首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In many ecosystems drought cycles are common during the growing season but their impact on volatile monoterpene emissions is unclear. Therefore, we aimed to develop and evaluate a process-based modelling approach to explore the explanatory power of likely mechanisms. The biochemically based isoprene and monoterpene emission model SIM-BIM2 has been modified and linked to a canopy model and a soil water balance model. Simulations are carried out for Quercus ilex forest sites and results are compared to measured soil water, photosynthesis, terpene-synthase activity, and monoterpene emission rates. Finally, the coupled model system is used to estimate the annual drought impact on photosynthesis and emission. The combined and adjusted vegetation model was able to simulate photosynthesis and monoterpene emission under dry and irrigated conditions with an R 2 of 0.74 and 0.52, respectively. We estimated an annual reduction of monoterpene emission of 67% for the extended and severe drought period in 2006 in the investigated Mediterranean ecosystem. It is concluded that process-based ecosystem models can provide a useful tool to investigate the involved mechanisms and to quantify the importance of specific environmental constraints.  相似文献   

2.
3.
Ultrasonic acoustic emissions were measured in Quercus ilex trees of a Mediterranean forest in Catalonia (NE Spain) each season from summer of 2004 to autumn of 2005. Acoustic emissions were maximum during hot and dry summer periods. Acoustic emissions started below 17% soil moisture, 0.85 RWC, and 2.5 MPa leaf water potential. They were negatively correlated with soil moisture and leaf water potential. The relationship between acoustic emissions and leaf water potential was the strongest, indicating that xylem tension is the most important factor inducing both cavitation (acoustic emissions) and a decrease in leaf water potential. Future increase of xylem cavitation derived from climate change may result in growth and survival limitations for this species in the drier southern limits of its current distribution.  相似文献   

4.
Tissue-water relations were used to characterize the responses of two Mediterranean co-occurring woody species (Quercus ilex L. and Phillyrea latifolia L.) to seasonal and experimental drought conditions. Soil water availability was reduced 15% by partially excluding rain throughfall and lateral flow (water runoff). Seasonal and experimental drought elicited physiological and morphological adaptations other than osmotic adjustment: both species showed large increases in cell-wall elasticity and decreased saturated-to-dry-mass ratio. Increased elasticity (lower elastic modulus) resulted in concurrent decreases in relative water content at turgor loss. In addition, P. latifolia showed significant increases in apoplastic water fraction. Decreased saturated-to-dry-mass ratio and increased apoplastic water fraction were accompanied by an increased range of turgor maintenance, which indicates that leaf sclerophyllous traits might be advantageous in drier scenarios. In contrast, the degree of sclerophylly (as assessed by the leaf mass-to-area ratio) was not related to tissue elasticity. An 15% reduction in soil water availability resulted in significant reductions in diameter growth when compared to control plants in both species. Moreover, although P. latifolia underwent larger changes in tissue water-related traits than Q. ilex in response to decreasing water availability, growth was more sensitive to water stress in P. latifolia than in Q. ilex. Differences in diameter growth between species might be partially linked to the effects of cell-wall elasticity and turgor pressure on growth, since Q. ilex showed higher tissue elasticity and higher intrinsic tolerance to water deficit (as indicated by lower relative water content at turgor loss) than P. latifolia.  相似文献   

5.
Bellot  J.  Sánchez  J. R.  Lledó  M. J.  Martínez  P.  Escarré  A. 《Plant Ecology》1992,(1):69-76
In this paper we discuss the use of litterfall as a method to measure primary production and its between year relation to climatic fluctuation. Seven years of study in a mediterranean holm-oak forest showed a moderate inter-annual variability of litterfall (C.V. 11%), while the annual variability of the actual evapotranspiration was three times higher (C.V.30%). Furthermore, the inter- and intra-annual variability of nutrient content in the various fractions are presented in relation to water availability. Monthly and seasonal variability was higher than the annual variability for all analyzed elements.  相似文献   

6.
A holm oak forest was exposed to an experimental drought during 5 years to elucidate the growth responses of the dominant species Quercus ilex, Arbutus unedo and Phillyrea latifolia. Soil water availability was partially reduced, about 15% as predicted for this area for the next decades by GCM and ecophysiological models, by plastic strips intercepting rainfall and by ditch exclusion of water runoff. The stem diameter increment was highly correlated with annual rainfall in all species, and drought treatment strongly reduced the diameter increment of Q. ilex (41%) and specially of A. unedo (63%), the species showing higher growth rates. Stem mortality rates were highly correlated with previous stem density, but drought treatment increased mortality rates in all species. Q. ilex showed the highest mortality rates (9% and 18% in control and drought plots, respectively), and P. latifolia experienced the lowest mortality rates (1% and 3% in control and drought plots, respectively). Drought strongly reduced the increment of live aboveground biomass during these 5 years (83%). A. unedo and Q. ilex experienced a high reduction in biomass increment by drought, whereas P. latifolia biomass increment was insensitive to drought. The different sensitivity to drought of the dominant species of the holm oak forest may be very important determining their future development and distribution in a drier environment as expected in Mediterranean areas for the next decades. These drier conditions could thus have strong effects on structure (species composition) and functioning (carbon uptake and biomass accumulation) of these Mediterranean forests.  相似文献   

7.
A rain exclusion experiment simulating drought conditions expected in Mediterranean areas for the following decades (15% decrease in soil moisture) was conducted in a Mediterranean holm oak forest to study the response of leaf δ13C, δ15N, and N concentrations to the predicted climatic changes for the coming decades. Plant material was sampled in 2000, 2003, 2004, and 2005 in eight plots: four of them were control plots and the other four plots received the rain exclusion treatment. Although there was a negative relationship between δ13C and soil moisture, for each species and year, the rain exclusion treatment did not have any significant effect on δ13C, and therefore on the intrinsic water use efficiency (iWUE) of the three dominant species: Phillyrea latifolia, Arbutus unedo, and Quercus ilex. On the other hand, rain exclusion clearly increased the δ15N values in the three species studied, probably indicating higher N losses at the soil level leading to a 15N enrichment of the available N. It suggested that rain exclusion exerted a greater effect on the nitrogen biogeochemical cycle than on the carbon assimilation process. δ15N values were inversely correlated with summer soil moisture in Q. ilex and A. unedo, but no relationship was observed in P. latifolia. This latter species showed the lowest iWUE values, but it was the only species with no decrease in annual basal increment in response to the rain exclusion treatment, and it also had the highest resistance to the hot and dry conditions projected for the Mediterranean basin in the coming decades. The different strategies to resist rain exclusion conditions of these species could induce changes in their competitive ability and future distribution. The losses of N from the ecosystem may further limit plant growth and ecosystem functioning.  相似文献   

8.
Six large open top chambers were installed to test the effect of atmospheric [CO2] enrichment on clumps of natural Mediterranean vegetation starting from early spring 1992. To study the impact of [CO2] enrichment on litter decomposition, leaves of three woody species (Quercus ilex L., Phillyrea angustifolia L. and Pistacia lentiscus L.) were collected from the forest floor and subsequently incubated in situ over a two-year period. The initial slope of the exponential function, describing mass loss, indicated that there was a small negative effect of elevated [CO2] on the decomposition rate of all the species. All regressions were significant. The decrease of decomposition rate is particularly notable during the initial stages of decomposition, when the differences of quality parameters, lignin/N and C/N were larger. This study points out that a decrease of decomposition rate may occur under elevated [CO2] conditions; if this effect is coupled to an increase of primary production, there will be a net rise of C-storage in the soils of forest ecosystems. Forest soils may, therefore, represent a potentially increasing sink for this excess carbon. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
10.
Barberis  G.  Peccenini  S.  Paola  G. 《Plant Ecology》1992,99(1):35-50
The climatic characteristics of the Liguria region have been outlined by means of raw data and derived indices (water balance related to potential evapotraspiration, Rivas-Martinez's index of mediterraneity and thermicity, De Martonne's index of dryness, and Emberger's pluviothermic quotient and index of summer dryness). Their interpretation suggests that Liguria is a boundary region between two different climatic areas: the Mediterranean and that of Central Europe.The distribution of Quercus ilex communities in Liguria have suffered the heavy consequences of human activity on the coastal belt of the region. There is, however, sufficient evidence to show that their presence is closely linked to climatic conditions. Quercus ilex communities are absent from the western coastal belt where the annual water balance is below –50 mm and high mean temperatures occur. They are also absent from marly limestone dominated areas where annual water balance is below 300 mm. Quercus ilex woods show a preference for water balance values between 0 and 600, with the better developed forests being found in central and eastern coastal Liguria.The Ligurian Quercus ilex woods are ascribed to Quercetum ilicis Br.-Bl. 1915. Given that the presence within their floristic composition of a group of species of Querco-Fagetea (more species in eastern stands, few in western ones) is an almost constant characteristic, the subass. fraxino-ostryetosum Mariotti 1984 can be retained for many of them. Quercus ilex is not present in the initial succession stages of Mediterranean Liguria vegetation. It can be found in later stages when the vegetation is more fully developed towards a maquis type structure. In this case it tends to become dominant and the community develops (if no fire or other human interference occurs) into a Quercus ilex forest. Frequently, this succession takes place under an old tree layer cover (generally Pinus sp.), a remanant of man's past management of the vegetation in the area.  相似文献   

11.
We present 9 years of eddy covariance measurements made over an evergreen Mediterranean forest in southern France. The goal of this study was to quantify the different components of the carbon (C) cycle, gross primary production (GPP) and ecosystem respiration (Reco), and to assess the effects of climatic variables on these fluxes and on the net ecosystem exchange of carbon dioxide. The Puéchabon forest acted as a net C sink of ?254 g C m?2 yr?1, with a GPP of 1275 g C m?2 yr?1 and a Reco of 1021 g C m?2 yr?1. On average, 83% of the net annual C sink occurred between March and June. The effects of exceptional events such the insect‐induced partial canopy defoliation that occurred in spring 2005, and the spring droughts of 2005 and 2006 are discussed. A high interannual variability of ecosystem C fluxes during summer and autumn was observed but the resulting effect on the annual net C budget was moderate. Increased severity and/or duration of summer drought under climate change do not appear to have the potential to negatively impact the average C budget of this ecosystem. On the contrary, factors affecting ecosystem functioning (drought and/or defoliation) during March–June period may reduce dramatically the annual C balance of evergreen Mediterranean forests.  相似文献   

12.
Successful regeneration of holm oaks is the key to the conservation of the outstanding biodiversity levels in Spanish dehesa parklands. However, low densities of regeneration were measured in this study. The threshold for livestock stocking levels supporting regeneration was below all figures presently found in the dehesas. In the analysis of stand structure, a positive relationship between tree age and the age of agro-silvo-pastoral use of the dehesas was detected. This suggests that the forest cycle has been disrupted, and stands may dissolve gradually. Regeneration failure is an implicit component of this agroforestry system. An analysis of long-term abandoned dehesas situated at roadsides showed that holm oak stands are able to recover if grazing and cultivation are set aside. In a mail survey, managers of private large landholdings highly appreciated having holm oaks on their land, both for income- and non-income-related motivations, e.g. for the preservation of real estate value or family tradition. Land managers identified over-maturity of stands and regeneration failure among the top five problems of dehesas. Conservation policy should be directed towards incentive schemes, environmental education, and technical assistance.  相似文献   

13.
14.
Morphological, anatomical, biochemical and physiological traits of sun and shade leaves of adult Quercus ilex, Phillyrea latifolia and Pistacia lentiscus shrub species co-occurring in the Mediterranean maquis at Castelporziano (Latium) were studied. Fully expanded sun leaves had 47% (mean of the three species) greater leaf mass area (LMA) and 31% lower specific leaf area (SLA) than shade leaves. Palisade parenchyma thickness contributed on an average 42% to the total leaf thickness, spongy layer 43%, upper epidermal cells 5%, and upper cuticle thickness 3%. Stomatal size was greater in sun (25.5 μm) than in shade leaves (23.6 μm). Total chlorophyll content per fresh mass was 71% greater in shade than in sun leaves, and nitrogen content was the highest in sun (13.7 mg g−1) than in shade leaves (11.8 mg g−1). Difference of net photosynthetic rates (P N) between sun and shade leaves was 97% (mean of the three species). The plasticity index (sensu Valladares et al., New Phytol 148:79–91, 2000a) was the highest for physiological leaf traits (0.86) than for morphological, anatomical and biochemical ones. Q. ilex had the highest plasticity index of morphological, anatomical and physiological leaf traits (0.37, 0.28 and 0.71, respectively) that might explain its wider ecological distribution. The higher leaf plasticity of Q. ilex might be advantageous in response to varying environmental conditions, including global change.  相似文献   

15.
Midday depression of net photosynthesis and transpiration in the Mediterranean sclerophylls Arbutus unedo L. and Quercus suber L. occurs with a depression of mesophyll photosynthetic activity as indicated by calculated carboxylation efficiency (CE) and constant diurnal calculated leaf intercellular partial pressure of CO2 (Ci). This work examines the hypothesis that this midday depression can be explained by the distribution of patches of either wide-open or closed stomata on the leaf surface, independent of a coupling mechanism between stomata and mesophyll that results in a midday depression of photosynthetic activity of the mesophyll. Pressure infiltration of four liquids differing in their surface tension was used as a method to show the occurrence of stomatal patchiness and to determine the status of stomatal aperture within the patches. Liquids were selected such that the threshold leaf conductance necessary for infiltration through the stomatal pores covered the expected diurnal range of calculated leaf conductance (g) for these species. Infiltration experiments were carried out with leaves of potted plants under simulated Mediterranean summer conditions in a growth chamber. For all four liquids, leaves of both species were found to be fully infiltratable in the morning and in the late afternoon while during the periods leading up to and away from midday the leaves showed a pronounced patchy distribution of infiltratable and non-infiltratable areas. Similar linear relationships between the amount of liquid infiltrated and g (measured by porometry prior to detachment and infiltration) for all liquids clearly revealed the existence of pneumatically isolated patches containing only wide-open or closed stomata. The good correspondence between the midday depression of CE, calculated under the assumption of no stomatal patchiness, and the diurnal changes in non-infiltratable leaf area strongly indicates that the apparent reduction in mesophyll activity results from assuming no stomatal patchiness. It is suggested that simultaneous responses of stomata and mesophyll activity reported for other species may also be attributed to the occurrence of stomatal patchiness. In Quercus coccifera L., where the lack of constant diurnal calculated Ci and major depression of measured CE at noontime indicates different stomatal behavior, non-linear and dissimilar relationships between g and the infiltratable quantities of the four liquids were found. This indicates a wide distribution of stomatal aperture on the leaf surface rather than only wide-open or closed stomata.Dedicated to Professor Otto L. Lange on the occasion of his 65th birthday  相似文献   

16.
Climate change will increase the frequency and the intensity of droughts in the Mediterranean region, likely reducing growth and increasing mortality of holm oaks (Quercus ilex), one of the most abundant species of Mediterranean forests. In water-limited systems such as those of the Mediterranean, carbon allocation patterns strongly favour belowground accumulation, especially in large subterranean structures called lignotubers. The resilience of these forests depends largely on the replenishment rate of these carbon reserves after disturbances. An experimental thinning, with two intensities (removal of 40% and 80% of basal area), was performed in 1992 in a holm oak forest at the Prades Experimental Complex of Catchments (NE Spain). In 2002, a second thinning was carried out in subplots within the former experimental 0.5 ha plots. Samples from the lignotubers of holm oak trees were analyzed for starch, and both mobile and immobile chemical components, in order to assess the resilience of holm oaks to repeated disturbances. Our results show that after 10 years, starch stocks in the lignotubers have only recovered to half their former values. Removing 40% of the basal area instead of 80% is suggested to be the better managing option for this kind of forests.  相似文献   

17.
The impact of domestic and wild Caprini browsing on Quercus ilex has been examined in an area of the Sierra de Cazorla. Vegetation as a herbivore food supply, herbivore feeding regime and density in the study area during six sampling periods throughout two years, has been quantified. Wild Caprini show diets similar to the available vegetation, whereas domestic Caprini tend more towards the trophic specialities (browsing or grazing) of their genus. Nevertheless, this tendency was more pronounced in domestic goats than in sheep. A hypothetical estimate of Q. ilex intake by each species under the study conditions was carried out. It was found that domestic Caprini have a greater impact on the holm oak than wild Caprini, density and feeding-niche deviations being the main factors responsible for this situation.Abbreviations DM= dry matter  相似文献   

18.
A rain exclusion experiment simulating drought conditions expected in Mediterranean areas for the following decades (15% decrease in soil moisture) is being conducted since 1999 in a Mediterranean holm oak forest to study its response to the forecasted climatic changes for the coming decades. The maximum PSII quantum yield of primary photochemistry (Fv/Fm) was measured in Quercus ilex, and Phillyrea latifolia, the co-dominant species of the studied forest, from 1999 to 2009 in four plots: two of them were control plots and the other two plots received the rain exclusion treatment. In both species, the Fv/Fm values were highly dependent on air temperatures, and in a second term, in water availability. P. latifolia was the species with the larger decrease in Fv/Fm values induced by low air temperatures, while in hot seasons, the Fv/Fm values in P. latifolia were even higher than in Q. ilex. Rainfall exclusion decrease Fv/Fm values significantly only in few monitoring dates. The most drought resistant species P. latifolia was more affected by the experimental rainfall exclusion than Q. ilex that instead lost number of leaves per tree. There was a synergic effect of drought stress and winter cold in P. latifolia not observed in Q. ilex, but a more conservative strategy in P. latifolia maintaining leaves with a down-regulation of the linear photosynthetic electron transport. These results indicate that, although other physiological and reproductive strategies at whole plant level must be also taken into account, the warmer and drier environment expected for the following decades could favour the species more sensitive to cold and more resistant to drought, the shrub P. latifolia, in detriment of the tree Q. ilex as already observed in the field after severe heat-drought episodes.  相似文献   

19.
Plant water potential (ψ), its components, and gas exchange data of two Mediterranean co-occurring woody species (Quercus ilex L. and Phillyrea latifolia L.) were measured in response to seasonal changes in water availability over two consecutive years. The relative contribution of physiological and morphological adjustments to drought resistance was assessed through Principal Component Analyses. There were large adjustments in stomatal conductance (∼36 % of accounted variance). Net photosynthetic rate and water use efficiency were closely tuned to water availability and accounted for ∼17 % of variance. The slope of the water potential vs. relative water content (dψ/dRWC0) below zero pressure potential increased as a result of seasonal and ontogenic increases in apoplastic water fraction and accounted for ∼20 % variance. This tolerance mechanism was accompanied by an increased range of positive pressure potential, suggesting a functional role of sclerophylly in these Mediterranean evergreens. Similarly, changes in the slope of dψ/dRWC in the range of positive pressure potential (∼13 % of accounted variance) were associated to variations in cell wall elasticity and resulted in lower RWC at zero pressure potential. When considering the species studied separately, the results indicated the primary role of stomatal regulation in the drought resistance of Qilex, while increased apoplastic water fraction had a major contribution in the drought resistance of P. latifolia. This research was supported by Spanish CICYT grants CLI99-0479 and REN-2002-00633. L.S. acknowledges the financial support from Ministerio de Ciencia y Tecnologia (“Ramon y Cajal” program, Spain). An erratum to this article is available at .  相似文献   

20.
Spatial and temporal changes in canopy structure were studied in 1988 and 1989 in a Mediterranean Quercus ilex forest in north-eastern Spain. Due to differences in precipitation patterns the 1989 growing season was drier than the 1988 growing season. Sampling was conducted in parallel at two sites which represent endpoints along a slope gradient within a watershed (ridge top at 975 m, and valley bottom at 700 m). At both sites, similar inter-annual changes in canopy structure were observed in response to differences in water availability. Samples harvested in the upper 50 cm of the canopy during 1989 exhibited a decrease in both average leaf size and the ratio of young to old leaf and stem biomass relative to samples obtained in 1988. At the whole canopy level, a decrease in leaf production efficiency and an increase in the stem to leaf biomass ratio was observed in 1989. Temporal changes in canopy leaf area index (LAI) were not statistically significant. Average LAI values of Q. ilex at the two sites were not significantly different despite differences in tree stature and density (4.6 m2 m–2 at the ridge top, and 5.3 m2 m–2 at the valley bottom). Vertical distribution of leaves and stems within the canopy was very similar at the two locations, with more than 60% of the total LAI in the uppermost metre of the canopy. The possible significance of such an LAI distribution on the canopy carbon budget is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号