首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Land-use history and large-scale disturbances interact to shape secondary forest structure and composition. How introduced species respond to disturbances such as hurricanes in post-agriculture forest recovery is of particular interest. To examine the effects of hurricane disturbance and previous land use on forest dynamics and composition, we revisited 37 secondary forest stands in former cattle pastures across Puerto Rico representing a range of exposure to the winds of Hurricane Georges in 1998. Stands ranged from 21 to>80 yr since agricultural abandonment and were measured 9 yr posthurricane. Stem density decreased as stands aged, while basal area and species richness tended to increase. Hurricane disturbance exerted contrasting effects on stand structure, contingent on stand age. In older stands, the basal area of large trees fell, shifting to a stand structure characteristic of younger stands, while the basal area of large trees tended to rise in younger stands with increasing hurricane disturbance. These results demonstrate that large-scale natural disturbances can alter the successional trajectory of secondary forest stands recovering from human land use, but stand age, precipitation and soil series were better predictors of changes in stand structure across all study sites. Species composition changed substantially between census intervals, but neither age nor hurricane disturbance consistently predicted species composition change. However, exposure to hurricane winds tended to decrease the abundance of the introduced tree Spathodea campanulata, particularly in smaller size classes. In all sites the abundance of the introduced tree Syzygium jambos showed a declining trend, again most strongly in smaller size classes, suggesting natural thinning through succession.  相似文献   

2.
Understanding the effects of disturbance and secondary succession on spatio-temporal patterns in the abundance of species is stymied by a lack of long-term demographic data, especially in response to infrequent and high intensity disturbances, such as hurricanes. Moreover, resistance and resilience to hurricane-induced disturbance may be mediated by legacies of previous land use, although such interactive effects are poorly understood, especially in tropical environments. We address these central issues in disturbance ecology by analyzing an extensive dataset, spanning the impacts of Hurricanes Hugo and Georges, on the abundance of a Neotropical walking stick, Lamponius portoricensis, in tabonuco rainforest of Puerto Rico during the wet and dry seasons from 1991 to 2007. By synthesizing data from two proximate sites in tabonuco forest, we show that resistance to Hurricane Hugo (97% reduction in abundance) was much less than resistance to Hurricane Georges (21% reduction in abundance). Based on a powerful statistical approach (generalized linear mixed-effects models with Poisson error terms), we documented that the temporal trajectories of abundance during secondary succession (i.e., patterns of resilience) differed between hurricanes and among historical land use categories, but that the effects of hurricanes and land use histories were independent of each other. These complex results likely arise because of differences in the intensities of the two hurricanes with respect to microclimatic effects (temperature and moisture) in the forest understory, as well as to time-lags in the response of L. portoricensis to changes in the abundance and distribution of preferred food plants (Piper) in post-hurricane environments.  相似文献   

3.
In 1998, storms related to Hurricane Isis caused extensive gaps in the cloud forest of El Triunfo Biosphere Reserve in Chiapas, Mexico, where severe storms are infrequent. We examined how this disturbance affected bird species composition. Species richness and composition were similar both between pre‐ and post‐disturbance forest and between newly created gaps and plots that remained forested after the hurricane. However, differences in response guilds were greater between pre‐ and post‐disturbance plots than between forest plots with gaps after disturbance. Granivorous, omnivorous, and terrestrial species were more abundant before the hurricane, whereas insectivorous, midstory, and generalist foragers were more abundant after the hurricane. In addition, species with high sensitivity to disturbance were more abundant in the pre‐disturbance forest, while low sensitivity species were more abundant after disturbance. In the post‐disturbance forest, insectivorous species were most abundant in gaps and terrestrial‐canopy foragers were most abundant in forest plots. Permanently open areas had significantly lower species richness, but had lowland generalist and second‐growth species not present in the cloud forest. Results suggest that changes in species composition were not limited to the newly created gaps, but also affected the whole forest. The decline of high sensitivity species after disturbance supports the hypothesis that disturbance negatively affects specialists and benefits generalist species. Although there is evidence that natural communities tend to return to pre‐disturbance conditions, changes in community structure could be aggravated if recurrent hurricanes occur before succession takes place.  相似文献   

4.
To address how multiple, interacting climate drivers may affect plant–insect community associations, we sampled insects that naturally colonized a constructed old‐field plant community grown for over 2 years under simultaneous CO2, temperature, and water manipulation. Insects were sampled using a combination of sticky traps and vacuum sampling, identified to morphospecies and the insect community with respect to abundance, richness, and evenness quantified. Individuals were assigned to four broad feeding guilds in order to examine potential trophic level effects. Although there were occasional effects of CO2 and water treatment, the effects of warming on the insect community were large and consistent. Warming significantly increased Order Thysanoptera abundance and reduced overall morphospecies richness and evenness. Nonmetric multidimensional scaling found that only temperature affected insect community composition, while a Sørensen similarity index showed less correspondence in the insect community between temperature treatments compared with CO2 or soil water treatments. Within the herbivore guild, elevated temperature significantly reduced richness and evenness. Corresponding reductions of diversity measures at higher trophic levels (i.e. parasitoids), along with the finding that herbivore richness was a significant predictor of parasitoid richness, suggest trophic‐level effects within the insect community. When the most abundant species were considered in temperature treatments, a small number of species increased in abundance at elevated temperature, while others declined compared with ambient temperature. Effects of temperature in the dominant insects demonstrated that treatment effects were limited to a relatively small number of morphospecies. Observed effects of elevated CO2 concentration on whole‐community foliar N concentration did not result in any effect on herbivores, which are probably the most susceptible guild to changes in plant nutritional quality. These results demonstrate that climatic warming may alter certain insect communities via effects on insect species most responsive to a higher temperature, contributing to a change in community structure.  相似文献   

5.
Land‐use change is the main cause of deforestation and degradation of tropical forest in Mexico. Frequently, these lands are abandoned leading to a mosaic of natural vegetation in secondary succession. Further degradation of the natural vegetation in these lands could be exacerbated by stochastic catastrophic events such as hurricanes. Information on the impact of human disturbance parallel to natural disturbance has not yet been evaluated for faunal assemblages in tropical dry forests. To evaluate the response of herpetofaunal assemblages to the interaction of human and natural disturbances, we used information of pre‐ and post‐hurricane herpetofaunal assemblages inhabiting different successional stages (pasture, early forest, young forest, intermediate forest, and old growth forest) of dry forest. Herpetofaunal assemblages were surveyed in all successional stages two years before and two years after the hurricane Jova that hit the Pacific Coast of Mexico on October 2011. We registered 4093 individuals of 61 species. Overall, there were only slight effects of successional stage, hurricane Jova or the interaction between them on abundance, observed species richness and diversity of the herpetofauna. However, we found marked changes in estimated richness and composition of frogs, lizards, and snakes among successional stages in response to hurricane Jova. Modifications in vegetation structure as result of hurricane pass promoted particular changes in each successional stage and taxonomic group (anurans, lizards, and snakes). Secondary forests at different stages of succession may attenuate the negative effects of an intense, short‐duration, and low‐frequency natural disturbance such as hurricane Jova on successional herpetofaunal trajectories and species turnover.  相似文献   

6.
7.
Hurricane‐caused tree mortality in tropical dry forests occurs predominantly in early successional species. Consequently, hurricanes may accelerate succession in these forests. Forest regeneration, however, must be measured over an extended posthurricane time period to demonstrate this pattern. In this study, we recorded tree seedlings in 19 Florida Keys forests during May–August 1995, 3 years after Hurricane Andrew. For these forests—spanning a chronosequence from 14 to over 100 years since the most recent clearing—we used weighted averaging regression on relative abundances of pre‐hurricane trees to calculate a successional age optimum for each species; and used weighted averaging calibration to calculate inferred successional ages for stands based on pre‐hurricane trees and on posthurricane seedlings. To test the hypothesis that successional stage of seedlings exceeded successional stage of pre‐hurricane trees, we compared inferred stand ages based on posthurricane seedlings with those based on pre‐hurricane trees. Across the study area, inferred stand ages based on posthurricane seedlings were greater than those based on pre‐hurricane trees (P < 0.005); however, more seedlings in the youngest stands were early successional than in older stands. Of 29 species present both as pre‐hurricane trees and posthurricane seedlings, 23 had animal‐dispersed seeds. These results provide evidence that: (1) hurricanes do not ‘reset’ succession, and may accelerate succession; and (2) a strong legacy of stand successional age influences seedling assemblages in these forests.  相似文献   

8.
Synopsis The reef flats of Saint-Pierre and Saint-Leu (Reunion Island, Indian Ocean) suffered badly from hurricane Firinga on 29 January 1989. The high degree of silting due to increased run-off killed the coral colonies. Fish communities were surveyed at four periods following the hurricane (March and September 1989, March and September 1990). An increase in both species richness (31 to 47 spp. per census) and abundance (169 to 265 individuals per census) of fishes was observed with time, along with changes in their trophic structure. This positive succession may be linked to the disappearance of the silt layer from reef flats since September 1989. Nevertheless, there were differences in fluctuations and trophic structure of the fish community between back-, inner- and outer-reef flats. Finally, differences in recovery between the two reefs are related to the overall environmental degradation of the Island, chiefly by human perturbation, prior to the hurricane.  相似文献   

9.
Concepts regarding effects of recurrent natural disturbances and subsequent responses of communities are central to ecology and conservation biology. Tropical cyclones constitute major disturbances producing direct effects (damage, mortality) in many coastal communities worldwide. Subsequent reassembly involves changes in composition and abundance for which the underlying mechanisms (deterministic and stochastic processes) are still not clear, especially for mobile organisms. We examined tropical cyclone-induced changes in composition and reassembly of entire insect communities in 16 Louisiana coastal salt marshes before and after Hurricane Isaac in 2012 and 2013. We used the Shannon index and multivariate permutational ANOVA to study insect resistance and resilience, β diversity partitioning to evaluate the importance of species replacement, and null models to disentangle the relative roles of different assembly processes over time after the tropical cyclone. The α diversity and species composition, overall and for different trophic levels, decreased immediately after the tropical cyclone; nonetheless, both then increased rapidly and returned to pre-cyclone states within one year. Changes in species abundance, rather than species replacement, was the primary driver, accounting for most temporal dissimilarity among insect communities. Stochastic processes, which drove community composition immediately after the tropical cyclone, decreased in importance over time. Our study indicates that rapid reformation of insect communities involved sequential landscape-level dynamics. Cyclone-resistant life cycle stages apparently survived in some, perhaps random locations within the overall salt marsh landscape. Subsequently, stochastic patterns of immigration of mobile life cycle stages resulted in rapid reformation of local communities. Post-cyclone direct regeneration of salt marsh insect communities resulted from low resistance, coupled with high landscape-level resilience via re-immigration. Our study suggests that the extent of direct regeneration of local salt marsh insect communities might change with the size of larger marsh landscapes within which they are imbedded.  相似文献   

10.
The high tree diversity of subtropical forests is linked to the biodiversity of other trophic levels. Disentangling the effects of tree species richness and composition, forest age, and stand structure on higher trophic levels in a forest landscape is important for understanding the factors that promote biodiversity and ecosystem functioning. Using a plot network spanning gradients of tree diversity and secondary succession in subtropical forest, we tested the effects of tree community characteristics (species richness and composition) and forest succession (stand age) on arthropod community characteristics (morphotype diversity, abundance and composition) of four arthropod functional groups. We posit that these gradients differentially affect the arthropod functional groups, which mediates the diversity, composition, and abundance of arthropods in subtropical forests. We found that herbivore richness was positively related to tree species richness. Furthermore, the composition of herbivore communities was associated with tree species composition. In contrast, detritivore richness and composition was associated with stand age instead of tree diversity. Predator and pollinator richness and abundance were not strongly related to either gradient, although positive trends with tree species richness were found for predators. The weaker effect of tree diversity on predators suggests a cascading diversity effect from trees to herbivores to predators. Our results suggest that arthropod diversity in a subtropical forest reflects the net outcome of complex interactions among variables associated with tree diversity and stand age. Despite this complexity, there are clear linkages between the overall richness and composition of tree and arthropod communities, in particular herbivores, demonstrating that these trophic levels directly impact each other.  相似文献   

11.
The effects of long-term nitrogen loading on grassland insect communities   总被引:14,自引:0,他引:14  
Just as long-term nitrogen loading of grasslands decreases plant species richness and increases plant biomass, we have found that nitrogen loading decreases insect species richness and increases insect abundances. We sampled 54 plots that had been maintained at various rates of nitrogen addition for 14 years. Total insect species richness and effective insect diversity, as well as herbivore and predator species richness, were significantly, negatively related to the rate of nitrogen addition. However, there was variation in trophic responses to nitrogen. Detritivore species richness increased as nitrogen addition increased, and parasitoids showed no response. Insect abundances, measured as the number of insects and insect biovolume (an estimate of biomass), were significantly, positively related to the rate of nitrogen addition, as were the abundances of herbivores and detritivores. Parasitoid abundance was negatively related to the rate of nitrogen addition. Changes in the insect community were correlated with changes in the plant community. As rates of nitrogen addition increased, plant species richness decreased, plant productivity and plant tissue nitrogen increased, and plant composition shifted from C4 to C3 grass species. Along this gradient, total insect species richness and effective insect diversity were most strongly, positively correlated with plant species richness. Insect biovolume was negatively correlated with plant species richness. Responses of individual herbivores varied along the nitrogen gradient, but numbers of 13 of the 18 most abundant herbivores were positively correlated with their host plant biomass. Although insect communities did not respond as strongly as plant communities, insect species richness, abundance, and composition were impacted by nitrogen addition. This study demonstrates that long-term nitrogen loading affects the entire food chain, simplifying both plant and insect communities. Received: 18 May 1999 / Accepted: 5 January 2000  相似文献   

12.
The trajectory of hurricane-induced succession was evaluated in a network of forest plots measured immediately before and 3 mo, 5, 10, and 15 yr after the direct impact of a Category 4 hurricane. Comparisons of forest structure, composition, and aboveground nutrients pools were made through time, and between species, life-history groups and geomorphic settings. The hurricane reduced aboveground biomass by 50 percent, causing an immediate decrease in stem density and diversity indices among all geomorphic settings. After 15 yr, basal area and aboveground biomass returned to pre-hurricane levels, while species richness, diversity indices, and stem densities exceeded pre-hurricane levels. Differences in species composition among geomorphic settings had not returned after 15 yr but differences in stem densities and structure were beginning to emerge. Significant differences were observed in the nutrient concentration of the three species that comprised the most aboveground biomass, and between species categorized as secondary high-light species and primary, low-light species. Species whose abundance was negatively correlated with the mature forest dominant also had distinct nutrient concentrations. When total aboveground nutrient pools were compared over time, differences in leaf nutrients among species were hidden by similarities in wood nutrient concentrations and the biomass dominance of a few species. The observed successional trajectory indicates that changes in species composition contributed to fast recovery of aboveground biomass and nutrient pools, while the influence of geomorphic setting on species composition occurs at time scales >15 yr of succession.  相似文献   

13.
Arthropods play a key role in the functioning of forest ecosystems and contribute to biological diversity. However, the influence of current silvicultural practices on arthropod communities is little known in jack pine (Pinus banksiana) forests, a forest type comprising a major portion of the Canadian boreal forest. In this study, the effects of silvicultural treatments on arthropod communities were compared to identify those treatments that minimize ecological impacts on arthropods. The influence of harvesting techniques and mechanical site preparations on insect family richness and abundance of arthropods (total, by orders and by trophic groups) was examined in young (three-year-old) jack pine plantations of northern Ontario. Each of the following treatments were conducted in three plots: (1) tree length harvest and trenching; (2) full tree harvest and trenching; (3) full tree harvest and blading; and (4) full tree harvest and no site preparation. Arthropods were collected using sweepnets and pitfall traps over two years. Blading significantly reduced insect family richness, the total abundance of arthropods, abundance of Orthoptera, Heteroptera, Hymenoptera, Diptera, insect larvae, and plant feeders when compared to the other treatments. The use of either full tree or tree length harvesting had similar short-term effects on family richness and the abundance of arthropods. Arthropod diversity declined with increasing post-harvest site disturbance. These results suggest that arthropod communities in the understory and on the ground are reduced most on sites mechanically prepared by blading, but are similar under conditions immediately following either full tree or tree length harvesting. The implications for regenerating jack pine in the boreal forest are discussed.  相似文献   

14.
Question: How does vegetation develop during the initial period following severe wildfire in managed forests? Location: Southwestern Oregon, USA. Methods: In severely burned plantations, dynamics of (1) shrub, herbaceous, and cryptogam richness; (2) cover; (3) topographic, overstory, and site influences were characterized on two contrasting aspects 2 to 4 years following fire. Analysis of variance was used to examine change in structural layer richness and cover over time. Non‐metric multidimensional scaling, multi‐response permutation procedure, and indicator species analysis were used to evaluate changes in community composition over time. Results: Vegetation established rapidly following wildfire in burned plantations, following an initial floristics model of succession among structural layers. Succession within structural layers followed a combination of initial and relay floristic models. Succession occurred simultaneously within and among structural layers following wildfire, but at different rates and with different drivers. Stochastic (fire severity and site history) and deterministic (species life history traits, topography, and pre‐disturbance plant community) factors determined starting points of succession. Multiple successional trajectories were evident in early succession. Conclusions: Mixed conifer forests are resilient to interacting effects of natural and human‐caused disturbances. Predicting the development of vegetation communities following disturbances requires an understanding of the various successional components, such as succession among and within structural layers, and the fire regime. Succession among and within structural layers can follow different successional models and trajectories, occurs at different rates, and is affected by multiple interacting factors.  相似文献   

15.
Diversity and trophic structure of grain insect communities were examined in Olotillo, Nal‐Tel and Comiteco maize landraces cultivated within a milpa agroecosystem by Zapotec ethnic groups in Mexico. Higher insect diversity was expected in Olotillo, whose cultivation comprises a wide variety of agroecosystems, and low insect abundance in Nal‐Tel with small grains and thick testa. Forty Olotillo cobs were collected at low, medium and high elevations, and 40 each of Nal‐Tel at low elevation and Comiteco at high elevation. Cobs were monitored for 30 days under controlled laboratory conditions until all insects emerged. Thickness of testa of 400 grains from each landrace was measured. Community composition and trophic structure were described and standard diversity indices were estimated. A total of 9,708 insects, corresponding to five orders, 24 families and 36 species, were recorded, with six species not previously reported in this region. Insect guilds were composed of 70% phytophages, 22% parasitoids and 8% predators. Species richness was S = 27, 16 and 8 in Olotillo, Comiteco and Nal‐Tel, respectively. Nal‐Tel and Olotillo had the highest diversity index values (H′ = 1.32 and 1.2, respectively) and no significant differences; Comiteco had the lowest value (H′ = 0.65) and differed significantly from the other landraces. Comiteco and Olotillo, which have large grains and thin testa, showed higher insect abundance than Nal‐Tel, which has small grains and thick testa and showed lower abundance. Results support our hypotheses and highlight the role of traditional crop management in insect agrobiodiversity maintenance and conservation.  相似文献   

16.
1. The introduction of livestock in natural areas is a common disturbance that affects both plant and pollinator diversity and might affect their interaction. Understanding whether livestock affect a food resource for pollinators (i.e. flower abundance) and/or a pollinator assemblage (i.e. abundance and richness) has important implications for plant–pollinator interactions and still needs deeper investigation. 2. This study investigated how pollinator communities and flower abundance determined floral visitation frequency along a grazing gradient, using seven large paddocks in Patagonian Monte Desert that varied in livestock densities. Pollinator visitation frequency was measured in five of the most abundant native plant species of the region, present in all the paddocks, but that differed in reproductive strategy ranging from insect‐pollinated self‐compatible and self‐incompatible to wind‐pollinated. The influence of livestock density, insect, and flower abundance on visitation frequency was evaluated using D‐separation hierarchical path models. 3. Intermediate stocking densities showed the highest insect richness and abundance. Livestock density showed a negative quadratic relationship with insect richness; hymenopterans being the main insect group in the region. Flower density decreased with the increase in livestock density. The five plant species shared several pollinator species although each one supported a distinct assemblage. 4. The path model showed that livestock was not directly associated with pollinator visitation frequency; however, this apparent lack of association was as a result of opposite forces acting together. An increase in livestock density reduced visitation frequency through a decrease in insect abundance, yet, livestock simultaneously increased the pollinator visitation rate through decreased flower abundance. 5. This study describes how changes in the density of exotic mammals can affect pollinator and flower abundance, resulting in contrasting effects on flower visitation rates with, apparently, neutral net consequences. This illustrates the complexity of responses to plant–pollinator interactions to anthropogenic disturbances that alter the ecological context.  相似文献   

17.
Hurricane-induced nitrous oxide fluxes from a wet tropical forest   总被引:2,自引:0,他引:2  
Hurricane activity is predicted to increase over the mid-Atlantic as global temperatures rise. Nitrous oxide (N2O), a greenhouse gas with a substantial source from tropical soils, may increase after hurricanes yet this effect has been insufficiently documented. On September 21, 1998, Hurricane Georges crossed Puerto Rico causing extensive defoliation. We used a before–after design to assess the effect of Georges on N2O emissions, and factors likely influencing N2O fluxes including soil inorganic nitrogen pools and soil water content in a humid tropical forest at El Verde, Puerto Rico. Emissions of N2O up to 7 months post-Georges ranged from 5.92 to 4.26 ng cm−2 h−1 and averaged five times greater than fluxes previously measured at the site. N2O emissions 27 months after the hurricane remained over two times greater than previously measured fluxes. Soil ammonium pools decreased after Georges and remained low. The first year after the hurricane, nitrate pools increased, but not significantly when compared against a single measurement made before the hurricane. Soil moisture and temperature did not differ significantly in the two sampling periods. These results suggest that hurricanes increase N2O fluxes in these forests by altering soil N transformations and the relative availabilities of inorganic nitrogen.  相似文献   

18.
The availability and quality of resources for herbivores in tropical dry forests (TDFs) vary in time and space, affecting herbivore guilds differently across spatial scales (both horizontally and vertically), with consequences to the distribution of leaf damage in these forests. We attempted to elucidate the distribution patterns of herbivorous insect guilds and leaf damage throughout the secondary succession and vertical stratification along the rainy season in a Brazilian TDF. With the advance of the succession, a greater richness and abundance of herbivorous insects were found, resulting in higher leaf damage in intermediate and late stages. This pattern, however, was not observed for the frequency of leaf miners. At a smaller spatial scale, the host tree height positively affected the richness and abundance of insects. The higher leaf damage was found in canopy, which also harbored a greater richness and abundance of chewing herbivores compared to the understory at both the beginning and the end of the rainy season. Although for sap‐sucking insects, this was only true at the beginning of the season. We detected a decrease in insect richness and abundance at the end of the rainy season, probably due to a synchronization of insect activity with the availability of young, highly nutritious plant tissues. These results are consistent with other studies that found a general trend of increasing richness and abundance of herbivorous insects and leaf damage throughout the secondary succession (early to late stages) and between vertical strata (understory to canopy), suggesting that forest complexity positively affects herbivores.  相似文献   

19.
Degradation succession of heterotrophic flagellate communities was studied in samples of detritus and water from a small swamped lake in the environs of the settlement Borok, Yaroslavl province. Three stages of succession with different species composition of the heterotrophic flagellate community were clearly recognized. Cumulative properties of the community change with time. Maximum species richness, diversity, and abundance were observed on the fourth day of succession; their values gradually decreased later. The trophic and taxonomic community structure was most diverse at the earlier stages of succession. Primordial food (bacteria) concentration affects only the size of peak community properties, but has no influence on the pattern of succession changes. The influence of predators considerably reduced heterotrophic flagellate abundance and can shift the time of the stage with maximum species diversity in the course of succession.  相似文献   

20.
The effect that extreme natural events have on biological diversity is relatively poorly known. We used a before–after control‐impact (BACI) design to analyze changes in bird abundances and communities following Hurricane Gudrun, which struck southern Sweden in January 2005, felling 75 million m3 of forest and causing damage to 5% of forested areas (half a million hectares) in a few hours. We used recent measures of impact in combination with classical BACI contrasts to analyze bird count data from a monitoring program in Sweden. We investigated changes in the abundance of 17 species commonly found in forests, along with changes in species composition and functional structure of the bird community. In total, we considered 34 response variables and examined whether responses were immediate or long‐term. There was no evidence of a strong effect of the hurricane on the abundances of six species. Estimates of the effects on five species were too uncertain to draw inferences. We detected positive and negative effects of the hurricane on the abundances of the remaining six species, but the magnitude of effects often was small. Generally, the effects were in the expected direction: negative on birds associated with mature forest and positive on birds associated with open land or young forest. We found evidence of an increase in the proportion of species that nest on the ground and a decrease in the proportion of species that nest in cavities and trees. In contrast, the hurricane had no discernible effect on functional measures of diversity (richness, evenness or divergence), or on communities’ reproductive or morphological characteristics. Our results suggest that the hurricane affected bird populations and communities, but the magnitude of effects was generally small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号