporting the results from our cultivation‐based assessment. Collectively, our results suggest that anaerobic and microaerophilic iron‐ and sulphur‐metabolizers could have coexisted in oxygenated ferro‐sulphidic transition zones of late Archean and Proterozoic oceans, where they would have sustained continuous cycling of iron and sulphur compounds.  相似文献   

18.
The two parental alleles at a specific locus are usually inherited with equal probability to the offspring. However, at least three processes can lead to an apparent departure from fair segregation: early viability selection, biased gene conversion and various kinds of segregation distortion. Here, we conduct a genome‐wide scan for transmission distortion in a captive population of zebra finches (Taeniopygia guttata) using 1302 single‐nucleotide polymorphisms (SNPs) followed by confirmatory analyses on independent samples from the same population. In the initial genome‐wide scan, we found significant distortion at three linked loci on chromosome Tgu2 and we were able to replicate this finding in each of two follow‐up data sets [overall transmission ratio = 0.567 (95% CI = 0.536–0.600), based on 1101 informative meioses]. Although the driving allele was preferentially transmitted by both heterozygous females [ratio = 0.560 (95% CI = 0.519–0.603)] and heterozygous males [ratio = 0.575 (95% CI = 0.531–0.623)], we could rule out postzygotic viability selection and biased gene conversion as possible mechanisms. Early postzygotic viability selection is unlikely, because it would result in eggs with no visible embryo and hence no opportunity for genotyping, and we confirmed that both females and males heterozygous for the driving allele did not produce a larger proportion of such eggs than homozygous birds. Biased gene conversion is expected to be rather localized, while we could trace transmission distortion in haplotypes of several megabases in a recombination desert. Thus, we here report the rare case of a prezygotically active transmission distorter operating equally effectively in female and male meioses.  相似文献   

19.
Both top‐down (grazing) and bottom‐up (resource availability) forces can determine the strength of priority effects, or the effects of species arrival history on the structure and function of ecological communities, but their combined influences remain unresolved. To test for such influences, we assembled experimental communities of wood‐decomposing fungi using a factorial manipulation of fungivore (Folsomia candida) presence, nitrogen availability, and fungal assembly history. We found interactive effects of all three factors on fungal species composition and wood decomposition 1 year after the fungi were introduced. The strength of priority effects on community structure was affected primarily by nitrogen availability, whereas the strength of priority effects on decomposition rate was interactively regulated by nitrogen and fungivores. These results demonstrate that top‐down and bottom‐up forces jointly determine how strongly assembly history affects community structure and function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号